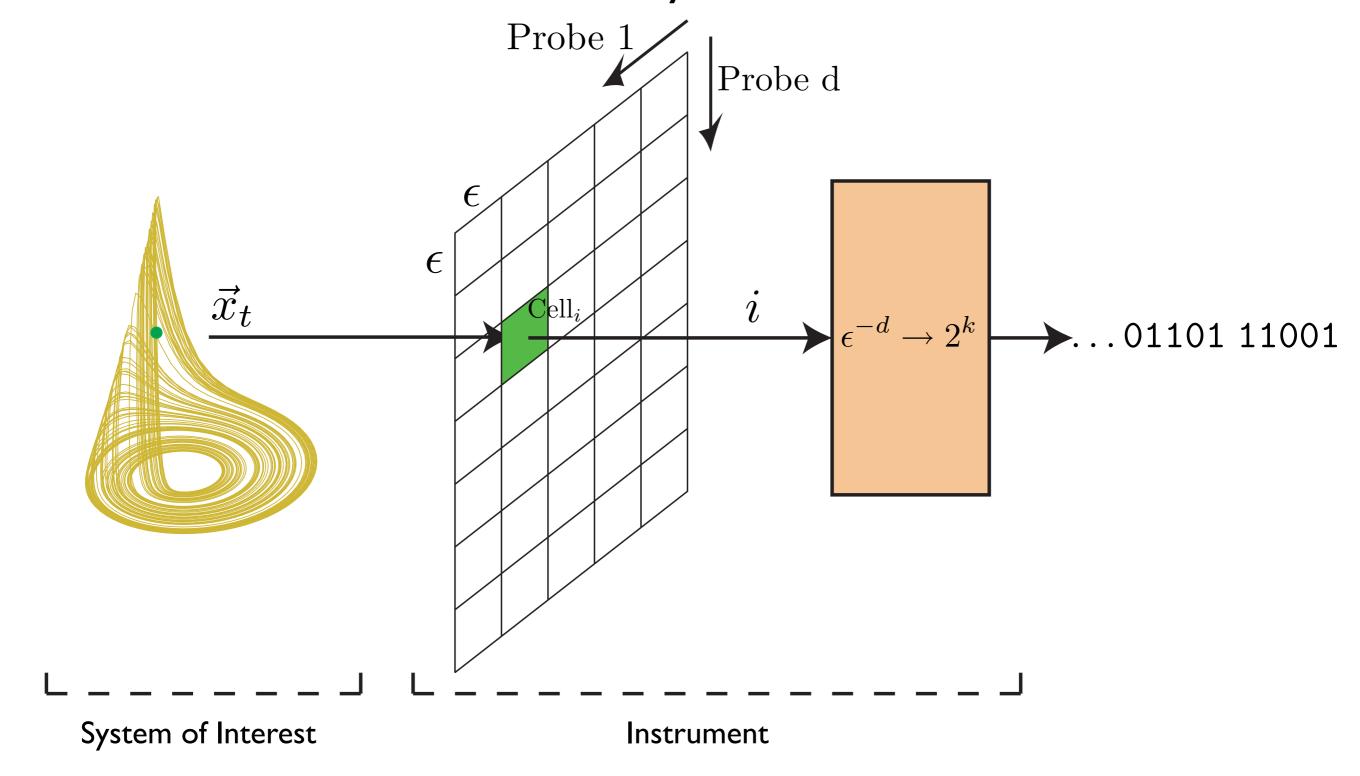
From Determinism to Stochasticity Measurement Theory I

Reading for this lecture:

(These) Lecture Notes.

CMPy Interactive Labs:
Symbolic Dynamics and Partitions



Measurement Channel

Lecture 12: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Measurement Theory: Making the connection

Hidden Dynamical System:

What can we learn from discrete time series?

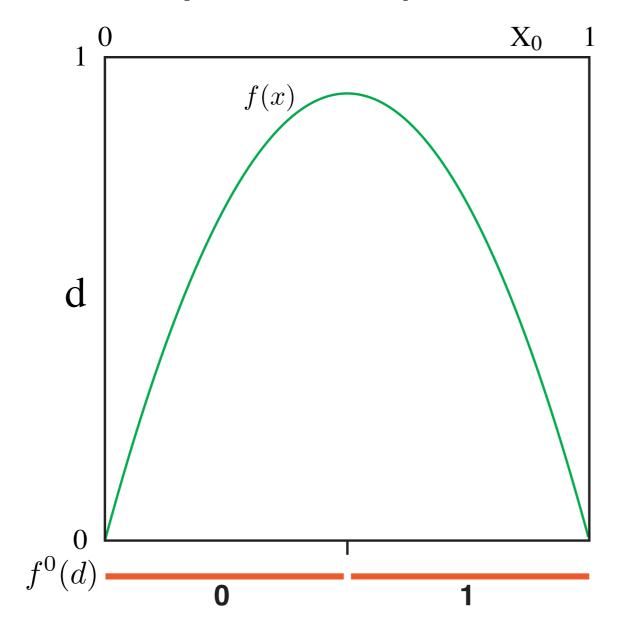
Know how to evolve:

