Reading for this lecture:

CMR article RURO.

Interactive CMPy lab:

Block Entropy Curves

Motivation:

Previous: Measures of randomness of information source Block entropy H(L) Entropy rate h_{μ}

End point of next lectures:

Measures of memory & information storage

Big Picture:

Complementary properties of a source.

Need both: Measures of randomness and structure.

How random?

Block entropy growth: H(L).

If L is large enough, we see linear rate of increase of H(L):

$$H(L) \propto h_{\mu}L$$

which is the entropy rate:

$$h_{\mu} = \lim_{L \to \infty} \left(H(L) - H(L-1) \right)$$

How random ...

Fair and Biased Coins:

How random ...

Golden Mean Process:

Lecture 17: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

How random ...

Period-16 Process:

How random ...

RRXOR Process:

Lecture 17: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

How random ...

How large must L be to see the intrinsic randomness h_{μ} ?

Entropy Convergence:

Length-L entropy rate estimate:

$$h_{\mu}(L) = H(L) - H(L-1)$$

$$h_{\mu}(L) = \Delta H(L)$$

Monotonic decreasing:

$$h_{\mu}(L) \le h_{\mu}(L-1)$$

Memory in Processes I ... Entropy Convergence ...

Process appears less random as account for longer correlations

Entropy (rate) Loss is an Information Gain:

$$h_{\mu}(L) = \mathcal{D}(\Pr(s^L) || \Pr(s^{L-1}))$$

Memory in Processes I ... Redundancy in Processes:

$$\mathcal{R} = \log_2 |\mathcal{A}| - h_{\mu}$$

Anatomy of Measurement:

$$\log_2 |\mathcal{A}|$$
 Information in single measurement $\left\{\begin{array}{c} \\ \\ \\ \end{array}\right\} h_\mu$ Intrinsic Randomness

Memory in Processes I ... Redundancy in Processes ...

$$\mathcal{R} = \lim_{L \to \infty} \mathcal{D}(\Pr(s^L) || U(s^L))$$

Redundancy in words:

$$\mathcal{R}(L) = H(L) - h_{\mu}L$$

H(L) H(L) $h_{\mu}L$ IID Approx

Redundancy per symbol:

$$r(L) = \mathcal{R}(L) - \mathcal{R}(L-1) = h_{\mu}(L) - h_{\mu}$$

Predictability Gain:

$$\Delta^2 H(L) = h_\mu(L) - h_\mu(L-1)$$

Boundary condition:

$$\Delta^2 H(1) = H(1) - \log_2 |\mathcal{A}|$$

Predictability Gain ...

Rate at which unpredictability is lost

Properties:

(I) H(L) Curvature:

$$\Delta^2 H(L) = H(L) - 2H(L-1) + H(L-2)$$

(2) H(L) Concavity:

$$\Delta^2 H(L) \le 0$$

(3) $|\Delta^2 H(L)| \gg 1 \Rightarrow$ Lth measurement significant

Predictability Gain ...

Golden Mean Process:

$$\Delta^2 H(2) = -0.2516$$
 bits

Second measurement is informative: 00 restriction observed

Memory in Processes I ... Entropy Hierarchy:

Take derivatives:

- (I) Block entropy: H(L)
- (2) Entropy rate: $h_{\mu}(L) = \Delta H(L)$
- (3) Predictability gain: $\Delta h_{\mu}(L) = \Delta^2 H(L)$

Now take integrals!

Total Predictability:

$$\mathbf{G} = \sum_{L=1}^{\infty} \Delta^2 H(L)$$

Redundancy:

$$-\mathbf{G} = \mathcal{R} = \log_2 |\mathcal{A}| - h_{\mu}$$

Interpretation:

- (I) Account for all correlations to see intrinsic randomness
- (2) Until that point, correlations appear as excess randomness

Excess Entropy:

As entropy convergence:

$$\mathbf{E} = \sum_{L=1}^{\infty} [h_{\mu}(L) - h_{\mu}]$$
 $(\Delta L = 1 \text{ symbol})$
 h_{α}

Excess Entropy ...

