
From Determinism to Stochasticity 
Stochastic Processes

Reading for this lecture:

   (These) Lecture Notes.

Note: We will skip the z-Transform and so the last slides 
here and also Computational Mechanics Reader (CMR) 
articles ZT and RI.

Lecture 11: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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Stochastic Processes:

Chain of random variables:
↔

S ≡ . . . S−2S−1S0S1S2 . . .

Random variable: St

Alphabet:

Realization:

· · · s
−2s−1s0s1s2 · · · ; st ∈ A

A = {1, 2, . . . , k}
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Stochastic Processes:

Chain of random variables:

L-Block:

Word:

Past:

Future:

SL
t � StSt+1 . . . St+L�1

sL
t � stst+1 . . . st+L�1 � AL

⇤
S=
�
S t

⇥
S t

�
S t = StSt+1St+2 . . .

⇥
S t = . . . St�3St�2St�1
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Stochastic Processes ...

Process:

Pr(
↔

S ) = Pr(. . . S−2S−1S0S1S2 . . .)

Sequence (or word) distributions:

{Pr(SL
t ) = Pr(StSt+1 . . . St+L�1) : St � A}

{Pr(SL
t ) : �t, L}

Process:
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Stochastic Processes ...

Word distribution consistency conditions:

Subword closed: All subwords in     are admissable.sLt

Allowed (admissable) word: Pr(sLt ) > 0

sLt = stst+1 . . . st+L�1Word: 

Pr(sL�1
t ) � Pr(sLt )

Pr(sL�1
t ) =

X

{st+L�1}

Pr(sLt )

Pr(sL�1
t ) =

X

{st}

Pr(sLt )

Processes are subword closed.
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Stationary process:

Assume stationarity, unless otherwise stated.

Pr(StSt+1 . . . St+L�1) = Pr(S0S1 . . . SL�1)

Types of Stochastic Process:

SL
t ! SL

sLt ! sL

Ignore process’s starting condition.
Or, over many realizations.
           is independent of time.Pr(·)

Drop time indices:
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Types of Stochastic Process ...

Uniform Process:
    Equal-length sequences occur with same probability

UL : Pr(sL) = 1/|A|L

Example: Fair coin

A = {H, T}

Pr(H) = Pr(T ) = 1/2

Pr(sL) = 2−L
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Types of Stochastic Process ...

Independent, Identically Distributed (IID) Process:

Example: Biased coin

Pr(sL) = p
n
q

L−n

Pr(H) = p

Pr(T ) = 1 − p = q

Number of heads in sequence: n

Pr(
�
S ) = . . .Pr(St)Pr(St+1)Pr(St+2) . . .

Pr(St) = Pr(S� ), � t, �
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Types of Stochastic Process ...

R-Block Process:

Example: A 2-block process with no consecutive 0s

A = {0, 1}

Pr(
↔

S ) = · · ·Pr(S1 . . . SR) Pr(SR+1 . . . S2R) · · ·

Pr(00) = 0
Pr(01) = 0
Pr(10) = 1

2

Pr(11) = 1
2

Pr(111010) = Pr(11)Pr(10)Pr(10)

Noisy Period-2 Process
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Types of Stochastic Process ...

Markov Process:

Example: No Consecutive 0s (Golden Mean Process)

A = {0, 1}

Pr(0|0) = 0

Pr(1|0) = 1

Pr(0|1) = 1/2

Pr(1|1) = 1/2

Pr(
�
S ) = . . .Pr(St+1|St)Pr(St+2|St+1)Pr(St+3|St+2) . . .

Not Noisy Period-2 Process: GMP @ L = 4 has 0110.
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Types of Stochastic Process ...