 $\mathcal{T}: \vec{x}_0 \to \vec{x}_1$

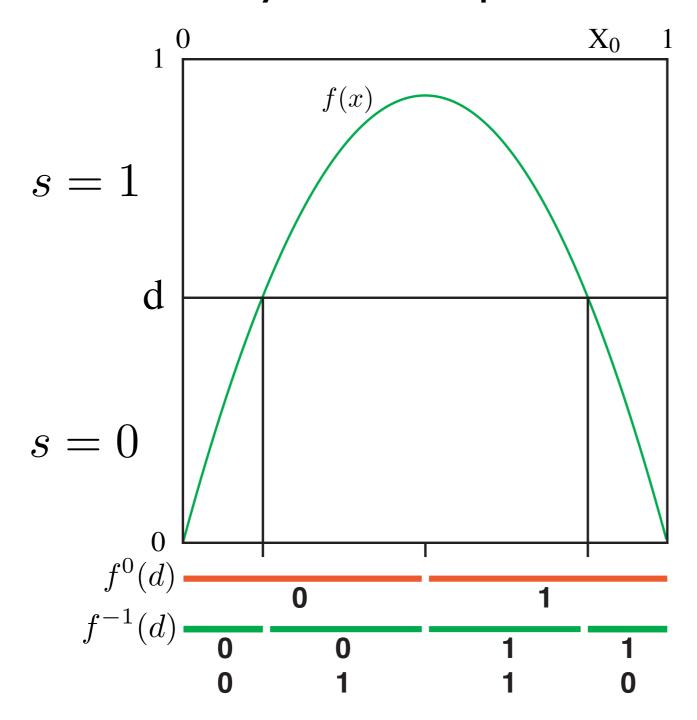
 $\mathcal{T}:p_0(x)\to p_1(x)$

How to evolve boundaries?

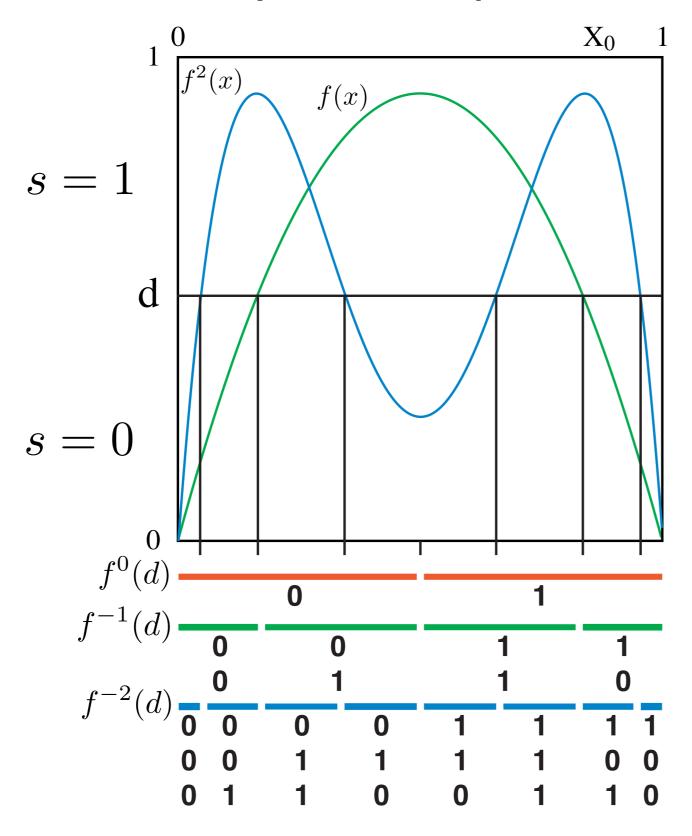
From Determinism to Stochasticity ... Measurement Theory of ID Maps ...



From Determinism to Stochasticity ... Measurement Theory of ID Maps ...



From Determinism to Stochasticity ... Measurement Theory of ID Maps ...



Lecture 12: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Measurement Theory ...

Dynamical System: $\{f, M\}$

$$f:M\to M$$

Partition:

$$\mathcal{P} = \{ P_i \subset M : i = 1, \dots, p \}$$

$$M = \bigcup_{i=1}^{p} P_i$$

$$P_i \cap P_j = \emptyset, \ i \neq j$$

Two Partitions: P & Q

Refinement:
$$\mathcal{P} \vee \mathcal{Q} = \{P_i \cap Q_j : P_i \in \mathcal{P} \& Q_j \in \mathcal{Q}\}$$

This is a partition, too.

