From Determinism to Stochasticity

Reading for this lecture:

(These) Lecture Notes.

Outline of next few lectures:
Probability theory
Stochastic processes
Measurement theory

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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From Determinism to Stochasticity ...

Probability Theory of Dynamical System:s:
Probability Theory Review:

Discrete Random Variable (RV): X

Events (Alphabet): X = {1,2,...,k}

Realization: z € X

Probability mass function (“distribution”): Pr(x) = Pr{X = x}
0<Pr(x)<1, zeX

Normalized: Z Pr(z) =1

reEX
Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical System:s:
Probability Theory Review ...

Discrete random variables:
|. Biased coin: X = {H, T}
Pr(H)=1/3
Pr(T) =2/3
2. Sequence: No pairs of Os
X = {000,001,010,011,100,101,110,111}

0 000,001, 100
Pr(s’) = ¢ % 101
% otherwise

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical System:s:
Probability Theory Review ...

Continuous Random Variable: X
Takes values over continuous event space: X

Cumulative distribution function: P(x) = Pr(X < x)
0<Pr(z) <1, xe X
If continuous, then random variable is.
Probability density function: p(x) = P'(z) 0<p(x), x € X
p(x)der = Pr(X < x +dzx) — Pr(X < x)
Normalization: Pr(X < oo) =1 or /OO dr p(z) =1
(e.g., if x € R) 50

Support of distribution: suppX = {z: p(z) > 0}

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical System:s:
Probability Theory Review ...

Continuous random variable X:

Uniform distribution on interval: X = R

I, 0<x<1

0, otherwise

Density: plx) = {

0 <0
Distribution: Pr(z) =¢x 0<z <1
I z>1

Support: supp X = [0, 1]

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical System:s:
Probability Theory Review ...

Continuous random variable X:

Gaussian: X =R

D o ( ) 1 — (z—p)?
ensity: €Tr) = e 207
Y- P o\ 2T
Distribution: P(x) = / dy p(y) = Erf(x)

Support: supp X = R

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical System:s:
Probability Theory Review ...

Discrete RVs: X over X & Y over )

Joint distribution: Pr(X,Y)

Marginal distributions:

Pr(X) =) Pr(X,y)

Yyey

Pr(Y)= » Pr(z,Y)

reX
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From Determinism to Stochasticity ...

Probability Theory of Dynamical System:s:
Probability Theory Review ...

Factor joint distribution:
Pr(X,Y) =Pr(X|Y)Pr(Y)
Pr(X,Y) =Pr(Y|X)Pr(X)

Conditional distributions:

Pr(Y|X) = P;(r)(?)/) CPr(X) #0
Pr(X|Y) = P;(j((;)/) CPr(Y) #£0

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical System:s:
Probability Theory Review ...

Statistical independence: X 1 Y

Pr(X,Y) = Pr(X)Pr(Y)

Conditional independence (“shielding”): X 1, Y

Pr(X,Y|Z) = Pr(X|Z)Pr(Y|Z)

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Dynamical Evolution of Distributions:

Dynamical system: {X,7 }

State density: p(x) x €&

Can evolve individual states and sets: 7 : 29 — 21

Initial density: po(z) E.g., model of measuring a system

Evolve a density?  po(x) —7 p1(x)

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Dynamical Evolution of Distributions ...

Conservation of probability:
p1(y)dy = po(z)dz

Perron-Frobenius Operator:

Locally: y = 7 (x) a dg
- Pn(T)
Prt) = 70
Globally: @)
Pn\T
W)= 2, i7)

reT 1 (y)

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield

p1(y)dy

po(x)dx

X

T+ dx




From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Dynamical Evolution of Distributions ...
Frobenius-Perron Equation:

Prs1(y) = / 4z pu(2)8(y — T (2))

Dirac delta-function:

oo, x=~0
5@) - {07 z # 0 p(y)

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield




From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...
Dynamical Evolution of Distributions ...

Example: Delta function initial distribution

Map: Zn+1 = f(zn)
Initial condition: xp € R
Initial distribution: po(x) = d(x — x¢)

ply) = / dz po() 6(y — f(x))
/ dx 6(x — o) 6y — f(2))

— 5(9 — f(xo))
= 0y — 1)
pn(y) = 0y —zy) ... reduces to an orbit

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...
Dynamical Evolution of Distributions ...

Delta function IC: The easy case and expected result.

What happens when the IC has finite support?

20, |z —1/3| < 0.025

€T ) —
Po(2) 0, otherwise

Consider a set of increasingly more complicated systems
and how they evolve distributions ...

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...
Probability Theory of Dynamical Systems ...

Dynamical Evolution R - 1,
of Distributions ...
log P(x)
Example:
Linear circle map 2
t=13 t=4 t=35
Tpi1 = 0.1+ x, (mod 1)
log P(x)
-2
6
t=6 t="7 t=28
log P(x)

fix)=1

0 X 1 0
Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield




From Determinism to Stochasticity ...
Probability Theory of Dynamical Systems ...

Dynamical Evolution  °© =0 (=1
of Distributions ...
log P(x)
Example:
Shift map B
1 ° t=3 t=4
log P(x)
Ln+1
0
0 Tn 1 ° t=6 t="7
log P(x)
. | ]
Spreading: f'(x) = 2

-2
0 X 1 0 X

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...
Probability Theory of Dynamlcal Systems ...