Order-R Markov Process:

Order-R processes are more general than R-block processes:

Pr(S1S2S3S4) = Pr(S1) Pr(S2|S1) Pr(S3|S2) Pr(S4|S3)

= Pr(S1S2)
Pr(S2S3)

Pr(S2)

Pr(S3S4)

Pr(S3)

= Pr(S1S2) Pr(S3S4)

Pr(S2S3)

Pr(S2) Pr(S3)
= 1Only when blocks are independent:

Pr(Si| . . . , Si−2, Si−1) = Pr(Si|Si−R, . . . , Si−1)
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Types of Stochastic Process ...
Hidden Markov Process:

Internal Order-R Markov Process:

Observed via a function of the internal sequences

Measurement alphabet:

Measurement random variables:
↔

Y = . . . Y−2Y−1Y0Y1 . . .

Observation process: Pr(
↔

Y |
↔

S )

Pr(
↔

Y )Observed process: 

Pr(Y L)Block Distribution:

Pr(St| . . . St�2St�1) = Pr(St|St�R . . . St�1)
st � A

yt � B

Pr(
$
S )

$
Y= f(

$
S )
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Types of Stochastic Process ...
Hidden Markov Process ...

Example: The Even Process

Internal Process: Golden Mean

Observation Process:

↔

s = 1101110111101011111011 . . .

↔

y = . abbaabbaaabbbbaaaabba . . .

st � {0, 1}
yt � {a, b}

Yt = f(St�1St)

yt =

�
a, st�1st = 11
b, st�1st = 01 or 10
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Models of Stochastic Processes:

Markov chain model of a Markov process:

States:

Transition matrix:

Stochastic matrix:

v ∈ A = {1, . . . , k}
↔

V = . . . V−2V−1V0V1 . . .

Tij = Pr(vt+1|vt) ≡ pvv′

T =

⎛

⎜

⎝

p11 · · · p1k

.

.

.

.
.
.

.

.

.

pk1 · · · pkk

⎞

⎟

⎠

k∑

i=1

Tij = 1

An R-block Markov process is a Markov chain withk = |A|R
Exercise:
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Models of Stochastic Processes ...

Evolve probability distribution:

State sequence distribution:

State distribution:
Markov chain ...

p⃗V = (Pr(v = 1),Pr(v = 2), . . . ,Pr(v = k))

p⃗V = (p1, p2, . . . , pk)

Initial distribution: p⃗0

p⃗n = p⃗n−1T

p⃗n = p⃗0T
n

v
L

= v0v1v2 . . . vL−1Path:

Pr(vL) = p(v0)p(v1|v0)p(v2|v1) . . . p(vL�1|vL�2)
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Models of Stochastic Processes ...
Markov chain ...

Example: A = {A, B, C}

T =

⎛

⎝

pAA pAB pAC

pBA pBB pBC

pCA pCB pCC

⎞

⎠

pAA + pAB + pAC = 1

pBA + pBB + pBC = 1

pCA + pCB + pCC = 1

A B

C

pAA

pAB

pAC

pBA

pBB

pBC

pCA

pCB

pCC
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Models of Stochastic Processes ...
Kinds of state:

D E

F
A B C

Start State

Transient Recurrent

Strongly Connected

Strongly Connected

Strongly
Connected
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Models of Stochastic Processes ...

Statistical equilibrium:

Asymptotic state sequence distribution:

π = lim
n→∞

p⃗n

= p⃗0 lim
n→∞

Tn

π = π T

k∑

i=1

π = 1

v
L

= v0v1v2 . . . vL−1

Pr(vL) = π(v0)p(v1|v0)p(v2|v1) · · · p(vL−1|vL−2)

Principal (left) eigenvector:

Normalized in probability:

(Eigenvalue = 1)
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Models of Stochastic Processes ...
Example:
  Fair Coin: A = {H, T}

Pr(H) = Pr(T ) = 1/2

T =

(

1

2

1

2
1

2

1

2

)

1

2

1

2

1/2

1/2

H T

π = (1/2, 1/2)

General uniform process: Markov chain has as many states as 
symbols, with uniform transition probabilities leaving them 
going to all states.
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Models of Stochastic Processes ...
Example:
  Fair Coin ...