Measurement Theory ...

Partition: \mathcal{P}

Measurement symbols: Label $(P_i) = s \in \mathcal{A}$

Measurement operator: $\pi(x) = s, \ x \in P_s$

Orbit: $\mathbf{x} = \{x_0, x_1, x_2, ...\}$

Measurement sequence:

$$\mathbf{s} = \pi(\mathbf{x})$$

= $\{s_0, s_1, s_2, \dots : s_i = \pi(x_i)\}$

Measurement Theory ...

Orbit Space:
$$\cdots \times M \times M \times M \times \cdots$$

Sequence Space:
$$\Sigma = \cdots \times \mathcal{A} \times \mathcal{A} \times \mathcal{A} \times \cdots$$

= $\{\mathbf{s} = (\dots s_{-1} s_0 s_1 s_2 \dots), s_i \in \mathcal{A}\}$

Dynamic over state space: $f: M \rightarrow M$

Dynamic over sequence space: Shift operator

$$\sigma(\mathbf{s}) = \mathbf{s}'$$
$$s'_i = (\sigma(\mathbf{s}))_i = s_{i-1}$$

Trivial dynamics: All structure now in sequences!

Measurement Theory ...

Admissible sequences $\Sigma_f: f^i(x_0) \in P_{s_i}$

$$\Sigma_f \subseteq \Sigma$$

 $x_0 \in \Lambda$ f-invariant set, then Σ_f is a closed, shift-invariant set:

$$\Sigma_f = \sigma(\Sigma_f)$$

Symbolic Dynamical System under partition \mathcal{P} :

Subshift: $\{\Sigma_f, \sigma_f\}$

Measurement Theory ...

Projection Operator: $\Delta(\mathbf{s}) \subset M$

$$\Delta(\mathbf{s}) = \bigcap_{i=0}^{\infty} f^{-i}(P_{s_i})$$

Admissible: $s^L = s_0 \dots s_{L-1}$

Sequences that are close to s^L : L-cylinder

$$\mathbf{s}^L = {\{\mathbf{s}: s_i = (s^L)_i, i = 0, 1, \dots, L-1\}}$$

Initial conditions whose orbit stays close to $x_0, x_1, x_2, \ldots, x_{L-1}$

$$\Delta(\mathbf{s}^L)$$

Measurement Theory ...

L-cylinder-induced partition of M:

$$\Delta(\mathbf{s}^{L}) = \left\{ \bigcap_{i=0}^{L} f^{-i}(P_{s_i}) : \ s^{L} = s_0 \dots s_{L-1} \in \Sigma_f \right\}$$

L-refinement of partition:

$$\mathcal{P}^L = \mathcal{P} \vee f^{-1}\mathcal{P} \vee \dots \vee f^{L-1}\mathcal{P}$$

$$\Delta(\mathbf{s}^L) \in \mathcal{P}^L$$

Measurement Theory ...

Symbolic dynamics:

- I. Replace complicated dynamic (f) with trivial dynamic (σ)
- 2. Replace infinitely precise point $x \in M$ with discrete infinite sequence $\mathbf{s} \in \Sigma_f$
- 3. If the partition is "good" then
 - a. Study discrete sequences to learn about continuous system
 - b. Can often calculate quantities directly

Measurement Theory of ID Maps:

$$x_{n+1} = f(x_n) \qquad x \in [0, 1]$$

f(x) with two monotone pieces

Binary partition: $\mathcal{P} = \{0 \sim x \in [0, d], 1 \sim x \in (d, 1]\}$

Decision point: $d \in [0, 1]$

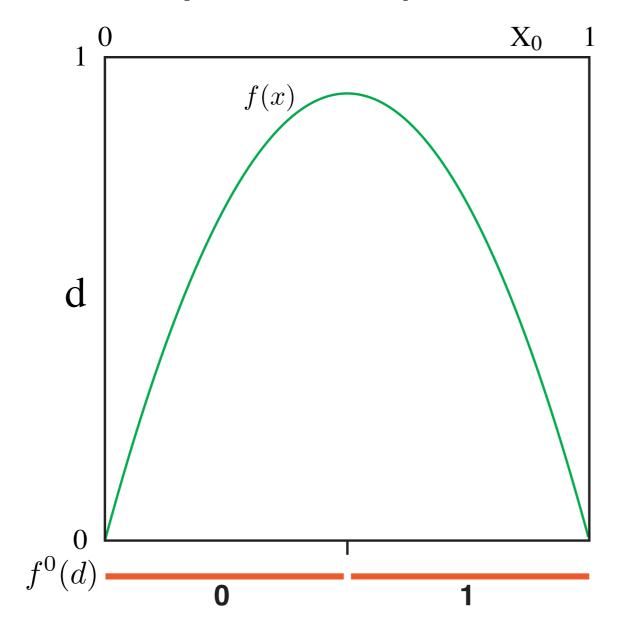
L-cylinder induced partition dividers:

$$\mathcal{P}^L = \{d, f^{-1}(d), f^{-2}(d), \dots, f^{-(L-1)}(d)\}\$$

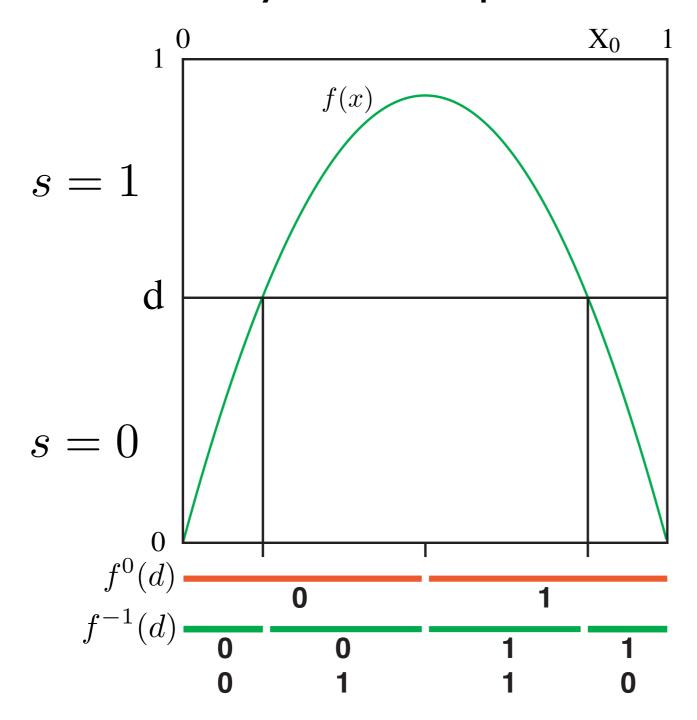
Metrize states:

$$\phi(x) = \sum_{i=0}^{\infty} \frac{\pi(f^i(x))}{2^i}$$

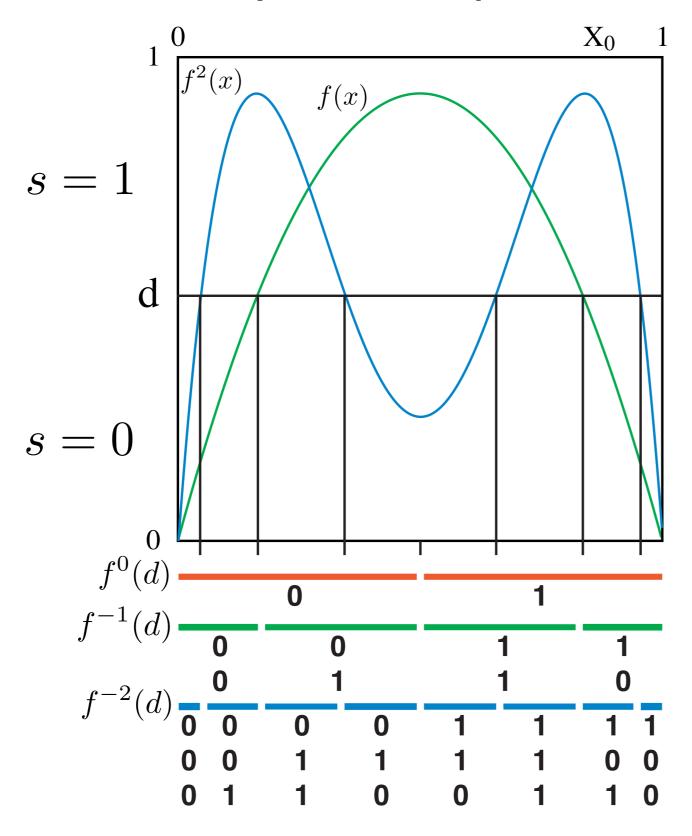
From Determinism to Stochasticity ... Measurement Theory of ID Maps ...



From Determinism to Stochasticity ... Measurement Theory of ID Maps ...



From Determinism to Stochasticity ... Measurement Theory of ID Maps ...



Lecture 12: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Kinds of Instruments:

When are partitions good? When symbol sequences encode orbits

$$M \xrightarrow{\mathcal{T}} M$$
 $\Delta \uparrow \qquad \Delta \uparrow$
 $\mathcal{A}^{\mathbb{Z}} \xrightarrow{\sigma} \mathcal{A}^{\mathbb{Z}}$

Diagram commutes:

$$\mathcal{T}(x) = \Delta \circ \sigma \circ \Delta^{-1}(x)$$

Good kinds of instruments:

Markov partitions
Generating partitions

Measurement Theory ...

