
From Determinism to Stochasticity

Reading for this lecture:

   (These) Lecture Notes.

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Outline of next few lectures:
    Probability theory
    Stochastic processes
    Measurement theory
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From Determinism to Stochasticity ...

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

Probability Theory of Dynamical Systems:

Probability Theory Review:

Discrete Random Variable (RV):X

Events (Alphabet): X = {1, 2, . . . , k}

Realization: x ∈ X

Probability mass function (“distribution”): Pr(x) = Pr{X = x}

Normalized:
∑

x∈X

Pr(x) = 1

0  Pr(x)  1, x 2 X
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Probability Theory of Dynamical Systems:
Probability Theory Review ...

Discrete random variables:

2. Sequence: No pairs of 0s

1. Biased coin:X = {H, T}

Pr(H) = 1/3

Pr(T ) = 2/3

X = {000, 001, 010, 011, 100, 101, 110, 111}

Pr(s3) =

⎧

⎪

⎨

⎪

⎩

0 000, 001, 100
1

3
101

1

6
otherwise
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Probability Theory of Dynamical Systems:
Probability Theory Review ...

Continuous Random Variable: X

Takes values over continuous event space: X

Cumulative distribution function:

If continuous, then random variable is.

P (x) = Pr(X ≤ x)

Probability density function: p(x) = P ′(x)

Normalization:
∫

∞

−∞

dx p(x) = 1

Support of distribution: suppX = {x : p(x) > 0}

Pr(X <�) = 1 or

0  Pr(x)  1, x 2 X

0  p(x), x 2 X

(e.g., if x 2 R)

p(x)dx = Pr(X < x+ dx)� Pr(X < x)
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Probability Theory of Dynamical Systems:
Probability Theory Review ...

Continuous random variable    :

p(x) =

{

1, 0 ≤ x ≤ 1

0, otherwise
Density:

Distribution:

Uniform distribution on interval:

Pr(x) =

⎧

⎪

⎨

⎪

⎩

0 x < 0

x 0 ≤ x ≤ 1

1 x > 1

supp X = [0, 1]Support:

X

X = R
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Probability Theory of Dynamical Systems:
Probability Theory Review ...

Continuous random variable    :

Gaussian:

Density:

Distribution: P (x) =

∫
x

−∞

dy p(y) ≡ Erf(x)

p(x) =
1

σ
√

2π
e

−(x−µ)2

2σ2

supp X = RSupport:

X

X = R
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Probability Theory of Dynamical Systems:
Probability Theory Review ...

Discrete RVs: X over X & Y over Y

Joint distribution: Pr(X, Y )

Marginal distributions:

Pr(X) =
∑

y∈Y

Pr(X, y)

Pr(Y ) =
∑

x∈X

Pr(x, Y )
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Probability Theory of Dynamical Systems:
Probability Theory Review ...

Conditional distributions:

Pr(X, Y ) = Pr(X|Y )Pr(Y )

Pr(X, Y ) = Pr(Y |X)Pr(X)

Factor joint distribution:

Pr(Y |X) =
Pr(X, Y )
Pr(X)

, Pr(X) �= 0

Pr(X|Y ) =
Pr(X, Y )
Pr(Y )

, Pr(Y ) �= 0
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Probability Theory of Dynamical Systems:
Probability Theory Review ...

Statistical independence: X ⊥ Y

Pr(X, Y ) = Pr(X)Pr(Y )

Conditional independence (“shielding”): X ⊥Z Y

Pr(X, Y |Z) = Pr(X|Z)Pr(Y |Z)
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Probability Theory of Dynamical Systems ...

Dynamical Evolution of Distributions:

Dynamical system: {X , T }

State density: x ∈ Xp(x)

Can evolve individual states and sets: T : x0 → x1

Evolve a density? p0(x) →T p1(x)

Initial density: p0(x) E.g., model of measuring a system
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Probability Theory of Dynamical Systems ...
Dynamical Evolution of Distributions ...