Pr(vL) = 2−LSequence Distribution:

s
L
∈ [0, 1]

Word as binary fraction:

“s
L
” =

L∑

i=1

si

2i

s
L

= s1s2 . . . sL

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1
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Models of Stochastic Processes ...
Example:
  Biased Coin: A = {H, T}

T =

(

p 1 − p

p 1 − p

)

π = (p, 1 − p)

H Tp

1 − p

p

1 − p

IID processes: Markov chain has as many states as symbols. 
Transitions leave each state and go to all states. Transitions 
entering state i have the same probability, which is     . ⇡i
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Models of Stochastic Processes ...
Example:
  Biased Coin ...

Sequence Distribution:

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

Pr(sL) = pn(1 − p)L−n,

n =Number Hs in sL
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Models of Stochastic Processes ...
Example:
  Periodic: A = {A, B, C}

T =

⎛

⎝

0 1 0

0 0 1

1 0 0

⎞

⎠

π =

(

1

3
,

1

3
,

1

3

)

Careful!

1

11

A B

C

Pr(A) = Pr(B) = Pr(C) = 1

3

Pr(AB) = Pr(BC) = Pr(CA) = 1

3

Pr(ABC) = Pr(BCA) = Pr(CAB) = 1

3

Pr(s2) = 0

Pr(s3) = 0

Sequence distribution:

otherwise

otherwise
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Models of Stochastic Processes ...
Example:
  Golden Mean over 2-Blocks:

π =

(

1

3
,

1

3
,

1

3

)

A = {10, 01, 11}

1

2

1

2

1

2

1

2

10 11

01

1

4

1

4

1

41

4

10 01 11

T =

�

�
1
2 0 1

2
1
4

1
2

1
4

1
4

1
2

1
4

�

�
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Models of Stochastic Processes ...
Example ...
  Golden Mean over 1-Blocks: A = {0, 1}

T =
�

1
2

1
2

1 0

⇥

� = ( 2
3 , 1

3 )
1

2 1 0

1

2

1

Also an order-1 Markov chain. Minimal order.

Previous model and this:
      Different presentations of the Golden Mean Process
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Models of Stochastic Processes ...
Example:
  Golden mean:

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1
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Models of Stochastic Processes ...

Two Lessons:

    Structure in the behavior:

    Structure in the distribution of behaviors:

supp Pr(sL)

Pr(sL)
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Models of Stochastic Processes ...

Hidden Markov Models of Processes:

Internal states:

Observation: Symbol-labeled transition matrices

v ∈ A

T (s) = Pr(v′, s|v), s ∈ B

Transition matrix: T = Pr(v′|v), v, v′ ∈ A

T =

∑

s∈B

T
(s)

∑

j

Tij =

∑

j

∑

s

T
(s)
ij = 1

Stochastic matrices:
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Models of Stochastic Processes ...
Hidden Markov Models ...

Internal state distribution: p⃗V = (p1, p2, . . . , pk)

State sequence distribution: v
L

= v0v1v2 . . . vL−1

Observed sequence distribution: s
L

= s0s1s2 . . . sL−1

Pr(sL) =
∑

vL∈AL

π(v0)p(v1, s1|v0)p(v2, s2|v1) · · · p(vL−1, sL−1|vL−2)

No longer 1-1 map between internal & observed sequences:
     Multiple state sequences can produce same observed sequence.

Evolve internal distribution: p⃗n = p⃗0T
n

Pr(vL) = �(v0)p(v1|v0)p(v2|v1) · · · p(vL�1|vL�2)
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Models of Stochastic Processes ...

Hidden Markov Models ...

Internal:

Observed:

A = {A, B, C}

T =

⎛

⎝

pAA pAB pAC

pBA pBB pBC

pCA pCB pCC

⎞

⎠

A B

C

s|pAB

s|pAA

s|pAC

s|pBC

s|pBB

s|pBA

s|pCA

s|pCB

s|pCC

B = {0, 1}

T (s)
=

⎛

⎝

pAA;s pAB;s pAC;s

pBA;s pBB;s pBC;s

pCA;s pCB;s pCC;s

⎞

⎠

symbol | transition probability

pAA =

∑

s∈B

pAA;s
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Models of Stochastic Processes ...