Markov Partitions for ID Maps:

Discrete symbol sequences: $\overset{\leftrightarrow}{s} = \overset{\leftarrow}{s} \vec{s}, \ s \in \mathcal{A}$

Markov = Given symbol, ignore history

$$\Pr(\overrightarrow{s} \mid \overleftarrow{s}) = \Pr(\overrightarrow{s} \mid s_1)$$

Maps of the interval?

$$f: I \to I, \ I = [0, 1]$$

Partition: $\mathcal{P} = \{P_1, \dots, P_p\}$

Open sets: $P_i = (d_{i-1}, d_i), \ 0 = d_0 < d_1 < \dots < d_p = 1$

$$I = \bigcup_{i=1}^{p} \bar{P}_i$$

From Determinism to Stochasticity ...

Measurement Theory ...

Markov Partitions for ID Maps ...

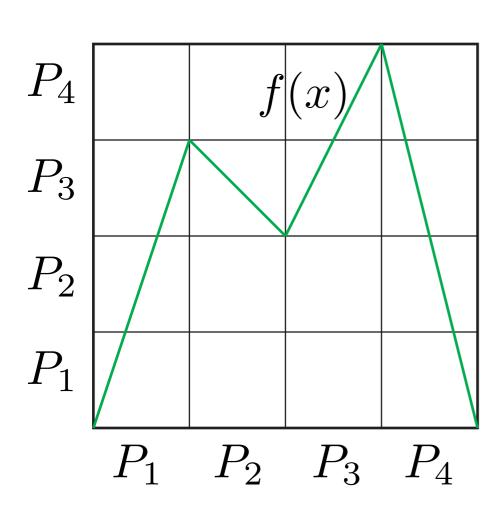
 ${\mathcal P}$ is a Markov partition for f:

$$f(P_i) = \bigcup_j P_j, \forall i$$

 $f(P_i)$ is I-to-I and onto (homeomorphism)

Measurement Theory ...

Markov Partitions for ID Maps ...



$$s \in \mathcal{A} = \{1, 2, 3, 4\}$$

$$f(P_1) = P_1 \bigcup P_2 \bigcup P_3$$

$$f(P_2) = P_3$$

$$f(P_3) = P_3 \bigcup P_4$$

$$f(P_4) = P_1 \bigcup P_2 \bigcup P_3 \bigcup P_4$$

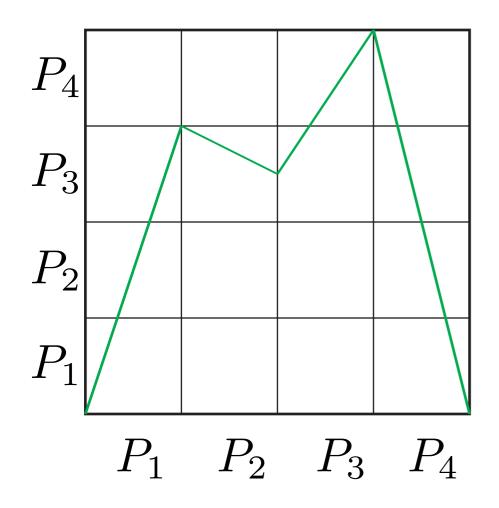
Markov!

$$\Rightarrow \stackrel{\rightarrow}{s}, \ s \in \mathcal{A}$$
 Good coding

From Determinism to Stochasticity ...

Measurement Theory ...

Markov Partitions for ID Maps ...



$$f(P_2) \subset P_3$$

$$f(P_2) \neq \bigcup_i P_i$$

$$f(P_3) \subset P_3 \bigcup_i P_4$$

$$f(P_3) \neq \bigcup_i P_i$$

Not Markov!

$$\Rightarrow \stackrel{\rightarrow}{s}, \ s \in \mathcal{A}$$
 Bad coding

Measurement Theory ...

Why Markov Partition?

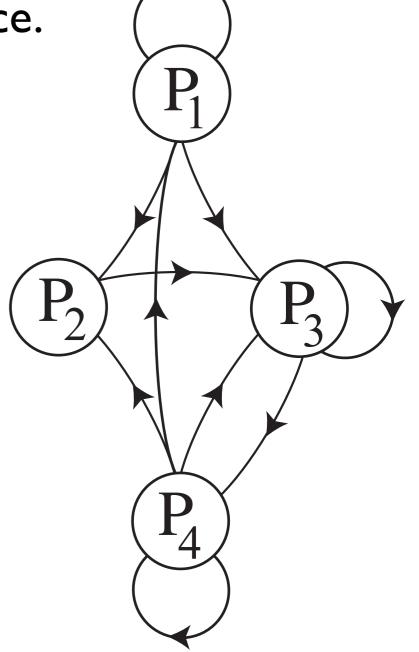
Symbol sequences track orbits:

Longer the sequence, the smaller the set of ICs that could have generated that sequence.

$$\lim_{L\to\infty}||\Delta(\mathbf{s}^L)||\to 0$$

Markov Partition is stronger:

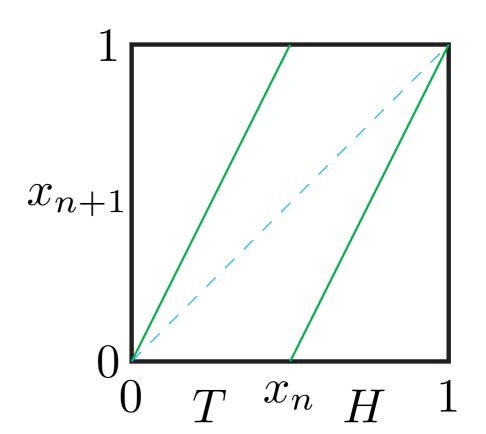
Summarize map with a Markov chain over the partition elements.



Measurement Theory ...

Markov partition for Shift map:

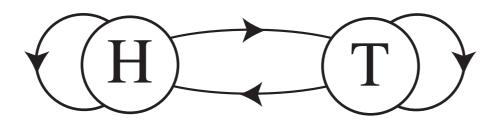
$$\mathcal{P} = \{ T \sim (0, \frac{1}{2}), H \sim (\frac{1}{2}, 1) \}$$



$$f(P_T) = P_T \bigcup P_H \& f|_{P_T}$$
 is monotone

$$f(P_H) = P_T \bigcup P_H \& f|_{P_H}$$
 is monotone

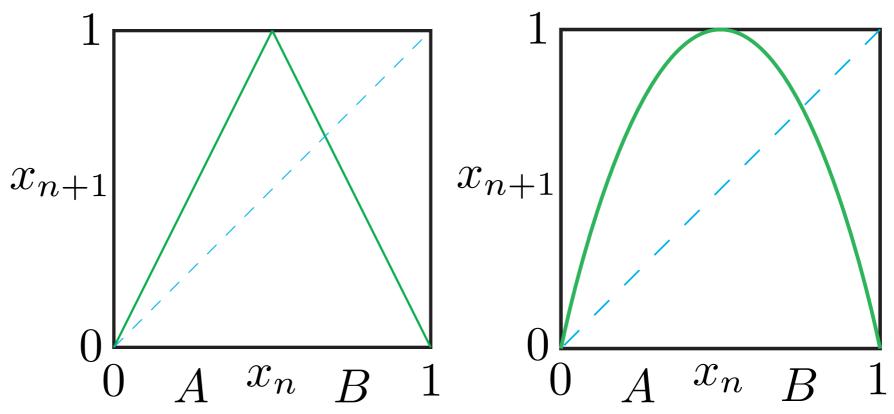
Associated (topological) Markov chain:



Measurement Theory ...

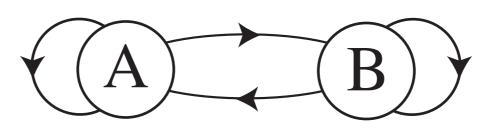
Markov partition for Tent and Logistic maps (Two-onto-One):

$$\mathcal{P} = \{A \sim (0, \frac{1}{2}), B \sim (\frac{1}{2}, 1)\}$$



$$f(P_A) = P_A \bigcup P_B \& f|_{P_A}$$
 is monotone $f(P_B) = P_A \bigcup P_B \& f|_{P_B}$ is monotone

Associated Markov chain:



Notice what is thrown away

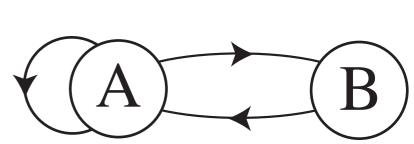
Measurement Theory ...

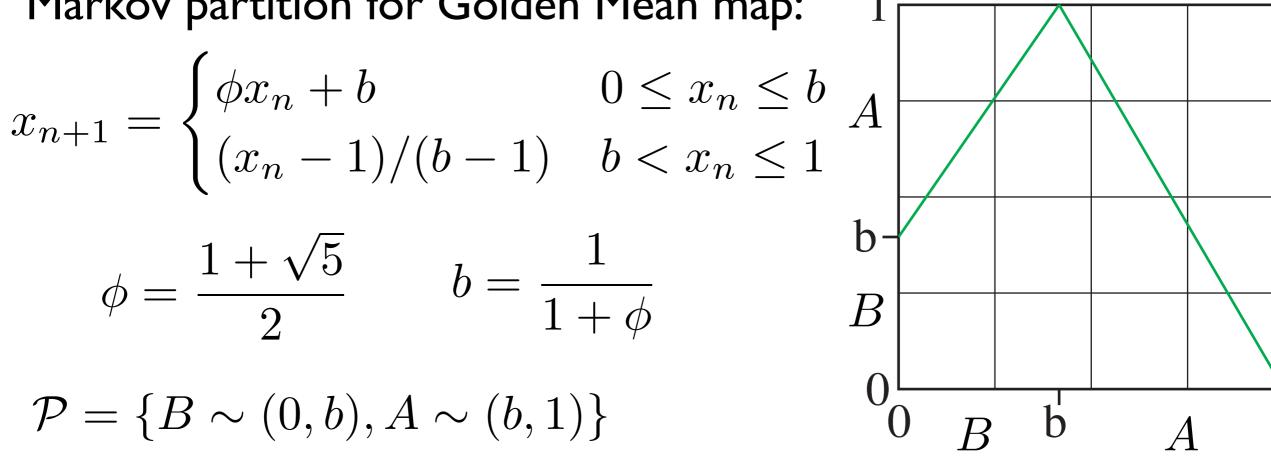
Markov partition for Golden Mean map:

