
Information in Processes I

Reading for this lecture:

EIT, Secs. 5.1-5.6 and 7.1-7.7.

Interactive Labs:
         Processes, Word Distributions, and Models

Lecture 15: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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Previously: Entropy motivated as a measure of surprise. 

Today:
How to compress a process:

Can’t do better than H(X)
(Shannon’s First Theorem)

How to communicate a process’s data:
Can transmit error-free at rates up to channel capacity
(Shannon’s Second Theorem)

Both results give operational meaning to entropy.
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Communication channel:

Information
Source Encoder Decoder ReceiverChannel

Noise

X ∈ X

. . . x3x2x1 . . . C(x3)C(x2)C(x1) . . . Ĉ(x3)Ĉ(x2)Ĉ(x1)

X → C Ĉ → Xp(Ĉ|C)

. . . x3x2x1

Messages Codewords
Corrupted
Codewords

Inferred
Messages
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Code:
Encoding alphabet:

Codeword:

Codeword length: 

Information source: 
Random variable:
Message:  x ∈ X

D = {0, 1}

C(x) ∈ D
+

l(x) = ||C(x)||

X � p(x)

D+ =
��

L=1

DL



Information in Processes ...

Lecture 15: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Codebook:

A codebook maps messages into codewords:

    Expected length:

Code rate:                         bits per message

⟨l(x)⟩ =
∑

x∈X

p(x)l(x)

C : X → D
+

R(C) = �l(x)⇥
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Codebook ...

    Result: An encoding of an information source

    Compression, if

. . . x3x2x1 . . . C(x3)C(x2)C(x1)�

R(C) < log2 |X |
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Example:

H(X) = 1.75 bits

Distribution:

R(C) = 1.75 bits

Codebook:

X � p(x)
X = {a, b, c, d}

C(a) = 0
C(b) = 10
C(c) = 110
C(d) = 111

p(a) = 1
2

p(b) = 1
4

p(c) = 1
8

p(d) = 1
8

Compression! R(C) < log2 |{a, b, c, d}| = log2 4 = 2 bits
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Kinds of codes: How to decode?

Nonsingular code: xi ̸= xj ⇒ C(xi) ̸= C(xj)

Extension of a code: C+

x
L

= x1x2 . . . xLSource word:

C(xL) = C(x1)C(x2) . . . C(xL)

Uniquely decodable code: C
+ nonsingular ∀x

L
∈ X

L

Prefix code:
No C(xi) prefix of C(xj), i ̸= j

Determine codewords directly, no long look-ahead
Uniquely decodable
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Kinds of codes ...

Example (continued):

A prefix code.

Codebook:

Encoding:

Decoding:
acdbac� 0110111100110

0110111100110� acdbac

0110111100110�
a����
0

c����
110

d����
111

b����
10

a����
0

c����
110

C(a) = 0
C(b) = 10
C(c) = 110
C(d) = 111
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Example (continued):

10

1

1

0

0

C(d) = 111C(c) = 110

C(b) = 10

C(a) = 0

C :
�

= 2�l(a) + 2�l(b) + 2�l(c) + 2�l(d)

= 2�1 + 2�2 + 2�3 + 2�3

= 1

Prefix code corresponds to a tree of codewords.
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Given a source: How to construct a prefix code?

Kraft inequality:

        Codeword lengths in prefix codebook satisfy
∑

x∈X

2
−l(x) ≤ 1
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Optimal codes:

Given an information source, find codebook such that

1. Minimize expected code length:

2. Subject to constraint of decodability: 
∑

x∈X

2
−l(x) ≤ 1

R = ⟨l(x)⟩ =
∑

x∈X

p(x)l(x)

How are codeword lengths related to message probabilities?
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Optimal codes ...

⟨l(x)⟩ = H(X)

Thus, optimal codebook has lengths:

And, average length:

J =
X

x2C

p(x)l(x) + �

 
X

x2C

2�l(x)

!

2�l(x) =
p(x)

� loge 2

� = 1/ loge 2

l(x) = � log2 p(x)

Constraint:

Or
@J

@l
= 0 = p(x)� �2�l(x) loge 2

x 2 XFor each           :

Satisfy constraint using Lagrange multiplier   :λ
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Optimal codes ...

Not implementable:

                     is not an integer length!

Any prefix code:

Use (say) Shannon-Fano or Huffman code, then have

H(X) ≤ ⟨l(x)⟩ ≤ H(X) + 1

⟨l(xi)⟩ ≥ H(X)

l(xi) = ⌈− log2 p(xi)⌉

� log p(xi)

Can be large cost!

Shannon coding
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Data Compression Theorem (Shannon’s First Theorem):

R(C) ≥ H(X)

Cannot compress source below its entropy rate.

Operational meaning of entropy:
            Fundamental limit on compression.

Use incorrect probability model for code construction: Q ̸= P

Source             , but you or your codebook uses         .� P (x) Q(x)

⇥l(x)⇤ = H(X) + D(P ||Q)
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Redundancy of a random variable: (identity codebook) 

R = log2 |X |− H(X)

How much can you compress?

Example (continued):

R(C) = H(X)

Messages are redundant,
   but encoding is not.