Types of Hidden Markov Model:

Unifilar HMM: State + symbol “determine” next state

A
B

C

1

0

Pr(v�|v, s) =

�
1
0

Pr(v�, s|v) = p(s|v)

(In automata theory: “Unifilar” = “deterministic”.)

A B
1

0

Edge             , its probability:                 . (v, s, v0) Pr(v, s, v0)

<latexit sha1_base64="JMfFUYn+o7xBtubXHI99ekBmkLg="></latexit>

Pr(v0|v) =
X

x2A
p(v0, s|v)
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Models of Stochastic Processes ...

Types of Hidden Markov Model:

Nonunifilar HMM: At least one violation of unifilarity

A
B

C

1

1

Consequence:

Multiple internal edge paths can generate
same observed sequence.
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Models of Stochastic Processes ...
Example:
  Fair Coin as a unifilar HMM:

Internal:

Observed:

One one state!

A = {A}

T = (1) ⇡V = (1)

B = {H,T}

T (0) =
�
1
2

�
T (1) =

�
1
2

�

A T | 12H| 12

HMM for general uniform process has more transitions with 
equal transition probabilities, but still needs only one state.
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Models of Stochastic Processes ...
Example:
  Biased Coin as a unifilar HMM:

Internal:

Observed:

Also, one one state!

A = {A}

T = (1) ⇡V = (1)

B = {H,T}

T (0) =
�
1
2

�
T (1) =

�
1
2

�

AH|p T |1� p

HMMs for IID processes need have only one state!
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Models of Stochastic Processes ...
Example:
  Golden Mean Process as a unifilar HMM:

Internal: A = {A, B}

T =

(

1

2

1

2

1 0

)

Observed: B = {0, 1}

πV = (2/3, 1/3)

T
(0)

=

(

0
1
2

0 0

)

T
(1)

=

(

1
2 0

1 0

)

A B
1| 1

2
0| 1

2

1|1

Initial ambiguity only:

Sync’d: s = 0 ⇒ v = B

At most 2-to-1 mapping

Irreducible forbidden words: F = {00}
s = 1� v = A

<latexit sha1_base64="TQnaZe07IVj2qeFPKe5ZO7j3z6M="></latexit>

BAn�1 = 1n

AAn�1 = 1n
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Models of Stochastic Processes ...
Example:
  Golden Mean Process ... Sequence distributions:
Internal state sequences

(A = 1; B = 0)
Observed sequences

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

Same!
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Models of Stochastic Processes ...
Example:
  Even Process as a unifilar HMM:

Internal (= GMP): A = {A, B}

T =

(

1

2

1

2

1 0

)

T
(0)

=

(

1
2 0

0 0

)

T
(1)

=

(

0
1
2

1 0

)

Observed: B = {0, 1}

πV = (2/3, 1/3)

A B
1| 1

2
0| 1

2

1|1

No finite-order Markov process can model the Even process!
Lesson: Finite Markov Chains are a subset of HMMs.

v
L

= . . . AABAABABAA . . .

s
L

= . . . . 0 1 1 0 1 1 1 1 0 . . . s
L

= {. . . 01
2n

0 . . .}

F = {010, 01110, 0111110, . . .}Irreducible forbidden words:
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Models of Stochastic Processes ...
Example:
  Even Process ... Sequence distributions:
Internal states (= GMP)

(A = 1; B = 0)
Observed sequences

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

Rather different!

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1
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Models of Stochastic Processes ...
Example:
  Simple Nonunifilar Source:

Internal (= Fair Coin): A = {A, B}

Observed: B = {0, 1}

T
(1)

=

(

1
2

1
2

0
1
2

)

T
(0)

=

(

0 0
1
2 0

)

T =

(

1

2

1

2
1

2

1

2

)

πV =

(

1

2
,

1

2

)

A B
1| 1

2

0| 1
2

1| 1
2

1| 1
2

Many to one: 1111111 ⇐

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

AAAAAAAA . . .