Perron-Frobenius Operator:

y = T (x)Locally:

Globally:

y = T (x)

p1(y)dy

p0(x)dx

pn+1(y) =
pn(x)

|T ′(x)|

Conservation of probability:

p1(y)dy = p0(x)dx

pn+1(y) =
∑

x∈T −1(y)

pn(x)

|T ′(x)|

x+ dx

y + dy

y

x
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Probability Theory of Dynamical Systems ...
Dynamical Evolution of Distributions ...
Frobenius-Perron Equation:

pn+1(y) =

∫
dx pn(x)δ(y − T (x))

Dirac delta-function:

δ(x) =

{

∞, x = 0

0, x ≠ 0∫
dx δ(x − c)f(x) = f(c)

p(x)

p(y)

y = T (x)

x

y

p(y)

�
dx �(x) = 1
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Probability Theory of Dynamical Systems ...
Dynamical Evolution of Distributions ...

Example:  Delta function initial distribution
Map:
Initial condition:
Initial distribution:

xn+1 = f(xn)

x0 ∈ R

p0(x) = δ(x − x0)

... reduces to an orbit

p1(y) =
�

dx p0(x) �(y � f(x))

=
�

dx �(x� x0) �(y � f(x))

= �(y � f(x0))
= �(y � x1)
...

pn(y) = �(y � xn)
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Probability Theory of Dynamical Systems ...
Dynamical Evolution of Distributions ...

Delta function IC: The easy case and expected result.

What happens when the IC has finite support?

Consider a set of increasingly more complicated systems
and how they evolve distributions ...

p0(x) =

{

20, |x − 1/3| ≤ 0.025

0, otherwise
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Probability Theory of Dynamical Systems ...
Dynamical Evolution
    of Distributions ...

Example:
 Linear circle map
xn+1 = 0.1 + xn (mod 1)

f ′(x) = 1

xn

xn+1

10

1

0

6

-log P(x)

-2

6

-log P(x)

0 1x
-2

6

-log P(x)

0 1x 0 1x

-2

t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

t = 6 t = 7 t = 8
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Probability Theory of Dynamical Systems ...
Dynamical Evolution
  of Distributions ...

Example:
  Shift map

6

-log P(x)

-2

6

-log P(x)

0 1x
-2

6

-log P(x)

0 1x 0 1x

-2

t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

t = 6 t = 7 t = 8

f ′(x) = 2Spreading:

xn

xn+1

10

1

0
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Probability Theory of Dynamical Systems ...
Dynamical Evolution
    of Distributions ...

Example: 
   Tent map a = 2.0

6

-log P(x)

-2

6

-log P(x)

0 1x
-2

6

-log P(x)

0 1x 0 1x

-2

t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

t = 6 t = 7 t = 8xn

xn+1

10

1

0

Spreading: |f ′(x)| = 2
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Probability Theory of Dynamical Systems ...
Dynamical Evolution
   of Distributions ...

Example:
   Logistic map r = 4

6

-log P(x)

-2

6

-log P(x)

0 1x
-2

6

-log P(x)

0 1x 0 1x

-2

t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

t = 6 t = 7 t = 8xn

xn+1

10

1

0

Contraction:

f ′(x) = 4(1 − 2x)

Spreading: x < 3/8 or x > 5/8

3/8 < x < 5/8
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Probability Theory of Dynamical Systems ...
Dynamical Evolution
   of Distributions ...

Example:
   Logistic map r = 3.7

Peaks in distribution
   are images of maximum

6

-log P(x)

-2

6

-log P(x)

0 1x
-2

6

-log P(x)

0 1x 0 1x

-2

t = 0 t = 1 t = 2

t = 3 t = 4 t = 5

t = 8 t = 12 t = 20xn

xn+1

10

1

0
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Probability Theory of Dynamical Systems ...

Invariant measure:
A distribution that maps “onto” itself

      Analog of invariant sets

Stable invariant measures:
   Stable in what sense?
   Robust to noise or parameters or ???

Time-asymptotic distribution:  What we observe

How to characterize?
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Probability Theory of Dynamical Systems ...
Invariant measures for 1D Maps:

Probability distribution (density         ) that is invariant:

1. Distribution’s support must be an invariant set:

1I. Probabilities “invariant”:
       Distribution a fixed point of Frobenius-Perron Equation

Functional equation: Find         that satisfies this.

p�(y) =
�

dx p�(x) �(y � f(x))

� = f(�) , � = supp p�(x) = {x : p�(x) > 0}

p�(x)

p�(·)
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Probability Theory of Dynamical Systems ...
Example: Periodic-k orbit                           has density

p(x) = δ

(

k
∏

i=1

(x − xi)

)

{x1, x2, . . . , xk}

p1(y) =

∫

dx p(x)δ(y − f(x))

=

∫

dx δ

(

k
∏

i=1

(x − xi)

)

δ(y − f(x))

= δ

(

k
∏

i=1

(y − f(xi))

)

= δ

(

k
∏

i=1

(y − x(i+1)mod k)

)

= δ

(

k
∏

i=1

(y − xi)

)

Is it invariant?

