
Information
Reading for this lecture:

   Elements of Information Theory (EIT), Chapters 1 &
      Sections 2.1-2.8.
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Sources of Information:

   Apparent randomness:
Uncontrolled initial conditions

     Actively generated: Deterministic chaos

  Hidden regularity:
Ignorance of forces
Limited capacity to model structure
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History of information:
Boltzmann (19th Century):

       Equilibrium, large-scale systems (indistinguishable microstates)
Hartley-Shannon-Wiener (Early 20th):

Communication & Cryptography
Current threads (late 20th century):

         Coding, Statistics, Dynamics, and Learning

Issues:
What is information?
How do we measure unpredictability?
How do we quantify structure?
Information     Energy!=
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Information as uncertainty:

Observe something unexpected:
            Gain information

Bateson: “A difference that makes a difference”
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Information as uncertainty:

How to formalize?
Shannon’s approach:
     A measure of surprise.

         Connection with Boltzmann’s thermodynamic entropy

∝ − log Pr(event)

− log 1 = 0

� log
1

Number of Events
= log(Number of Events)

Self-information of an event                             .

Predictable: No surprise

Completely unpredictable: Maximally surprised
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Random variables:

Distribution:

Pr(X) = (p1, . . . , pk)

Shorthand: X ∼ p(x)

X, Y ; events x, y � {1, 2, . . . , k}

How to measure?

               Information  =  f( Pr(events) )?

      What is f( )?  Maps probability distribution to a number.

Y � q(x)

Pr(Y ) = (q1, . . . , qk)
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Khinchin axioms for a measure of information:

Entropy:

(1) Maximum at equidistribution:

(2) Continuous function of distribution:

(3) Expansibility:

(4) Additivity of independent systems: 

H(X) = H(p1, . . . , pk)

H(p1, . . . , pk) versus pi

H(p1, . . . , pk) ≤ H
(

1

k
, . . . , 1

k

)

H(p1, . . . , pk) = H(p1, . . . , pk, pk+1 = 0)

X � Y � H(X, Y ) = H(X) + H(Y )
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Khinchin axioms for a measure of information ...

Then get unique (up to a factor) functional form,

The Shannon entropy:

Theorem:

H(X) � �
k�

i=1

pi log pi
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Shannon axioms for a measure of information:

Entropy: 

(1) Maximum surprise:

(2) Continuous function of distribution:

(3) Merging: 

H(X) = H(p1, . . . , pk)

H( 1

2
, 1

2
) = 1

H(p1, p2, p3, . . . , pk)

= H(

k−1 events
︷ ︸︸ ︷

p1 + p2, p3, . . . , pk) + (p1 + p2)H(

2 events
︷ ︸︸ ︷

p1

p1+p2
, p2

p1+p2
)

H(p1, . . . , pk) versus pi
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Shannon axioms for a measure of information ...

Theorem (ditto):

Also get Shannon entropy:

H(X) � �
k�

i=1

pi log pi



Information ...

Lecture 14: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield

Shannon Entropy:

Units:
Log base 2:
Natural log:

H(X) = [bits]
H(X) = [nats]

H(X) = 〈− log2 p(x)〉

H(X) = �
�

x�X
p(x) log2 p(x)

Properties:
   1. Positivity:
   2. Predictive:
   3. Random:

H(X) � 0

H(X) = log2 k � p(x) = U(x) = 1/k
H(X) = 0 � p(x) = 1 for one and only one x

x � X = {1, 2, . . . , k}X � P

Note: 0 log 0 = 0
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Examples: Binary random variable

Binary entropy function:

Pr(1) = p & Pr(0) = 1 − p

H(p) = −p log2 p − (1 − p) log2(1 − p)

Fair coin:

H(p) = 1 bit

p =
1

2

Completely biased coin: p = 0 (or 1)

H(p) = 0 bits

X

0 · log 0 = 0Recall:

H(X) ?

𝒳 = {Heads, Tails} Pr(Heads) = p, Pr(Tails) = 1 − p
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Example: IID Process over four events

X = {a, b, c, d} Pr(X) = ( 1

2
, 1

4
, 1

8
, 1

8
)

H(X) = 7

4
bitsEntropy:

Number of questions to identify the event?
x = a? (must always ask at least one question)
x = b? (this is necessary only half the time)
x = c? (only get this far a quarter of the time)

1 · 1 + 1 ·
1

2
+ 1 ·

1

4
= 1.75Average number: questions

Interpretation? Optimal way to ask questions.
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Example: IID Process over four events ...

1 · 1 + 1 ·
1

2
+ 1 ·

1

4
= 1.75Average number: questions

a?

b?

c?

c d

b

a

1
2

1
2

1
2

1
2

1
2

1
2

Pr(X) = ( 1

2
, 1

4
, 1

8
, 1

8
)
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Example: IID Process over four events ...

d?

c?

b?

a b

c

d

Average number: questions1 · 1 + 1 · 7
8 + 1 · 6

7 � 2.7
Query in a different order:

7
8

1
8

6
7

1
7

2
3

1
3

Pr(a, b, c) = ( 4
7 , 2

7 , 1
7 )

Pr(a, b) = ( 2
3 , 1

3 )

Pr(X) = ( 1

2
, 1

4
, 1

8
, 1

8
)
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Example: IID Process over four events

H(X) = 7

4
bitsEntropy:

Theorem:
   Entropy gives the smallest number of questions
   to identify an event, on average.