ABBBBBBB . . .

AABBBBBB . . .

AAABBBBB . . .

. . .

BBBBBBBB . . .

Is there a unifilar HMM 
presentation of the 
observed process?
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Models of Stochastic Processes ...
Example:
  Simple Nonunifilar Process ...

Internal states (= Fair coin)
(A = 1; B = 0)

Observed sequences
5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0 sL 1

L = 8

0 sL 1

L = 9

0 sL 1
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Classification of Discrete Stochastic Processes via Their Models:

Uniform

IID

R-Block

Markov

Order-R Markov

Nonunifilar
Hidden Markov

Unifilar
Hidden Markov

A B
1| 1

2

0| 1
2

1| 1
2

1| 1
2

A B
1| 1

2
0| 1

2

1|1

1

2 1 0

1

2

1

1

2

1

2

1/2

1/2

H T

H Tp

1 − p

p

1 − p
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Two uses of HMMs:

Generator:

Recognizer: A B
1| 1

2
0|1

2

1|1

A B
1|1

Edge label:  Symbol | Transition probability

Edge label:  Transition probability | Symbol1
2 |1

1
2 |0

Produces sequences, word distributions, ....

Scan sequence, compare word distribution to a given distribution.
A sequence is probabilistically recognized when model assigns correct probability.
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Stochastic Processes ...
To calculate state distribution evolution

z-Transform:

qV (z) = Z(pV (t))

Z(pV (t)) =
∞∑

t=0

pv(t)z−t

Z
−1(qV (z)) =

1

2πi

∫
∞

−∞

dzqV (z)zt−1

pV (t) = Z
−1(qV (z))

Inverse z-Transform:

p⃗V = (p1, p2, . . . , pk)

pV (t + 1) = pV (t) T
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Stochastic Processes ...
z-Transform ...

∞∑

t=0

pV (t + 1)z−t =
∞∑

t=0

pV (t)Tz−t

∞∑

t=1

pV (t)z−(t−1) = qV (z)T

pV (t + 1) = pV (t) T

z

(

∞
∑

t=0

pV (t)z−t
− pV (0)

)

= qV (z)T

z (qV (z) − pV (0)) = qV (z)T

qV (z) =
pV (0)

(I − z−1T )
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Stochastic Processes ...
z-Transform Response Matrix:

R(t) = Z
−1(T (z)), T (z) = (I − z−1T )−1

pV (t) = Z
−1(qV (z)) = pV (0)R(t)

pV (t) = pV (0) T t

R(t) = T
t

(R(t))vv
′ = Pr(v′, t|v, 0)
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Stochastic Processes ...
z-Transform Response Matrix ...

Asymptotic response matrix (time independent):

Transient response matrix (time dependent):

Recurrent or strongly connected states: Ai = pV (∞), ∀i

Multiply recurrent: Ai ̸= Aj pV (0) = (0, . . . , pv = 1, . . . , 0)

Av = pV (∞)

R(t) = A + B(t)

pV (t) = pV (0)A + pV (0)B(t)

B(t) → 0, t → ∞∑

j

Bij(t) = 0
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Stochastic Processes ...
z-Transform Properties:

Fourier transform: F (ω) = F(pV (t)) = qV (z = e2πiω)

Scaling: a−tpV (t) = qV (az), a > 0

Time shift: Z(pV (t − τ)) = z−τqV (z)

Time reversal: pV (−t) = qV (1/z)

Convolution: pV (t) ⋆ g(t) = qV (z) · G(z)

Linearity: Z(apV (t) + bp′V (t)) = aqV (z) + bq′V (z)
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Stochastic Processes ...
z-Transform Examples:

T = (1)

V = {A}

pV = (1)

pV (t) = Z
−1

(

1

1 − z−1

)

= (2πi)−1

∫

∞

−∞

dz
zt−1

1 − z−1

= (2πi)−1(2πi · 1) = 1

A1

2

1

2

qV (z) = Z(1) =
∞∑

t=0

z
−t =

1

1 − z−1

Residue Theorem
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Stochastic Processes ...
z-Transform Examples: A

1

21

2
V = {A, . . .}

T =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1

2

1

2
0 0 . . .