Yes!
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Probability Theory of Dynamical Systems ...
Example: Shift map invariant distribution

Uniform distribution: p(x) = 1, x ∈ [0, 1]
xn

xn+1

10

1

0

p1(x) = p0(x)

p0(y) p0(y)

p1(y) = p�
1(y) + p��

1(y)

p�
1(y) p��

1(y)

(y � x)

0 y 1/2
0

1

0 y

1/21/2

1 0 y 1

0 x 1
0

1

0

1

1y1/2
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Probability Theory of Dynamical Systems ...
Example: Shift map invariant distribution

Uniform distribution: p(x) = 1, x ∈ [0, 1]
xn

xn+1

10

1

0

Via Frobenius-Perron Equation:  Two cases
0 � x � 1/2 1/2 < x � 1

p�
1(y) =

� 1
2

0
dx p0(x)�(y � f(x))

=
� 1

2

0
dx �(y � 2x)

=
1
2

A: B:

p��
1(y) =

� 1

1
2

dx p0(x)�(y � f(x))

=
� 1

1
2

dx �(y � 2x)

=
1
2

p1(y) = p�
1(y) + p��

1(y)
= p0(x) (y � x)
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Probability Theory of Dynamical Systems ...

Example:  Tent map

Uniform distribution is invariant: p(x) = 1, x ∈ [0, 1]

Fully two-onto-one: a = 2

xn

xn+1

10

1

0

Proof from FP Equation: Two cases

First case: exactly that of shift map

Second case: |slope| is all that’s important

1/2 < x � 1

xn+1 =

(
axn, 0  xn  1

2

a(1� xn),
1
2 < xn  1

p001(y) =

Z 1

1
2

dx p0(x)� (y � f(x))

=

Z 1

1
2

dx � (y � (2� 2x)) =
1

2
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Probability Theory of Dynamical Systems ...

Example:  Tent map where two bands merge to one:
Invariant distribution:

a =
√

2

p(x) =

⎧

⎪

⎨

⎪

⎩

p0, xmin ≤ x ≤ x∗

p1, x∗ < x ≤ xmax

0, otherwise
xmax = a/2

xmin = a(1 − a/2)

x∗ = a/(1 + a)

p0 =
1

2(x∗
− xmin)

p1 =
1

2(xmax − x∗)

p0(x
∗
− xmin) = p1(xmax − x

∗)Equal areas:

p0(x
∗
− xmin) + p1(xmax − x

∗) = 1Normalization:

xmaxxmin x
∗1

2

p0

p1

p(x)
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Probability Theory of Dynamical Systems ...

Example:  Logistic map

Invariant distribution?

Fully two-onto-one: r = 4

xn+1 = rxn(1 − xn)

p(x) =
1

π
√

x(1 − x)
Exercise.
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Probability Theory of Dynamical Systems ...

Numerical Example:  Tent map

Two bands merge to one:
a =

√

2

Typical chaotic parameter:

0 1x
-2

6

-log P(x)

a = 1.75

0 1x
-2

6

-log P(x)
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Probability Theory of Dynamical Systems ...

Numerical Example:  Logistic map xn+1 = rxn(1 − xn)

Two bands merge to one:
r = 3.6785735104283219r = 3.7

Typical chaotic parameter:

0 1x
-2

6

-log P(x)

0 1x
-2

6

-log P(x)
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Probability Theory of Dynamical Systems ...

Numerical Example:  Cusp map
(a, b) = (1, 1/2)

xn+1 = a(1 − |1 − 2xn|
b)

0 1x
-2

6

-log P(x)
xn

xn+1

10

1

0
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Probability Theory of Dynamical Systems ...

Issue: Many invariant measures in chaos:

An infinite number of unstable periodic orbits: Each has one.
But none of these are what one sees,
      one sees the aperiodic orbits.

How to exclude periodic orbit measures?

Add noise and take noise level to zero; which measures are left?

Robust invariant measures.



Reading for next lecture:

    Lecture Notes.
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