Information in Processes |

Reading for this lecture:
EIT,Secs.5.1-5.6 and 7.1-7.7.

Interactive Labs:
Processes, VWord Distributions, and Models
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Information in Processes ...

Previously: Entropy motivated as a measure of surprise.

Today:
How to compress a process:

Can’t do better than H(X)
(Shannon’s First Theorem)

How to communicate a process’s data:
Can transmit error-free at rates up to channel capacity

(Shannon’s Second Theorem)

Both results give operational meaning to entropy.
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Information in Processes ...
Communication channel:

Corrupted Inferred
Messages Codewords Codewords Messages
... T3X2T1 . C(z3)C(22)C(21) ...C(x3)C(x2)C(21) ... T3X2T1
Inf ti
" grma on ——» Encoder » Channel M Decoder —)
ource > A
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Information in Processes ...

Information source:
Random variable: X ~ p(z)
Message: r € X

Code:
Encoding alphabet: 00
D ={0,1} Dt = | ) D"
Codeword: L=1
C(xz) € D
Codeword length:

[(z) = ||C(2)]]
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Information in Processes ...

Codebook:
A codebook maps messages into codewords:
C:X —D"

Expected length:

(I(x)) = > p(x)l(x)

reX

Code rate: R(C') = (I(x)) bits per message
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Information in Processes ...

Codebook ...

Result: An encoding of an information source

... L3T2x1T —> ... C(SBg)C(SBg)C(ZBl)

Compression, if

R(C) < log, |X|
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Information in Processes ...
Example: X = {a,b, c,d}

X ~ p(x)
Distribution: p(a) = =
p(b) = j
&) | H(X) = 1.75 bits
plc) = 3
p(d) = g
Codebook: C(a) = 0
C(b) = 10
(6) B R(C) = 1.75 bits
C(c) = 110
C(d) = 111

Compression! R(C') < log, [{a,b,c,d}| = log, 4 = 2 bits
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Information in Processes ...
Kinds of codes: How to decode?

Nonsingular code: z; # x; = C(z;) # C(x;)

Extension of a code: C'™

Source word: 2" = 2125 ... 27

C(z™) = C(x1)C(x2)...C(xr)
Uniquely decodable code: CT nonsingular Va' € X*

Prefix code:
No C(x;) prefix of C(z;), i # j
Determine codewords directly, no long look-ahead
Uniquely decodable
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Information in Processes ...
Kinds of codes ...

Example (continued):

Codebook: C(a) = 0
c(b) = 10
C(c) = 110
C(d) = 111
Encoding:
acdbac — 0110111100110
Decoding: a d b a

0110111100110 — O 110 111 10 O 110

0110111100110 — acdbac
A prefix code.
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Information in Processes ...
Example (continued):

Prefix code corresponds to a tree of codewords.

C(c) =110 C(d) = 111
. _ o—l(a) 4 o—1l(b) 4 9—I(c) | o—I(d)
C Z — 2 + 92 + 92 + 92
— 97119724973 4973
- 1
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Information in Processes ...
Given a source: How to construct a prefix code!

Kraft inequality:

Codeword lengths in prefix codebook satisfy

Z 2—l(x) <1

reX
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Information in Processes ...
Optimal codes:

How are codeword lengths related to message probabilities?

Given an information source, find codebook such that

|. Minimize expected code length:

R=((x) =Y p)i(x)

reX
2. Subject to constraint of decodability:

Z UG

recX
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Information in Processes ...

Optimal codes ...
Satisfy constraint using Lagrange multiplier A:

J = Z p(x)l(x) + A (Z 2l($))

rxe(C rxe(C

For each x € X;

9.J p()

T —0=p(x) = N2 @ og 2 9~ lz) —
Py 0=nplx)— X\ og.2 Or Nog, 2

Constraint: A\ = 1/log, 2

Thus, optimal codebook has lengths:

/() = —log, p(x)
And, average length:
() = H(X)
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Information in Processes ...
Optimal codes ...

Not implementable:

— log p(x;) is not an integer length!
Any prefix code: (l(z;)) > H(X)

[(z;) = [—log, p(x;) ] Shannon coding

Use (say) Shannon-Fano or Huffman code, then have

H(X) < (l(z)) < H(X) + 1

T

Can be large cost!
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Information in Processes ...
Source ~ P(x),but you or your codebook uses Q(x).

Use incorrect probability model for code construction: () # P

((z)) = H(X) +D(P||Q)

Data Compression Theorem (Shannon’s First Theorem):

R(C) = H(X)

Cannot compress source below its entropy rate.

Operational meaning of entropy:
Fundamental limit on compression.
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Information in Processes ...

How much can you compress!?

Redundancy of a random variable: (identity codebook)

R = log, |X| — H(X)

Example (continued):
R =log,4 —1.75 = 0.25 bits

Messages are redundant,
but encoding is not.

