Information

Reading for this lecture:

Elements of Information Theory (EIT), Chapters | &
Sections 2.1-2.8.
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Information ...
Sources of Information:
Apparent randomness:
Uncontrolled initial conditions
Actively generated: Deterministic chaos
Hidden regularity:

lgnorance of forces
Limited capacity to model structure
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Information ...

Issues:
What is information?
How do we measure unpredictability?
How do we quantify structure!
Information == Energy

History of information:
Boltzmann (19th Century):
Equilibrium, large-scale systems (indistinguishable microstates)
Hartley-Shannon-Wiener (Early 20th):
Communication & Cryptography
Current threads (late 20th century):
Coding, Statistics, Dynamics, and Learning
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Information ...
Information as uncertainty:

Observe something unexpected:
Gain information

Bateson:“A difference that makes a difference”
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Information ...
Information as uncertainty:

How to formalize!?
Shannon’s approach:
A measure of surprise.
Connection with Boltzmann’s thermodynamic entropy

Self-information of an event x — log Pr(event).
Predictable: No surprise —logl =0

Completely unpredictable: Maximally surprised

1
—1 = Jlog(Numb f Event
05 Number of Events og( HHHbEL OF BVEH S)
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Information ...
How to measure?

Information = f( Pr(events) )?

What is f( )! Maps probability distribution to a number.

Random variables:
X,Y; events x,y € {1,2,...,k}
Distribution:
Pr(X) = (p1,...,pr)
Pr(Y) = (¢q1,...,qxr)

Shorthand: X ~ p(x)
Y ~q(x)
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Information ...

Khinchin axioms for a measure of information:

Entropy: H(X) = H(p1,...,px)

(1) Maximum at equidistribution:

H(p17°"7pk) SH(%?)%)
(2) Continuous function of distribution:

H(p1,...,pr) versus p;
(3) Expansibility:

H(p17 s 7pk) — H(p17 ooy PEyPE+1 — O)
(4) Additivity of independent systems:

X1Y=HXY)=H(X)+HY)
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Information ...

Khinchin axioms for a measure of information ...

Theorem:

Then get unique (up to a factor) functional form,

The Shannon entropy:

k
H(X) o< — ) p;ilogp,
1=1
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Information ...

Shannon axioms for a measure of information:

Entropy: H(X) = H(p1, ..., Pk)

(1) Maximum surprise:

H(z,2)=1

(2) Continuous function of distribution:
H(p1,...,pr) versus p;

(3) Merging:
H(p17p27p37 e 7pk)
k—1 events 2 events
P— e e

— H(pl + P2,D3; - - - 7pk) + (pl _I_pZ)H(plZfl—lpz ’ plzfp2)
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Information ...

Shannon axioms for a measure of information ...

Theorem (ditto):

Also get Shannon entropy:

k
H(X) o —» pilogp
1=1
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Information ...

Shannon Entropy: X ~ P reX={12,...,k}
p(x) log, p(x
;E; ’ Note: 0log 0 = 0

H(X) = (—logy p(z))

Units:
Log base 2: H (X ) = |bits]
Natural log: H (X ) = [nats]

Properties:
. Positivity: H(X) > 0

2. Predictive: H(X) =0 & p(z) =1 for one and only one
3.Random: H(X)=log, k & p(z)=U(x)=1/k
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Information ... Pr(1) =p & Pr(0)=1-1p

Examples: Binary random variable X

2 = {Heads, Tails} Pr(Heads) =p, Pr(Tails)=1-p

H(X)?
Binary entropy function:

06

H(p) — —plogzp — (1 _p) 10g2(]‘ _p) 0.4

1

Fair coin: p = 3 02 |

H(p) =1 bit °L

Completely biased coin: p =0 (or 1)
H(p) = 0 bits

Recall: 0-log0O =0

1 L

08 |
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Information ...

Example: [ID Process over four events

X:{a,b,c,d} PI’(X):(%aiaévé)

Entropy: H(X) = £ bits

Number of questions to identify the event!
x = a! (must always ask at least one question)
x = b? (this is necessary only half the time)
x = c! (only get this far a quarter of the time)

Average number: 1-1+1-2 4 1.5 = 1.75 questions

Interpretation? Optimal way to ask questions.
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Information ...

Example: [ID Process over four events ...

Average number: 1.1 +1 - % +1- 4

i = 1.75 questions

Pr(X) = (3,

N
o=
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Information ...

Example: lID Process over four events ...
Query in a different order:
Average number: 1-1+41- % +1- % ~ 2.7 questions
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Information ...