$$f(P_B) = P_A \& f|_{P_B}$$
 is monotone

$$f(P_A) = P_B \bigcup P_A \& f|_{P_A}$$
 is monotone

Markov chain is Golden Mean Process:

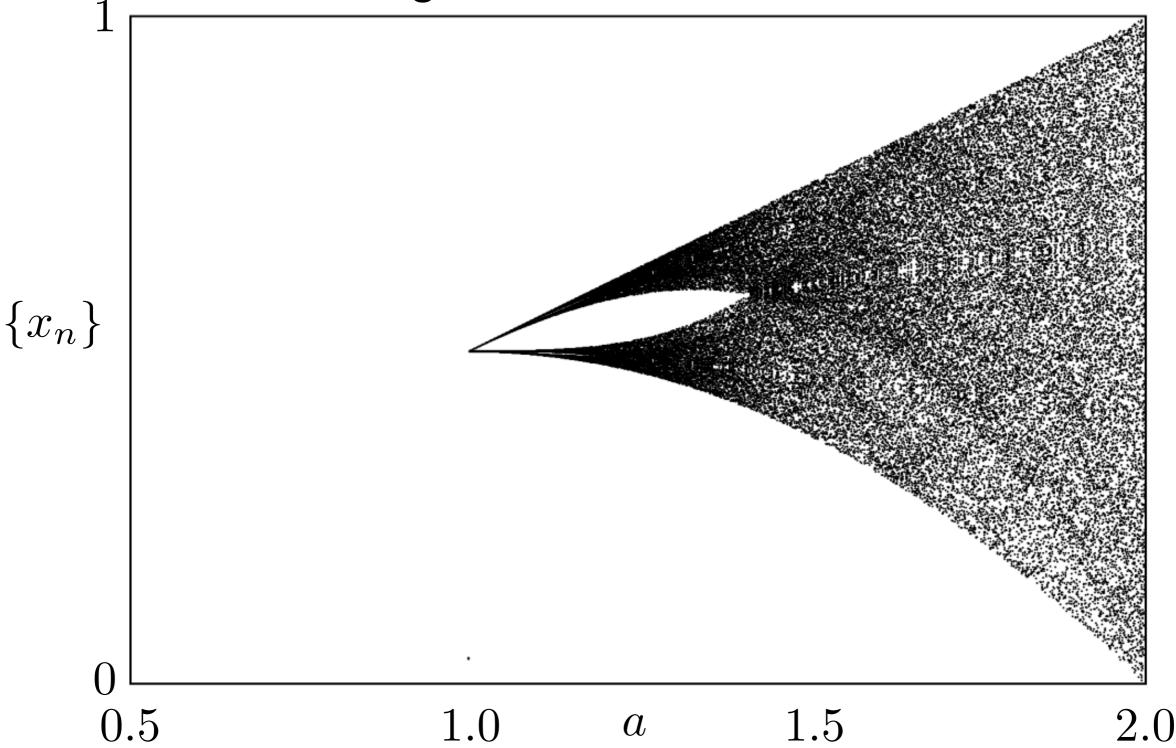




From Determinism to Stochasticity ... Measurement Theory ...