Code saturates Shannon First Theorem bound:
R(C) = H(X)
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Information in Processes ...
Communication channel:

Corrupted Inferred
Messages Codewords Codewords Messages
... T3T2T1 . C(23)C(22)C(21) ... C(23)C(22)C(z1) ... X3T2T1
Inf ti
ngrma on ——» Encoder M Channel M Decoder ——> Receiver
ource . A

Reliable transmission through noisy channel: Possible?

How to code in presence of distorted codewords!?
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Information in Processes ...
Coding for Communication Channels:

Kinds of channel:
Phone line, ftp/http transfer, monologue, ...
Dynamical system at time t and t+]|
Spin system at one site and another
Measuring instrument
Learning channel
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Information in Processes ...
Coding for Communication Channels ...

Channel coding problem is to overcome errors:

Equivocation: P
Same input sequence leads to different outputs @

P q P \.
Ambiguity: O

Two different inputs lead to same output >0

Strategy:
Find channel inputs that are least ambiguous
given distortion properties.
Codebook: Map information source onto those inputs.
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Information in Processes ...
Coding for Communication Channels ...

Discrete channel:
Input: X ~ p(x)
Output: Y ~ p(y)
Channel: p(y|z)

Memoryless channel:
p(ye|rime—1 -+ ) = p(ye|Tt)

Channel Capacity:

C =max I(X;Y)

p(x)

Highest rate one can transmit over channel.
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Information in Processes ...
Coding for Communication Channels ...

Channel Capacity ...

C =max I[(X;Y)
p(z)

Extremes of no communication:

No info to send: H(X) =0
I(X;Y)=H(X)-HX|]Y)=0-0=0
Complete distortion:

Output independent of input: X | Y
I(X;Y)=0
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Information in Processes ...
Coding for Communication Channels ...

Duality:
Compression removes redundancy to give smallest description.

Encoding adds redundancy to compensate channel errors.

Lecture |5: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



Information in Processes ...
Coding for Communication Channels ...

Example: Noiseless Binary Channel 0

re{0,1} y=1{a,b} i :
p(ylz) = (é (1)> S rh

Capacity: C = m(agc I(X;Y)
p(x
max (H(X) - H(X|Y)
p(x
= max (H(X) —0)
p(x)
= 1 bit

Achieved when source is: p(z) = (3, 2)
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Information in Processes ...
Coding for Communication Channels ...

Example: Noisy Channel with Nonoverlapping Output
z € 40,1} y € {a,b,c,d} | 3

1 0 |
pole) = (3 3 3 %) %
g

1 <I
Capacity: C = max I(X;Y) 2

p(z) e i =

max (H(X) — H(X|Y)
= max(H(X) -0
— 1 bit

Achieved when source is: p(z) = (3, 5)
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Information in Processes ...
Coding for Communication Channels ...

Example: Binary Symmetric Channel with error probability e

1 — : 1 —e L0
R
R > 1

Capacity:
I(X;Y)=HY)-HY|X)=H(Y)— H(e)

C=maxI(X;Y)=1-— H(e)

p(x)
Achieved when source is: Complete distortion:
p(z) = (3, 3) e=2=C=0
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Information in Processes ...
Properties of Channel Capacity:

(1) Positive: C >0

(2) Bounded: C <log, |X| & C < log, |V

(3) Continuity: 1(X;Y) continuous in p(x)

(4) Concavity: I(X;Y) concave function of p(x)

Global maximum exists: C = m(agc I(X;Y)
p(x

No closed-form solution, in general,
but use nonlinear optimization methods to find.
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Information in Processes ...
Channel Coding Theorem (Shannon’s Second Theorem):

(1) Capacity is the maximum reliable transmission rate.
(2) Error-free codes exist if R < C.

|dea:
Model as noisy channel with non-overlapping outputs.

Strategy:
Code long block lengths: |X'T| ~ 2EH(X)
Choose codewords (channel inputs) that

produce non-overlapping outputs.
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Information in Processes ...
Channel Coding Theorem ... plausibility ...

yL
Xt oH\Y “|21) o, oL-H(Y|X)

‘XL| ~ QLH(X)

D/L‘ ~ 2LH(Y)

Inputs Channel Outputs
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Information in Processes ...

Channel Coding Theorem ... Yl
X" QH(WX |2}) o, oL-H(Y|X)
Th— oH(YHz3) o oL-H(Y|X)

Total number of disjoint output sets: |y« oLH(Y)
oLH(Y)

‘XL‘ ~ 2LH(X)

— oL(H(Y)-H(Y|X))

9LH(Y|X)
_ 9LI(X;Y)

Can send at most 227(X3Y) distinguishable sequences of length L.
C =max I(X;Y) is the maximum transmission rate.

p(x)
Lecture |5: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



Information in Processes ...
Channel Coding Theorem ...

What happens when transmitting above capacity, R > C!

Pr(error)

C R

(Typical of measurement systems?)
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Information in Processes ...

Reading for next lecture:

EIT, Chapter 4 and CMR article RURO.
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