Example: [ID Process over four events

Entropy: H(X) = £ bits

At each stage, ask questions that are most informative.

Choose partitions of event space that give “most random”
measurements.

Theorem:

Entropy gives the smallest number of questions
to identify an event, on average.
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Information ...

Interpretations of Shannon Entropy:
Observer’s degree of surprise in outcome of a random variable
Uncertainty in random variable
Information required to describe random variable

A measure of flatness of a distribution
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Information ...

Two random variables: (X,Y) ~ p(z,y)

Joint Entropy: Average uncertainty in X and Y occurring

H(X,Y)==Y Y p(z,y)log,p(z,y)

reEX ye)y

Independent:

X1Y=HXY)=HX)+HY)
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Information ...

Conditional Entropy: Average uncertainty in X, knowing Y

H(X|Y)==> Y plx,y)log, p(z|y)
reX yey

H(X|Y)=H(X,Y)— H(Y)

Not symmetric: H(X|Y) # H(Y |X)
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Information ...
Example: Dining on campus

Food served at cafeteria is a random process:

Random variables:
Dinner one night: D € {Pizza, Meat w/Vegetable} = { P, M }

Lunch the next day: L. € {Casserole, Hot Dog} = {C, H}

After many meals, estimate:

Pr(P)=12 & Pr(M) =12
Pr(C) =2 & Pr(H) = ;
Entropies:
H(D) =1 bit

H(L) = H(3) ~ 0.81 bits
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Information ...
Example: Dining on campus ...

Also, after many meals, estimate the joint probabilities:
Pr(P,C) =1 & Pr(P,H) = +
Pr(M,C) =z & Pr(M,H) =0

Joint Entropy: H(D, L) = 1.5 bits

Dinner and Lunch are not independent:

H(D,L)=1.5bits = H(D)+ H(L) = 1.81 bits
Suspect something’s correlated: What?
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Information ...
Example: Dining on campus ...

Conditional entropy of lunch given dinner:
Pr(C|P) = Pr(P,C)/Pr(P) =
Pr(H|P) = Pr(P,H)/Pr(P) = 5
Pr(C|M) =Pr(M,C)/Pr(M) =
Pr(H|M) = Pr( M) =

H(L|P) =1 bit Lunch unpredictable, if dinner was Pizza
H(L|M) = 0 bits Lunch predictable, if dinner was Meat w/Veg

Average uncertainty about lunch, given dinner:

H(L|D) = = bit

Lecture 14: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield



Information ...

Example: Dining on campus ...

Other way around?
Conditional entropy of dinner given lunch:

Pr(P|C) =Pr(P,C)/Pr(C) = %
Pr(M|C) = Pr(M,C)/Pr(C) = 2
=1

C) = Pr(

Pr(P|H) =Pr(P,H)/ Pr(H)
Pr(M|H)=Pr(M,H)/Pr(H) =0

H(D|C) = H(%) ~ 0.92 bits

H(D|H) = 0 bits
Average uncertainty about dinner, given lunch:

H(D|L) = $H (%) ~ 0.69 bits
Note: H(D|L) # H(L|D).Infact, H(D|L) > H(L|D).
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Information ...
Relative Entropy of Two Distributions:

X~P&Y ~(Q, over common x € X

Relative Entropy:

Typically applied to: @ : ¢g(z) >0, Vz e X

Alternate use (notation):

D(P||Q)
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Information ...
Relative Entropy of Two Distributions ...

Properties:
(WDXI||Y) > 0
RQ)DXI|lY) = 0 P=Q
G)D(X|Y) # DYIX)

Also called:
Kullback-Leibler Divergence
Information Gain: Number of bits of describing X asY
Discrimination between X &Y

Not a distance: not symmetric, no triangle inequality
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Information ...
Common Information Between Two Random Variables:

X ~p(r) &Y ~ p(y)
(X,Y) ~ p(z,y)

Mutual Information:

[(X;Y) = D(P(z,y)||P(x)P(y))

IXY)= Y pla,y)log, U
(z,y)EX XY
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Information ...

Mutual Information ...

Properties:
(1) I(X;Y) >0
(2) I(X;Y) = I(Y; X)
(3) I(X;Y) = H(X) — H(X]Y)
4) I(X;Y)=H(X)+H(Y)-H(X,Y)
(5) I(X; X) = H(X

)
6) X LY = I(X;Y)=0

Interpretations:
Information one variable has about another
Information shared between two variables
Measure of dependence between two variables

Lecture 14: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield



Information ...