0
. . .

0
. . .

.

.

. . . .

⎞

⎟

⎟

⎟

⎟

⎟

⎠

pA(t) = 2−t

qV (z) = Z(2−t) =
∞∑

t=0

(2z)−t =
2

2 − z−1

pV (t) = Z
−1

(

2

2 − z−1

)

= (2πi)−1

∫

∞

−∞

dz
2zt−1

2 − z−1

= (2πi)−1 1

2
2−(t−1)

∫

∞

−∞

dz
zt−1

1 − z−1

= (2πi)−1(2πi · 1)2−t = 2−t
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Stochastic Processes ...
z-Transform Example:

V = {A, B, C}

T =

⎛

⎝

1

2

1

4

1

4

0 1 0

0 0 1

⎞

⎠

1

2

1

4

1

4

1 1

A

BC
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Stochastic Processes ...
z-Transform Example ...

I − z
−1

T =

⎛

⎝

1 −

1

2
z−1

−

1

4
z−1

−

1

4
z−1

0 1 − z−1 0

0 0 1 − z−1

⎞

⎠

T (z) = (I − z
−1

T )−1 =

⎛

⎜

⎝

2
2−z

−1

z
−1

2(1−z
−1)(2−z

−1)
z
−1

2(1−z
−1)(2−z

−1)

0 1
1−z

−1 0
0 0 1

1−z
−1

⎞

⎟

⎠

T (z) = 1

1−z
−1

⎛

⎝

0 1

2

1

2

0 1 0
0 0 1

⎞

⎠ + 2

2−z
−1

⎛

⎝

1 −
1

2
−

1

2

0 0 0
0 0 0

⎞

⎠

R(t) = Z
−1(T (z)) =

⎛

⎝

0 1

2

1

2

0 1 0
0 0 1

⎞

⎠ + 2−t

⎛

⎝

1 −
1

2
−

1

2

0 0 0
0 0 0

⎞

⎠
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Stochastic Processes ...
z-Transform Example ...

R(t) = Z
−1(T (z)) =

⎛

⎝

0 1

2

1

2

0 1 0
0 0 1

⎞

⎠ + 2−t

⎛

⎝

1 −
1

2
−

1

2

0 0 0
0 0 0

⎞

⎠

pV (t) =
(

2−t, 1

2
(1 − 2−t), 1

2
(1 − 2−t)

)

pV (0) = (1, 0, 0)

pV (0) = (0, 1, 0)

pV (∞) =
(

0,
1

2
,

1

2

)

pV (∞) = (0, 1, 0)
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Stochastic Processes ...
z-Transform of Golden Mean Process:

1

2

1

1

2 A B
T =

(

1

2

1

2

1 0

)

V = {A, B}

I − z
−1

T =

(

1 −

1

2
z−1

−

1

2
z−1

−z−1 1

)

T (z) = (I − z
−1

T )−1 =

(

2z
2

(2z+1)(z−1)
z

(2z+1)(z−1)
2z

(2z+1)(z−1)
2z

2
−z

(2z+1)(z−1)

)
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Stochastic Processes ...
z-Transform of Golden Mean Process ...

pV (0) = (1, 0) ⇒ pV (t) =
(

2

3
+ 1

3
(− 1

2
)t, 1

3
−

1

3
(− 1

2
)t

)

pV (∞) =
(

2

3
,

1

3

)

R(t) =

(

Z−1(T00) Z−1(T01)
Z−1(T10) Z−1(T11)

)

R(t) =

(

2

3

1

3
2

3

1

3

)

+ 1

3
(−1

2
)t

(

1 −1
−2 2

)
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