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Decision Dynamics via Coupled 2-D Maps

Introduction

Ever since the onset of population biology decades ago, the use of mathematical models and 

computational simulations have served as indispensable tools for rigorous and in-depth 

understanding of the ways which individuals interact and emergent phenomena form. Now widely 

studied equations such as the logistic model and the Lotka-Volterra predator-prey systems linked 

the once descriptive to the quantitative disciplines of behavior and ecology. While the former 

discover the parametric dependency of deterministic chaos, the latter and its various versions aimed 

to implement the findings within a naturally realistic framework. Yet, even with the unprecedented 

emphasis on macroscopic pattern and mechanistic detail, majority of the generated models fail to 

capture and predict the living world as intended. Though the problem has often been attributed to 

the presence of environmental and demographic stochasticity, the fact remains that many 

governing components of behavior, ecology, and evolution are absent from traditional models. In 

addition, due to the widespread conviction that much of nature's events can be inherently 

unpredictable – as exemplified by non-linear dynamical systems – little effort are put forth in 

validating that claim for the problems at hand. Such fatalistic ideology obviously does not benefit 

the advancement of this field nor propel effective management strategies. As a result, the model 

showcased here is developed upon a different foundation, namely, the search for order in an 

otherwise random system. As population regulation is, neglecting abiotic factors, essentially done 

via agent-level behavior, it is then reasonable to begin one's formulation from that angle.

Biological Properties

When dealing with the subtleties of behavior, the central element is the decision and how it 

temporally transform due to agent's internal state and potentially other governing forces. Here, 

decision denotes a preference for a particular option, whether it'd be a reward (resource, shelter, 

mate) or behavioral strategy (forage, rest, migrate). Trade-offs are inextricably woven into the fabric 

of decision dynamics in the forms of commitment cost/opportunity loss versus guaranteed and 

immediate benefit. For instance, carnivorous predators need to sacrifice then chance of capturing 

bigger prey when they utilize the time to hunt down and handle lesser options. Preys themselves 

often need to choose between starving gradually and risking their survival to venture into a 

resource-rich yet dangerous habitat. As mentioned earlier, the problem boils down to a sliding scale 

on the spectrum of preference. This thus is the primary variable to consider in the following model.



Empirical Background

Experimental studies regarding the process of decision-making are surprisingly sparse. A series of 

such research conducted by the Behavioral Ecology Group of Oxford University is consulted here, 

particularly those done on European starlings. In short, the birds are starved or motivated to work 

prior to gaining food bits of equal size and content. The objective was to see whether a preference 

would be generated solely based on the animal's 'state' (or 'activeness', as it will be referred as in 

this paper) and memory when the rewards are experienced. The equivalent intrinsic value of the 

food bits eliminates external biases. The findings are the following: 1) As the animal's activeness 

decreases over time with no replenishment, its fitness declines accordingly. The function exhibits a 

convexity that can be characterized by a sinusoidal wave from the radian range of 0 to 2π . 

Therefore, the magnitude of the increase in fitness upon consuming a food option, ν, is proportional 

to both the state of the subject at the time of consumption and the value of the food itself. In this 

case of identical food values, the hungrier or exhausted the starlings are, the more greater the jump 

in its fitness upon replenishment. 2) During the learning phase – period in which the birds are 

acquainted with the experimental protocol – the food option that yields the greater fitness increase 

will be more preferred upon a later date regardless of the subject's activeness at the time. In other 

words, if option x is experienced and produces the more apparent effect in memory, despite its 

nutritional equivalence or even inferiority compared to others, it will be preferred when the birds 

are later presented with all the options under both hungry and satiated states. 3) The skewness of 

the preference neutralizes and eventually inverts as the delay in obtaining the preferred option 

increases. Hence, longer the wait for the preferred option to be available, the less desirable it 

becomes. Conversely, the preference for the alternatives gradually rises. 

Mathematical Model

: intrinsic optionvalue
: fitness gain
E : agent weariness
S : agent satiation /activeness
 : metabolic decay
: chanceof occurrence
 : suboptimal preference
: impatienceexponent
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The above 2-dimensional Maps coupled by the intrinsic option value encapsulates the general 

relationship between preference and activeness. Since the encounter of events that shape option 

preference is a discrete process, it is modeled under an exponential distribution. The agent's 

activeness or similarly, weariness, is represented by a logistic curve as a function of time. This 

assumption is made by evaluating multiple such hypotheses along with their effects in terms of 

metabolic trajectory and evolutionary optimality. More questionably however, though the 



preference for the alternative option is model to increase exponentially, empirical data does not 

strong distinguish between it and a linear increase. Furthermore, an important assumption is made 

regarding the agent's expectation of its commitment. Due to the instant favoritism towards the 

preferred option and the gradually rising preference for the alternative from near zero, the 

individual must then be interpreted to commit unreservedly, hence expecting high reward to risk 

ratio, at each time step despite the short-lived benefit of the options. This in turn denotes a total lack 

of reasoning and predictive capability on the decision maker.  
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The set of equations above constitutes the “memory box”, where the past information is stored and, 

via the coupled 2-D maps, influences the agent's behavior. Here, a Pareto, or Bradsford distribution 

is assumed to characterize the likelihood of encountering specific options. In short, the more 

valuable an option is, the smaller the probability of finding it as a result of mere scarcity and 

competition. The distribution is dependent upon the parameter k which indirectly correlates to the 

chance of encountering more valuable resources. It is established as a linear function of the 

individual's activeness, the reasoning being that the less weary the agent is, the more it will work, 

seek out, and likely capture the rarer resources. The encountered options themselves are stored in 

memory, along with their matching boost in fitness. The option has yields the highest fitness 

increase will be preferred. Obviously, it will be regularly updated until it asymptotes.   