As intrinsic redundancy:

$$\mathbf{E} = \sum_{L=1}^{\infty} r(L)$$

Properties:

(I) Units: $\mathbf{E} = [\mathrm{bits}]$

(2) Positive: $E \ge 0$

- (3) Controls convergence to actual randomness.
- (4) Slow convergence ⇔ Correlations at longer words.
- (5) Complementary to entropy rate.

Excess Entropy ...

Asymptote of entropy growth:

$$\mathbf{E} = \lim_{L \to \infty} [H(L) - h_{\mu}L]$$

That is,

$$H(L) \propto \mathbf{E} + h_{\mu} L$$
 $H(L)$ Y-Intercept of entropy growth \mathbf{E}

Excess Entropy ...

Cost of Amnesia:

Forget what you know:

Information needed to recover predicting with error $hicksim h_{\mu}$

Cf. Memoryless Source: IID at same entropy rate

Excess Entropy ...

Mutual information between past and future:

View process as a communication channel: Past to Future

$$\mathbf{E} = I(\overset{\leftarrow}{S};\vec{S})$$

Property:

Symmetric in time

Interpretation:

Information that process communicates from past to future. Reduction in uncertainty about the future, given the past. Reduction in uncertainty about the past, given the future.

Memory in Processes I ... Examples of Excess Entropy:

Fair Coin: $h_{\mu} = 1$ bit per symbol $\mathbf{E} = 0$ bits

Biased Coin:

 $h_{\mu} = H(p)$ bits per symbol

$$\mathbf{E} = 0$$
 bits

Any IID Process:

 $h_{\mu} = H(X)$ bits per symbol

 $\mathbf{E} = 0$ bits

Lecture 17: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Examples of Excess Entropy ...

Period-2 Process: 010101010101

$$h_{\mu} = 0$$
 bits per symbol

$$\mathbf{E} = 1$$
 bit

Meaning:

I bit of phase information 0-phase or I-phase?

Examples of Excess Entropy ...

Period-16 Process:

 $(1010111011101110)^{\infty}$

 $h_{\mu} = 0$ bits per symbol

 $\mathbf{E} = 4 \text{ bits}$

Period-P Processes:

 $h_{\mu} = 0$ bits per symbol

 $\mathbf{E} = \log_2 P$ bits

Cf., entropy rate does not distinguish periodic processes!

Lecture 17: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Memory in Processes I ... Examples of Excess Entropy ...

Golden Mean Process:

$$h_{\mu} = \frac{2}{3}$$
 bits per symbol

$$\mathbf{E} \approx 0.2516 \text{ bits}$$

R-Block Process:

$$\mathbf{E} = H(R) - R \cdot h_{\mu}$$

(Specifically, Spin-Block Process)

Examples of Excess Entropy:

Finitary Processes: Exponential entropy convergence

Random-Random XOR (RRXOR) Process:

$$S_t = S_{t-1} \text{ XOR } S_{t-2}$$

$$h_{\mu} = \frac{2}{3}$$
 bits per symbol

$$\mathbf{E} \approx 2.252 \text{ bits}$$

Finitary processes: Exponential convergence:

$$h_{\mu}(L) - h_{\mu} \approx 2^{-\gamma L}$$

$$\mathbf{E} = \frac{H(1) - h_{\mu}}{1 - 2^{-\gamma}}$$

Memory in Processes I ...
Examples of Excess Entropy:
Infinitary Processes:

$$\mathbf{E} o \infty$$

Excess entropy can diverge:
Slow entropy convergence
Long-range correlations
(e.g., at phase transitions)

Morse-Thue Process:

A context-free language From Logistic map at onset of chaos

 $h_{\mu} = 0$ bits per symbol

Reading for next lecture:

CMR article RURO.