Markov partition for Tent map:

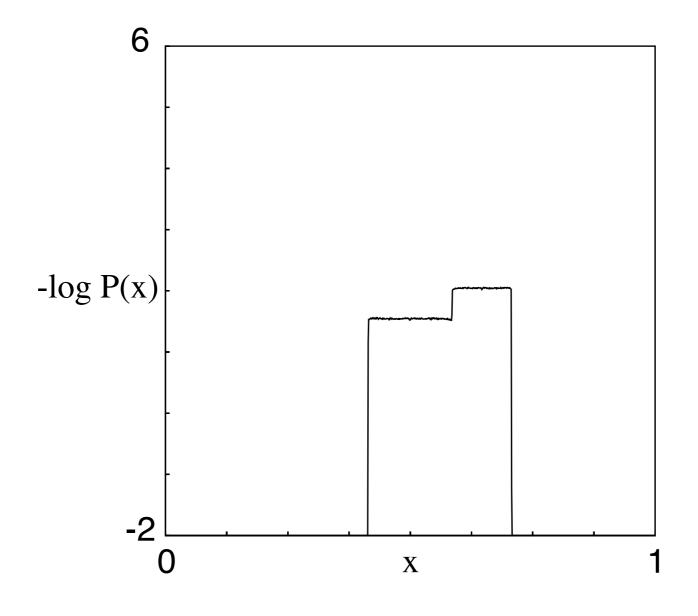
2 bands merge to I at $a=\sqrt{2}$.



Lecture 12: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Measurement Theory ...

Markov partition for Tent map: 2 bands merge to 1 at $a=\sqrt{2}$.



Measurement Theory ...

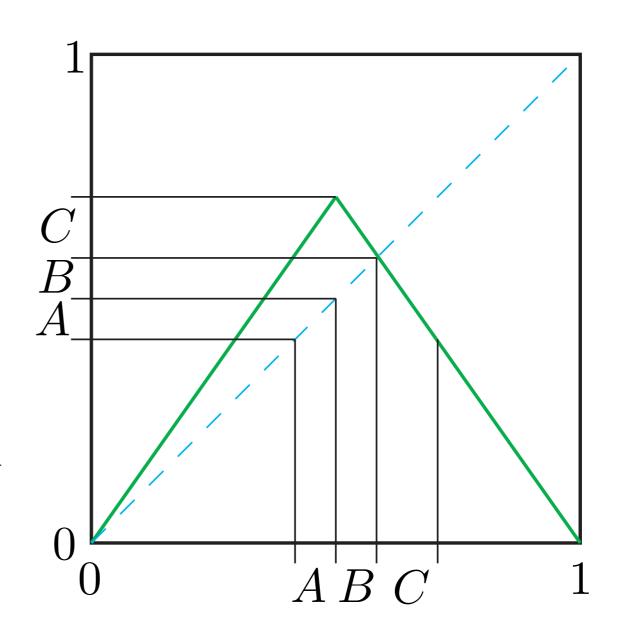
Markov partition for Tent map 2 bands merge to 1: $a = \sqrt{2}$

Attractor:

$$\Lambda = (f^2(\frac{1}{2}), f(\frac{1}{2}))$$

Partition:

$$\mathcal{P} = \{ A \sim (f^2(\frac{1}{2}), \frac{1}{2}), \\ B \sim (\frac{1}{2}, f^3(\frac{1}{2})), \\ C \sim (f^3(\frac{1}{2}), f(\frac{1}{2})) \}$$



Measurement Theory ...

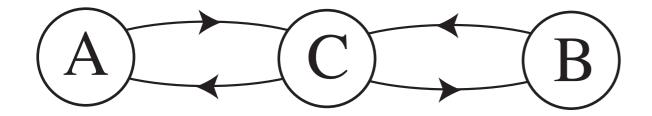
Markov partition for Tent map 2 bands merge to 1: $a = \sqrt{2}$

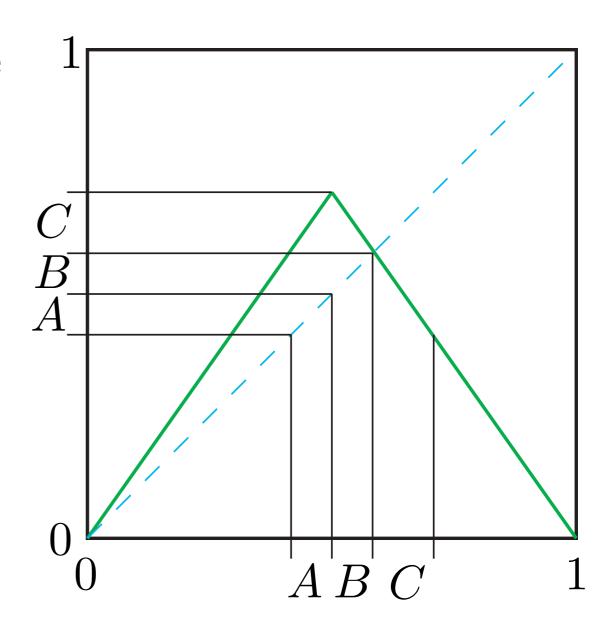
$$f(P_C) = P_A \bigcup P_B \& f|_{P_C}$$
 is monotone

$$f(P_B) = P_C \& f|_{P_B}$$
 is monotone

$$f(P_A) = P_C \& f|_{P_A}$$
 is monotone

Markov chain:





Reading for next lecture:

Lecture Notes.