
Information in Processes II

Reading for this lecture:

EIT, Chapter 4 and Secs. 5.1-5.6 and 7.1-7.7.
MET in CMech Readings.

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Block Entropy:

Monotone increasing: H(L) ≥ H(L − 1)

Adding a random variable cannot decrease entropy:

No measurements, no information: H(0) = 0

Entropy Growth for Stationary Stochastic Processes: Pr(
↔

S )

Bounds:
	

 (1) Crude:
	

 (2) 1-block Markov:

H(L) ≤ L log2 |A|
H(L) ≤ LH(1)

H(S1, S2, . . . , SL) � H(S1, S2, . . . , SL, SL+1)

H(L) = H
�
Pr(sL)

�
= �

X

sL2AL

Pr(sL) log2 Pr(s
L
)
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Block Entropy Curves:

Entropy Growth for Stationary Stochastic Processes ...

H(L)

L

L log2 |A| LH(1)

0
0
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Block Entropy ...
	

 Example: Fair Coin

Entropy Growth for Stationary Stochastic Processes ...

H(L) = L

Pr(sL) =
1

2L
H(L)

L
0

0

L
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Block Entropy ...
	

 Example: Biased Coin

Entropy Growth for Stationary Stochastic Processes ...

Pr(sL) = p
n(1 − p)L−n

H(L) = LH(p)
H(L)

L0
0

For any IID process:

H(L) = LH(S1)
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Block Entropy ...
	

 Example: Period-2 Process

Entropy Growth for Stationary Stochastic Processes ...
Pr(0) = Pr(1) = 1

2

Pr(01) = Pr(10) = 1

2

Pr(101) = Pr(010) = 1

2

Pr(sL) = 0, otherwise

L

H(L)

0
0

P

log2(P )

H(1) = H(2) = H(L ≥ 1) = 1

Period-P Process:
H(L ≥ P ) = log2(P )

. . . 0101010101 . . . ...
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rates for Stationary Stochastic Processes:
    Entropy per symbol is given by the Source Entropy Rate:

hµ = lim
L→∞

H(L)

L

(When limits exists.)

Interpretations:
	

 Asymptotic growth rate of entropy
	

 Irreducible randomness of process
	

 Average description length (per symbol) of process

Use: Typical sequences have probability: 
(Shannon-MacMillian-Breiman Theorem)

Pr(sL) ≈ 2−L·hµ

L0

0

H(L) / Lhµ
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rates for Stationary Stochastic Processes ...

Length-L Estimate of Entropy Rate:

ĥµ(L) = H(sL|s1 · · · sL−1)

ĥµ(L) = H(L) − H(L − 1)

ĥµ(0) = log2 |A| :  no measurements, all events possible

Conditioning cannot increase entropy:
Monotonic decreasing: ĥµ(L) ≤ ĥµ(L − 1)

H(sL|s1 · · · sL−1) ≤ H(sL|s2 · · · sL−1) = H(sL−1|s1 · · · sL−2)

�hµ(1) = H(1)

Boundary condition: L0

0

hµ(L) ⇠ slope

H(L)
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rates for Stationary Stochastic Processes:
	

 Entropy rate ...

ĥµ = hµ

Alternate entropy rate definitions agree:

Interpretations:
	

 Uncertainty in next measurement, given past
	

 A measure of unpredictability
	

 Asymptotic slope of block entropy 

ĥµ = lim
L→∞

ĥµ(L) = lim
L→∞

H(s0|
←

s
L
) = H(s0|

←

s )
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rate for a Markov chain: {V, T}

Assuming asymptotic state distribution:
	

 Process in statistical equilibrium
	

 Process running for a long time
	

 Forgotten it’s initial distribution

hµ = −

∑

v∈V

pv(∞)
∑

v′∈V

Tvv′ log2 Tvv′

Closed-form:

hµ = lim
L→∞

hµ(L)

= lim
L→∞

H(vL|v1 · · · vL−1)

= lim
L→∞

H(vL|vL−1)
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rate for Markov chains ...