At each stage, ask questions that are most informative.

Choose partitions of event space that give “most random”
    measurements.
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Interpretations of Shannon Entropy:

Observer’s degree of surprise in outcome of a random variable

Uncertainty in random variable

Information required to describe random variable

A measure of flatness of a distribution
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Joint Entropy: Average uncertainty in X and Y occurring

(X, Y ) ∼ p(x, y)Two random variables:

H(X, Y ) = −

∑

x∈X

∑

y∈Y

p(x, y) log2 p(x, y)

Independent:

X � Y � H(X, Y ) = H(X) + H(Y )



Information ...

Lecture 14: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield

Conditional Entropy:  Average uncertainty in X, knowing Y

H(X|Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log2 p(x|y)

H(X|Y ) = H(X, Y ) − H(Y )

H(X|Y ) != H(Y |X)Not symmetric:



Information ...

Lecture 14: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield

Example: Dining on campus

  Food served at cafeteria is a random process:
  Random variables:

Dinner one night:
Lunch the next day:

D ∈ {Pizza,Meat w/Vegetable} = {P, M}
L ∈ {Casserole,Hot Dog} = {C, H}

After many meals, estimate:
Pr(P ) = 1

2
& Pr(M) = 1

2

H(L) = H( 3

4
) ≈ 0.81 bits

H(D) = 1 bit

Entropies:

Pr(C) = 3

4
& Pr(H) = 1

4
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Example: Dining on campus ...

Also, after many meals, estimate the joint probabilities:

Pr(P, C) = 1

4
& Pr(P, H) = 1

4

Pr(M,C) = 1

2
& Pr(M,H) = 0

Joint Entropy: H(D, L) = 1.5 bits

Dinner and Lunch are not independent:

H(D, L) = 1.5 bits != H(D) + H(L) = 1.81 bits

Suspect something’s correlated: What?
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Example: Dining on campus ...

Conditional entropy of lunch given dinner:

Pr(C|P ) = Pr(P, C)/ Pr(P ) = 1

2

Pr(H|P ) = Pr(P, H)/ Pr(P ) = 1

2

Pr(C|M) = Pr(M,C)/ Pr(M) = 1

Pr(H|M) = Pr(M,H)/ Pr(M) = 0

H(L|P ) = 1 bit

H(L|M) = 0 bits

Lunch unpredictable, if dinner was Pizza

Lunch predictable, if dinner was Meat w/Veg

Average uncertainty about lunch, given dinner:

H(L|D) = 1
2 bit
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Example: Dining on campus ...
Other way around?

Conditional entropy of dinner given lunch:

Average uncertainty about dinner, given lunch:

H(D|C) = H( 2

3
) ≈ 0.92 bits

H(D|H) = 0 bits

Note:                                . In fact,                                .H(D|L) != H(L|D)

Pr(P |C) = Pr(P, C)/ Pr(C) = 1

3

Pr(M |C) = Pr(M,C)/ Pr(C) = 2

3

Pr(P |H) = Pr(P, H)/ Pr(H) = 1

Pr(M |H) = Pr(M,H)/ Pr(H) = 0

H(D|L) = 3
4H( 2

3 ) � 0.69 bits

H(D|L) > H(L|D)
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Relative Entropy of Two Distributions:

Relative Entropy:

0 log 0

q
= 0

p log p

0
= ∞

Note:

D(X||Y ) =
�

x�X
p(x) log2

p(x)
q(x)

X � P & Y � Q, over common x ⇥ X

Alternate use (notation):

D(P ||Q)

Typically applied to: Q : q(x) > 0 , ⇥ x � X
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Relative Entropy of Two Distributions ...

Also called:
Kullback-Leibler Divergence
Information Gain: Number of bits of describing X as Y

     Discrimination between X & Y

Not a distance: not symmetric, no triangle inequality

Properties:
(1)
(2)
(3) 

D(X||Y ) � 0
D(X||Y ) = 0 ⇥ P = Q

D(X||Y ) ⇤= D(Y ||X)
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Common Information Between Two Random Variables:

X ∼ p(x) & Y ∼ p(y)

(X, Y ) ∼ p(x, y)

I(X;Y ) = D(P (x, y)||P (x)P (y))

I(X;Y ) =
∑

(x,y)∈X×Y

p(x, y) log2
p(x,y)

p(x)p(y)

Mutual Information:
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Mutual Information ...