R = log2 4� 1.75 = 0.25 bits

Code saturates Shannon First Theorem bound:
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Communication channel:

Information
Source Encoder Decoder ReceiverChannel

Noise

X ∈ X

. . . x3x2x1 . . . C(x3)C(x2)C(x1) . . . Ĉ(x3)Ĉ(x2)Ĉ(x1)

X → C Ĉ → Xp(Ĉ|C)

. . . x3x2x1

Messages Codewords
Corrupted
Codewords

Inferred
Messages

Reliable transmission through noisy channel: Possible?

How to code in presence of distorted codewords?
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Kinds of channel:
Phone line, ftp/http transfer, monologue, ...
Dynamical system at time t and t+1
Spin system at one site and another
Measuring instrument

     Learning channel

Coding for Communication Channels:
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Channel coding problem is to overcome errors:

Equivocation:
Same input sequence leads to different outputs

Ambiguity:
Two different inputs lead to same output

Strategy:
Find channel inputs that are least ambiguous

given distortion properties.
Codebook: Map information source onto those inputs.

Coding for Communication Channels ...
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Coding for Communication Channels ...

Discrete channel:
Input:
Output:
Channel:

X ∼ p(x)
Y ∼ p(y)
p(y|x)

Memoryless channel:
p(yt|xtxt−1 · · · ) = p(yt|xt)

Channel Capacity:

C = max
p(x)

I(X;Y )

Highest rate one can transmit over channel.
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Coding for Communication Channels ...

Channel Capacity ...

C = max
p(x)

I(X;Y )

Extremes of no communication:
   No info to send:

   Complete distortion:
      Output independent of input:

H(X) = 0

I(X;Y ) = 0

X � Y

I(X;Y ) = H(X)�H(X|Y ) = 0� 0 = 0
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Coding for Communication Channels ...

Duality:

Compression removes redundancy to give smallest description.

Encoding adds redundancy to compensate channel errors.
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Coding for Communication Channels ...

Example: Noiseless Binary Channel

p(y|x) =

(

1 0
0 1

)

p(x) = ( 1

2
,

1

2
)

Capacity:

Achieved when source is:

0

1

a

b

x � {0, 1} y = {a, b}

C = max
p(x)

I(X;Y )

= max
p(x)

(H(X)�H(X|Y ))

= max
p(x)

(H(X)� 0)

= 1 bit
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Coding for Communication Channels ...

Example: Noisy Channel with Nonoverlapping Output

p(x) = ( 1

2
,

1

2
)

Capacity:

Achieved when source is:

p(y|x) =

(

1

2

1

2
0 0

0 0 1

3

2

3

)

a

0

1

b

c

d

1

2

1

3

2

3

1

2

x � {0, 1} y � {a, b, c, d}

C = max
p(x)

I(X;Y )

= max
p(x)

(H(X)�H(X|Y ))

= max
p(x)

(H(X)� 0)

= 1 bit
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Coding for Communication Channels ...

Example: Binary Symmetric Channel with error probability

p(x) = ( 1

2
,

1

2
)

Capacity:

Achieved when source is:

e

p(y|x) =
�

1� e e
e 1� e

�
0

1

0

1

1� e

1� e

e

e

I(X;Y ) = H(Y )�H(Y |X) = H(Y )�H(e)

C = max
p(x)

I(X;Y ) = 1�H(e)

e = 1
2 � C = 0

Complete distortion:
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Properties of Channel Capacity:

(1) Positive:
(2) Bounded:
(3) Continuity:
(4) Concavity:

C ≥ 0

C ≤ log2 |X | & C ≤ log2 |Y|
I(X;Y ) continuous in p(x)
I(X;Y ) concave function of p(x)

Global maximum exists: C = max
p(x)

I(X;Y )

No closed-form solution, in general,
            but use nonlinear optimization methods to find.
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Channel Coding Theorem (Shannon’s Second Theorem):

(1) Capacity is the maximum reliable transmission rate.
(2) Error-free codes exist if           . R < C

Idea:
     Model as noisy channel with non-overlapping outputs.

Strategy:
Code long block lengths:
Choose codewords (channel inputs) that

          produce non-overlapping outputs.

|XL| ≈ 2
LH(X)
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Channel Coding Theorem ... plausibility ...

X
L

YL

x
L

1

x
L

2

|YL| ≈ 2
LH(Y )

|XL| ≈ 2
LH(X)

2H(Y L|xL
1 ) � 2L·H(Y |X)

2H(Y L|xL
2 ) � 2L·H(Y |X)

Inputs OutputsChannel
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Channel Coding Theorem ...
X

L
YL

x
L

1

x
L

2

|YL| ≈ 2
LH(Y )Total number of disjoint output sets:

2LH(Y )

2LH(Y |X)
= 2

L(H(Y )−H(Y |X))

= 2
LI(X;Y )

Can send at most               distinguishable sequences of length L.2
LI(X;Y )

C = max
p(x)

I(X;Y ) is the maximum transmission rate.

|XL| ≈ 2
LH(X)

2H(Y L|xL
1 ) � 2L·H(Y |X)

2H(Y L|xL
2 ) � 2L·H(Y |X)
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Channel Coding Theorem ...

What happens when transmitting above capacity,           ?R > C

C R

Pr(error)

0

(Typical of measurement systems?)



Reading for next lecture:

    EIT, Chapter 4 and CMR article RURO.
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Information in Processes ...