Simulations

Using Python to simulate the dynamics of this system, 

many interesting features appeared. The graph to the left 

shows a rather typical temporal trajectory of both the 

agent's activeness (blue) and the k parameter value (red). 

As can be seen, occasionally these variables become 

temporarily trapped near one boundary yet will eventually 

escape it and fluctuate wildly. This likely contributes to 

the resulting decisional dynamics. 



The figure to the right intuitively illustrates the 

relationship between fitness increase, options, and 

the respective preference for them. As the agent is 

active, little fitness gain can be achieved and 

whichever option is selected generates the same 

result. As the agent become more weary, however, 

the intake of disparate options begin to have more 

dramatic effect on the rise in fitness. Their 

differences likewise expand. In conclusion, it is when 

the agent is least active when the contrast between 

the options is the greatest hence, when the decision-

made is most optimal. 

Plotting the preference for the alternative option 

against itself at the next time interval reveals a 

fundamental pattern in discrete decisional 

dynamics, namely, that at each denoted instance, 

the agent either encounters the preferred option or 

remain content about the existing one. Although, 

the time at which all decisional possibilities are 

experienced is relatively random as it's governed by 

two components of stochasticity, the event 

occurrence rate and the Pareto-distributed encounter rate.

A more revealing pattern can be detected in the same graph of the agent's activeness. Exemplified by 

the near fractal shape below, the agent's internal state becomes more predictable in the higher 

active regime. 



When the two central variables are plotted 

against each other, a semi-ordered 

phenomenon emerges despite the embedded 

stochastic components. Within these aperiodic 

cycles, a high density of state variables reside 

on the bottom edge of the graph. This refers to 

the “stalling” behavior in which the individual 

refuses encountered options and waits for the 

preferred one. As the trajectories ascend, the 

behavior tends towards “compromise”. The 

path to complete switch of preference may 

differ each time, depending upon the 

individual's then activeness, memory, and 

encounter probability. As the preference for 

the alternative option reaches 1, the trajectories travels along the upper boundary until the preferred 

option becomes available, causing them to rain back down to the “stalling” phase. 

Future Works

Much more behavioral traits will be incorporated into future models: individual rationality, 

continuous time and options where the preference relies on them being similar rather than 

identical, benefit delay, choice-locking, more complex memory box, etc. 

Appendix: Codes

# Import plotting routines

from pylab import *

import math as m

import numpy as np

i

# Generating stochasticity in epsilon

mean = 5  # average number of times for 1 success

lam = 1.0/mean

def randd(n):

for i in range(n):

a = np.random.rand()

if a < 1 - m.exp(-1.0*lam): a = 1.0

else: a = 0.0

return a

r



# Simulation parameters

#

# Control parameter of the map:

delta = 0.1

c = 3.0

kslope = (c-1)/(pi/2)

eta = (sin(0.01 + 1.0/4) - sin(0.01)) / 200    # eta = Vmax/(100*2) = V(Smin, Wmax)/200

phi = 0.2

p

# Set up an array of iterates and set the initital condition

elist = [0.01+pi/4]

slist = [pi/2-0.01-pi/4]

klist = [c - slist[0]*kslope]

k

betalist = [0.01]

b

wlist = []

vlist = []

vplist = []

wplist = []

# The number of iterations to generate

N = 50000

# The main loop that generates iterates and stores them

for n in xrange(0,N):

  

  epsilon = randd(1)

   

# Memory Box

  w = np.random.pareto(klist[n]) + 1  

  if w <= 2.0: w = 1/(2.0*pi)

  elif w > 2.0: w = 1.0/4

  wlist.append(w)

  

  if epsilon == 0.0: w_actualized = 0.0

  elif epsilon == 1.0: w_actualized = w

 

  v = sin(slist[n]+w_actualized)-sin(slist[n])

  if slist[n]+w_actualized >= pi/2: v = 1 - sin(slist[n])  



  vlist.append(v)

  

  vp = max(vlist)

  vplist.append(vp)

 

  if v >= vp-eta and v <= vp+eta: wp = w_actualized

  if max(vlist[0:n+1]) > 0.0 and v == 0.0: wp = wplist[-1]

  wplist.append(wp)

 

# Coupled 2-D Map 

  

  if w_actualized == wp:

  e = elist[n]*exp(delta*(pi/2-elist[n])/(pi/2)) - w_actualized

beta = 0.01

  elif w_actualized != wp:

  e = elist[n]*exp(delta*(pi/2-elist[n])/(pi/2)) - w_actualized * betalist[n]

  beta = betalist[n]*exp(phi)

  

 

  if e <= 0.01: e = 0.01

  elif e >= pi/2-0.01: e = pi/2-0.01

  elist.append(e)  

  

  if beta <= 0.01: beta = 0.01

  elif beta >= 0.99: beta = 0.99

  betalist.append(beta)

  

  s = pi/2-e

  slist.append(s)

  

  k = c - s*kslope

  if k <= 1.0: k = 1.0

  elif k >= c: k = c

  klist.append(k)

 

    

#  print 't:', n+1, 'eps', epsilon, 's:', slist[n+1], 'w:', w, 'w_act:', w_actualized, 'v:', v, 'v_choice:', vp, 

'w_choice:', wp, 'beta:', betalist[n+1]

# Setup the plot

xlabel('Time step n') # set x-axis label



ylabel('s(n)') # set y-axis label

title('s_t at delta= ' + str(delta)) # set plot title

# Plot the time series: once with circles, once with lines

#plot(slist , 'b')

plot(slist, 'b')

plot(klist, 'r')

# Use command below to save figure

#savefig('LogisticMap', dpi=600)

#print 'u', u, '\nk', k

# Display the plot in a window

show()
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