Examples:
	

 (1) Fair Coin:

	

 (2) Biased Coin:

	

 (3) Period-2 Process:

hµ = 1 bit per symbol

hµ = H(p) bits per symbol

hµ = 0 bits per symbol

H T

1

2

1

2

1

2

1

2

H T
p

p

1 − p

1 − p

A B
1

1
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rate for Unifilar Hidden Markov Chain:

Internal:
Observed:

{V, T}
{T (s)

: s ∈ A}

hµ = −

∑

v∈V

pv(∞)
∑

s∈A

∑

v′∈V

T
(s)
vv′ log2 T

(s)
vv′

Closed-form for entropy rate:

Due to unifilarity:
	

 Observed sequences are (effectively) unique paths in UHMC
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rate for Unifilar Hidden Markov Chain ...
Example: Why are modems noisy?
	

 Recall previous prefix code example

H(X) = 1.75 bits

Distribution:

Codebook:

What is entropy rate (per output bit) of encoded stream?

R(C) = 1.75 bits per message

p(a) = 1
2

p(b) = 1
4

p(c) = 1
8

p(d) = 1
8

C(a) = 0
C(b) = 10
C(c) = 110
C(d) = 111
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rate for Deterministic Hidden Markov Chain ...
Example: Why are modems noisy?

0| 1
2

1| 1
2

0| 1
2

0| 1
2

1| 1
2

1| 1
2

How often are codewords generated?

Encoding (output of channel) is a hidden Markov chain:
	

 Leaves connect to top tree node

C(d) = 111C(c) = 110

C(b) = 10

C(a) = 0
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rate for Deterministic Hidden Markov Chain ...
Example: Why are modems noisy?

Identify tree nodes with states of a hidden Markov chain

0| 1
2

1| 1
2

0| 1
2

0| 1
2

1| 1
2

1| 1
2

A B

C

0| 1
2

1| 1
2

0| 1
2

0| 1
2

1| 1
2

1| 1
2

Start State

A

B

C

C(d) = 111C(c) = 110

C(b) = 10

C(a) = 0
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rate for Deterministic Hidden Markov Chain ...
Example: Why are modems noisy?

Equivalent hidden Markov chain

It’s unifilar:

T =





1

2

1

2
0

1

2
0

1

2

1 0 0





pV (∞) = (pA, pB , pC) = (4

7
,

2

7
,

1

7
)

T
(0)

=





1
2 0 0
1
2 0 0
1
2 0 0



 T
(1)

=





0
1
2 0

0 0
1
2

1
2 0 0




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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rate for Deterministic Hidden Markov Chain ...
Example: Why are modems noisy?

Calculate entropy rate directly:

hµ = −

∑

v∈V

pv(∞)
∑

s∈A

∑

v′∈V

T
(s)
vv′ log2 T

(s)
vv′

= 4
7 · 1 + 2

7 · 1 + 1
7 · 1

= 1 bit

Encoding provides full utilization of binary channel.

17Monday, February 24, 14



Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rate for Deterministic Hidden Markov Chain ...
Example: Why are modems noisy?

Prefix code mapped 4-symbol, suboptimal source
	

 into a new source that uses all available capacity.

Compare:
    4-symbol source is redundant:

	

 Does not use all of 4-symbol channel.

R = log2 |A|− H(X)

= 2 − 1.75 = 0.25 bits

Modems do the same: Maximize use of capacity by sending a
	

 code stream that is as close to maximum entropy as possible.
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Entropy Rate for Nonunifilar Hidden Markov Chain:

Internal:
Observed:

{V, T}
{T (s)

: s ∈ A}

Entropy rate: No closed-form!