Interpretations:
Information one variable has about another
Information shared between two variables
Measure of dependence between two variables

Properties:

(1)

(2)

(3)

(4)

(5)

     (6)

I(X;Y ) ≥ 0

I(X;Y ) = I(Y ;X)

I(X;Y ) = H(X) − H(X|Y )

I(X;Y ) = H(X) + H(Y ) − H(X, Y )

I(X;X) = H(X)

X ? Y ) I(X;Y ) = 0
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Example: Dining on campus ...
Mutual information:

Reduction in uncertainty about lunch, given dinner:

Reduction in uncertainty about dinner, given lunch:

I(D;L) = H(D) − H(D|L)

I(D;L) = H(L) − H(L|D)

Shared information between what’s served for dinner & lunch.

= H( 3
4 )� 1

2 � 0.31 bits

= 1�H( 2
3 ) � 1� 0.69 = 0.31 bits
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Example: Dining on campus ...

Mutual information ...

Further inquiry:
Vegetable served with dinner (Meat + Veg)

            appears in lunch’s casserole!

What is the shared information?



Information ...

Lecture 14: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield

Example: Dining on campus ...
How different are dinner and lunch?

Information Gain?
But they don’t share event space:
Turns out the Pizza was vegetarian
The events are common:

Pizza and Casserole:  Vegetarian
Meat w/Veg and Hot Dog: Not
 

D ∈ {P, M} & L ∈ {C, H}

V ∈ {Veg,Non}

D(D||L) =
∑

v∈V

Pr(D = v) log2

Pr(D = v)

Pr(L = v)

D(L||D) � 0.19 bits

D(D||L) � 0.21 bits
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Distance Between Two Random Variables:

Information Distance:

(X, Y ) � P (x, y)
Y � Q(y)

X � P (x)

d(X, Y ) = H(X|Y ) + H(Y |X)

Or

d(X, Y ) = H(X, Y )� I(X;Y )
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Distance Between Two Random Variables ...

Information Distance Properties:

(1) Positivity:

(2) Equality:

(3) Symmetric:

(4) Triangle inequality:

(5) Independence:

It is a distance!

Z � R(z)

d(X,Y ) � 0

d(X,Y ) = 0 () P = Q

d(X,Y ) = d(Y,X)

d(X,Y )  d(X,Z) + d(Z, Y )

d(X,Y )  H(X) +H(Y )
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Example: Dining on campus ...
Informational distance between dinner and lunch?  

d(D, L) = H(D|L) + H(L|D)

d(D,L) = 3
4H( 2

3 ) + 1
2H(1)

� 0.69 + 0.5 = 1.19 bits



Information ...

Lecture 14: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield

Event Space Relationships of Information Quantifiers:

H(X)H(Y ) H(X|Y )H(Y |X) I(X;Y )

H(X, Y )

d(X;Y )
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Chain Rules:

H(X1, X2, . . . , Xn) =
n∑

i=1

H(Xi|Xi−1, . . . , X1)

Entropy Chain Rule:

= H(X1) + H(X2|X1) + H(X3|X2X1) + · · ·
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Chain Rules ...

Conditional Mutual Information:

I(X;Y |Z) = H(X|Z) − H(X|Y, Z)

Mutual Information Chain Rule:

I(X1, . . . , Xn;Y ) =
n∑

i=1

I(Xi;Y |Xi−1, . . . , X1)

= I(X1;Y ) + I(X2;Y |X1) + I(X3;Y |X2X1) + · · ·
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Chain Rules ...

Conditional Relative Entropy:

Chain Rule:

D(P (X|Y )||Q(X|Y )) =
∑

(x,y)∈X×Y

p(x, y) log2
p(x|y)

q(x|y)

D(P (X, Y )||Q(X, Y ))

= D(P (X)||Q(X)) + D(P (X|Y )||Q(X|Y ))
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Bounds:

Uniform Distribution:

H(X) ≤ log |X |

H(X) = log |X |−D(P (x)||U(x))In fact:

X ∼ U(x) = 1/k

H(X) = log |X |

Generally: 
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Bounds ...

Conditioning Reduces Entropy:

H(X|Y ) ≤ H(X)

Independence:

H(X1, . . . , Xn) ≤
n∑

i=1

H(Xi)



Information ...

Lecture 14: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield

Markov Chain: X → Y → Z

p(x, z|y) = p(x|y)p(z|y)

(X, Y, Z) ∼ p(x, y, z)Three random variables:

Y shields X and Z from each other:

Properties:
(1)
(2)

X → Y → Z ⇒ Z → Y → X

Z = f(Y ) ⇒ X → Y → Z

X �Y Z

or I(X;Z|Y ) = 0
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Data Processing Inequality:

Manipulation cannot increase information about X.

X → Y → Z ⇒ I(X;Y ) ≥ I(X;Z)

Corollary:

Z = g(Y ) ⇒ I(X;Y ) ≥ I(X; g(Y ))
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Dining example:

Hidden variable was “leftovers”.

Knowing this, lunch and dinner are independent:

Dinner �leftovers Lunch

Dinner � leftovers � Lunch

Markov chain:



Reading for next lecture:

    EIT, Secs. 5.1-5.6 and 7.1-7.7 and Chapter 4.
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Information ...