Example: Dining on campus ...

Mutual information:
Reduction in uncertainty about lunch, given dinner:

I(D;L)=H(L)— H(L|D)
= H(3) — + =~ 0.31 bits
Reduction in uncertainty about dinner, given lunch:

I(D;L)=H(D)— H(D|L)
=1 — H(%) ~ 1 —0.69 = 0.31 bits

Shared information between what’s served for dinner & lunch.

Lecture 14: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield



Information ...
Example: Dining on campus ...

Mutual information ...

What is the shared information?

Further inquiry:
Vegetable served with dinner (Meat + Veg)
appears in lunch’s casserole!
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Information ...

Example: Dining on campus ...

How different are dinner and lunch?
Information Gain?
But they don’t share event space: D € {P, M} & L € {C, H}
Turns out the Pizza was vegetarian
The events are common:
Pizza and Casserole: Vegetarian V € {Veg, Non}
Meat w/Veg and Hot Dog: Not

Pr(D =
D(D||IL) = Y Pr(D = v) log, Pi( :”)

veV

D(D||L) ~ 0.21 bits
D(L||D) ~ 0.19 bits
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Information ...

Distance Between Two Random Variables:
X ~ P(x)

ooy V)~ Pay

Information Distance:
d(X, Y) = H(X\Y) -+ H(Y\X)
Or

d(X,Y)=H(X,Y)-I(X;Y)
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Information ...

Distance Between Two Random Variables ...

Information Distance Properties:

Z ~ R(z)
(1) Positivity: d(X,Y) >0
(2) Equality: d(X,Y)=0 < P=Q
(3) Symmetric: d(X,Y)=d(Y,X)
(4) Triangle inequality: d(X,Y) <d(X,Z)+d(Z,Y)
(5) Independence: d(X,Y)< H(X)+ H(Y)

It is a distance!
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Information ...

Example: Dining on campus ...
Informational distance between dinner and lunch?

d(D,L) = H(D|L) + H(L|D)

d(D,L) = 2H(%)+1H(1)
0.69 4+ 0.5 = 1.19 bits

2

Lecture 14: Natural Computation & Self-Organization, Physics 256A (Winter 2025); Jim Crutchfield



Information ...
Event Space Relationships of Information Quantifiers:

H(X,Y)

I
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Information ...
Chain Rules:

Entropy Chain Rule:

H(X1,X,...,X,) =) H(Xi|Xi1,...,X1)
1=1

— H(X)) + H(X2|X1) + H(X3| XoX1) + -
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Information ...
Chain Rules ...

Conditional Mutual Information:

I[(X;Y|Z) = H(X|Z)— H(X|Y, Z)

Mutual Information Chain Rule:

I(X17 R 7Xn7Y) — ZI(X’HY‘XZ—M R 7X1)
1=1

= [(X1;Y) + I(X2; Y[ Xy) + I(X3; V[ X0 Xq) + - -
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Information ...
Chain Rules ...

Conditional Relative Entropy:

DIPXIQXIY) = Y pla,y)log, ~

Chain Rule:

D(P(X,Y)[|Q(X,Y))
= D(P(X)]|Q(X)) + D(P(X]Y)[|Q(X]Y))
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Information ...
Bounds:

Uniform Distribution:
X ~U(x)=1/k
H(X) = log |X|

Generally: H(X) <log|X|

In fact: H(X) = log|X| — D(P(z)||U(x))
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Information ...
Bounds ...

Conditioning Reduces Entropy:

H(X|Y) < H(X)

Independence:
n

H(Xy,...,Xn) <) H(X;)
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Information ...

Three random variables: (X,Y, Z) ~ p(x, vy, 2)

Markov Chain: X — Y — 7
p(z, zly) = p(z|y)p(zly)  or I(X;Z|]Y)=0

Y shields X and Z from each other: X 1y 2

Properties:
HhX—-Y—-//=/7—-Y > X
2) Z=fY)=X->Y—>Z7
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Information ...

Data Processing Inequality:

X—=Y—>7Z=I1X;Y)>I1(X;7)

Corollary:

Z=g(Y) = I(X;Y) > I(X;g(Y))

Manipulation cannot increase information about X.
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Information ...

Dining example:
Hidden variable was “leftovers’’.

Knowing this, lunch and dinner are independent:

Dinner | ieftovers Liunch

Markov chain:

Dinner — leftovers — Lunch
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Information ...

Reading for next lecture:

EIT,Secs. 5.1-5.6 and 7.1-7.7 and Chapter 4.
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