Upper and Lower Bounds:
H(SL|V1S1 · · ·SL−1) ≤ hµ(L) ≤ H(SL|S1 · · ·SL−1)

Unrealistic for inference: Must know about internal states.
Unrealistic for analysis: Simulate chain, do empirical estimate.

hµ 6= �
X

v2V

⇡v

X

s2A

X

v02V

T (s)
vv0 log2 T

(s)
vv0

Entropy rate? But there exists a way ... stay tuned!
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Information Dynamics:

What is the connection between
     information in processes and
            chaotic dynamical systems?

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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ε
−d

→ 2
k

. . . 01101 11001

ε

ε

Probe 1

Probe d

Celli i!xt

Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

21Monday, February 24, 14



ε
−d

→ 2
k

. . . 01101 11001

ε

ε

Probe 1

Probe d

Celli i!xt

Degree of
Instability

Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Production of
Entropy
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→ 2
k

. . . 01101 11001

ε

ε

Probe 1

Probe d

Celli i!xt

Degree of
Instability

Information in Processes ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Production of
Entropy? = ?
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Information Dynamics ...
Symbolic dynamics revisited ...

Good kinds of instruments:
    Markov partitions
    Generating partitions

When are partitions good?
   When symbol sequences encode orbits:

Diagram commutes:

T (x) = ∆ ◦ σ ◦ ∆−1(x)

M
T����! M

�

x

?

?

�

x

?

?

AZ �����! AZ

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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Information Dynamics ...

Metric entropies and mixing:

Entropy of partition:

Theorem: hµ(f) = sup
P

hµ(f,P)

hµ(f,P) = lim
N!1

1

N
H

 
N_

n=0

f�n(P)

!Metric entropy given partition:

H(P) = �
kX

i=1

Pr(Pi) log2 Pr(Pi)

Corollary:
    Using generating partition, metric entropy of symbolic dynamics
      is that of the hidden dynamical system                             .hµ(f) = hµ(f,P)

How well partition cells 
are mixed together

=
Production of entropy

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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Information Dynamics ...
Entropy rate and LCEs:

χ = {λ1, λ2, . . . , λn}, λi ≥ λi+1

{δ"x1, δ"x2, . . . , δ"xn}, δ"xi · δ"xj = 0, i != j

x(t)

x(0)

δ"x1(t)

δ"x2(t)

δ"x3(t)
δ"x3(0)

δ"x2(0)

δ"x1(0)

n dimensions:

Lyapunov Characteristic Exponent Spectrum:

�

i

= lim

t!1
lim

||�~xi(0)||!0

1

t

log2
||�~x

i

(t)||
||�~x

i

(0)||

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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LCE Spectrum gives “Geometry” of  Submanifolds:

x(t)

λi < 0 ⇐⇒ stable manifold

λi > 0 ⇐⇒ unstable manifold

λi < 0

λj > 0

Information Dynamics ...
Entropy rate and LCEs:

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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Entropy rate and LCE Spectrum:

hµ =
�

�i>0

�i

Rate of information production:
    Relate a geometric property (LCE spectrum) to
    how well subsets are mixed into each other (entropy rate).

Concrete statement of how a continuous-state dynamical system 
is an information source.

Dynamics and information theory are intimately related.

Information Dynamics ...

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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Information Dynamics ...
Ergodic Hierarchy:

Kolmogorov system:
   Present asymptotically
   independent of
   distant past

Bernoulli system:
    Most random

Simple Harmonic
Oscillator

Ergodic
System

Mixing
System

K-System

Bernoulli
System

Hard-sphere
Gas

Baker’s
Map

Approaches
equilibrium

Can use
microcanonical

ensemble

Fair Coin

Typical chaos

Mixing system:
   Subsets mixed

lim
n!1

Pr
�
A \ f�n(B)

�
= Pr (A) Pr (B)

Ergodic system:
    Time- & state-
      averages equal

Pr(A) = |A|�1

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

(See [MET] in CMech Readings)

27Monday, February 24, 14



Reading for next lecture:

    CMR article RURO.

Lecture 16: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Information in Processes ...
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