Dynamical Evolution ¢
of Distributions ...

log P(x)
Example:
Tent mapa=2.0
-2
6
1
log P(x)
Ln+1
0 e °
log P(x)
Spreading: | ' (x)| = 2
-2

| t=0 ‘[=11 t=2
t=3 t=4 t=35
t=6 t="7 t=28

. e i

X

X

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield




From Determinism to Stochasticity ...
Probability Theory of Dynamical Systems ...

Dynamical Evolution t=0 t=1 t=2
of Distributions ... |
log P(x) t
Example:
Logistic mapr =4 -
° t=3 t=4 t=5
1
log P(x)
Ln+1
-2
0 6
t=6 t="7 t=28
/ — —_—
f ('CE) T 4(1 233) log P(x)
Spreading: © < 3/8 or x > 5/8
Contraction: 3/8 < x < 5/8 5 |
0 X 1 0 X X

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield




From Determinism to Stochasticity ...
Probability Theory of Dynamical Systems ...

Dynamical Evolution t=0 t=1 ¢ | | t=2
. L : - i
of Distributions ...
log P(x)
Example:
Logistic map r = 3.7
6
1 _ t=3 t=4 | t=5
/ /
Ve
Ve [
Trtl ) / log P(x)
/7
/7
/7
/7
0
0 1
Ln (=8 t=12 | t=20
. . . ) log P(x) -
Peaks in distribution F/ |
are images of maximum - &
2
0 X 10 X 10 X

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Time-asymptotic distribution: VWhat we observe

How to characterize!

Invariant measure:
A distribution that maps “onto” itself
Analog of invariant sets

Stable invariant measures:
Stable in what sense!?
Robust to noise or parameters or !

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...
Invariant measures for |D Maps:

Probability distribution (density p*(x)) that is invariant:

|. Distribution’s support must be an invariant set:

A=f(A), A=suppp’(z)=A{z:p"(x) >0}

|1. Probabilities “invariant”:
Distribution a fixed point of Frobenius-Perron Equation

P (y) = / dz p*(z) 8(y — f(2))

Functional equation: Find p™(-) that satisfies this.

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...
Probability Theory of Dynamical Systems ...

Example: Periodic-k orbit {z1,Z2,...,Zk} has density

k
s it invariant? p(x) =46 (1_[(le _ Zlfz'))
p1(y) = /da? p(x)d(y — f(x)) i=1

/da:&(Ha:—a:Z) (v — f(z))
')))

(y — L (i+1)mod k))

')) Yes!

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield
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From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Example: Shift map invariant distribution

po(¥y)

1

0 y 12

1
Uniform distribution: p(x) =1, z € [0,1]
0 5 1
/ /! 1 pO(y)
p1(y) p1 () «
y ¥ 10 ¢ y 1 2 y 1
1
p1(y) = Pi(y) +pi ()
; pi(z) =po(z)  (y= )

1

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ... |

Probability Theory of Dynamical Systems ...

Ln+1

Example: Shift map invariant distribution

Uniform distribution: p(z) =1, = € |0, 1] 0

Via Frobenius-Perron Equation: Two cases

A:0<z<1/2 B:1/2<x<1
i) = [ n@de—f@) P = [, el - 1)
— /ﬁda:5 — 2x) — /:d:r;5(y—2x)
_ ) L
S !
pi(y) = pi(y) +pi(y)

= po(z) (y=2)

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Example: Tent map Tp4+1 =

Fully two-onto-one: a = 2

Uniform distribution is invariant: p(z) =1, = € |0, 1]

Proof from FP Equation: Two cases

Ln+1

First case: exactly that of shift map

Second case: [slope] is all thlat’s important 0
1/2<z<1 P = [, dop@3-f@)

2

:/1 dx(S(y—(z—Qx)):%

2
Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...
Probability Theory of Dynamical Systems ...

Example: Tent map where two bands merge to one: a = /2

Invariant distribution:
Po> Lmin <x S CE*

p(il?) — \ P1; Tt < < Tmax
0, otherwise p(z)
Trnax = G/2
Tmin = a(l —a/2)

CE* — a/(l —+ a) :Eminl ¥ Tmax

2
— xmin) — P1 (xmaX — CIZ*)

X

Equal areas: po(

Normalization: po(z™ — Twmin) + P1(Tmax — 27 ) = 1

1 3 1
b1 = 2(Tmax — %)

Po = 2(%* — $min)

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield




From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Example: Logistic map x,11 = rz,(1 — x,)

Fully two-onto-one: r =4
1

- m/z(1 — )

Invariant distribution? p(x)

Exercise.

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Numerical Example: Tent map

Typical chaotic parameter: Two bands merge to one:
a=1.75 a=?2
6 6
-log P(x)} -log P(x)} M
| B S |
D A D R
0 X 1 0 X

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...
Probability Theory of Dynamical Systems ...
Numerical Example: Logistic map x,4+1 = rz,(1 — z,)

Typical chaotic parameter: Two bands merge to one:
r=3.7 r = 3.6785735104283219

log P<x>: M Jlog P(x)
Nl .

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Numerical Example: Cusp map z,11 = a(l — |1 — 2$n|b)
(a,b) = (1,1/2)

6 ,

xn—|—1 /

log P(x)t

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Issue: Many invariant measures in chaos:
An infinite number of unstable periodic orbits: Each has one.
But none of these are what one sees,
one sees the aperiodic orbits.
How to exclude periodic orbit measures?

Add noise and take noise level to zero; which measures are left!?

Robust invariant measures.

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



From Determinism to Stochasticity ...
Reading for next lecture:

Lecture Notes.

Lecture 10: Natural Computation & Self-Organization, Physics 256A (Winter 2014); Jim Crutchfield



