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Abstract: 
Passive dynamic walkers (PDWs) are simple dynamical systems that have been used to 
study the fundamentals of normal human walking.  In essence, they are a collection of links 
and joints capable of “walking” down shallow slopes with a surprisingly human-like gait. 
PDWs have no active motors or control system, rather they are “powered” by gravity.  With 
judicious choice of model parameters and initial conditions, PDWs can exhibit stable limit 
cycles.  The goals of this project are twofold: (1) to create a general limit cycle analysis and 
simulation tool using Python and (2) explores some aspects of the limit cycle behavior of a 
PDW.  In order to test the accuracy of the Python code, I recreated some of the results of by 
Garcia's et al., (1998) simplest passive dynamic walking model.  Specifically, I verified the 
author's reported range of stable limit cycles.  My calculations agree that this model does 
possess stable limit cycles for ground slopes less than about 0.015 radians.
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Introduction:   

Walking is an activity that most of us do on a daily basis, generally without thought or care. 
However,  walking is an extremely complicated task and not very well  understood.   Much 
active research is devoted to answering fundamental questions regarding walking mechanics, 
for example: 

• how much of normal walking is dictated by the classical mechanics and how much is 
due to neuromuscular control?

• what are some of the parameters that affect a person’s self-selected walking speed?
• what factors predict when a person will switch from a walk to a run (or run to a walk)?
• is a bipedalism more or less energetically efficient that quadrupedalism? 

Passive dynamic walking models are a logical means to address these questions because 
they are very simple and permit degrees of complexity/realism to be incrementally added.  As 
each degree of complexity is added, the effects of the new model elements can be compared 
to  the  previous  results  thus  illuminating  the  relative  importance  of  each  model  element. 
Further, passive dynamic walkers (PDWs) provide a means to separate the skeletal muscle 
and nervous system, an essential requirement in order to address the significance of classical 
mechanics in normal walking.   

Background
The proposed model is based on the work of passive walking bipeds, a concept pioneered by 
the works of Mochon & McMahon, (1980a, 1980b) and Tad McGeer, (1990a, 1990b) and has 
since been the focus of numerous studies, e.g. Goswami et al., (1997), Garcia et al., (1998), 
Kuo, (1999), Grizzle et al., (2001), Hurmuzlu et al., (2004), Wisse et al., (2005).  Mochan & 
McMahon noticed that  electromyography (EMG) patterns of  the lower  extremities showed 
bursts of activity at the beginning and end of a step, but the EMG signal during the swing 
phase was largely quiescent.  They also noted that the step period was reasonably close to 
that of a pendulum having equal inertial properties to the leg.  

Theoretical and even physical models of passive walking bipeds are a collection of links and 
joints  that  represent  the  lower  extremity of  a  human.   With  careful  selection  of  segment 
masses and inertial properties, these models are able to move down gentle slopes without 
any control or external energy sources in a remarkably human-like fashion.  If the energy lost 
during the foot-ground impact events is balanced by the conversion of gravitational potential 
energy, then a periodic gait can be achieved. 

Dynamical System Description 
Rigid body model description
This work begins by adopting a completely rigid body model similar to that of  Garcia  et al., 
(1998).      The passive walker consists of two rigid, massless legs and three particles, as 
shown in Figure 1.  The legs have a length, l , and are connected at the “hip” by a frictionless 
revolute joint.  The particles are idealized point masses representing the two “feet”,  mf, and 
the combined mass of the head, arms, and trunk,  mHAT.  The  mHAT  is coincident with the 
revolute joint and is much more massive than the feet, i.e., mHAT >> mf.  The planar model is 
constrained to move down a rigid ramp of slope, γ.  The angle between the slope-normal and 
the stance leg is  θ(t) and  Φ(t) is the angle between the stance and swing legs.  Positive 
directions for both θ(t) and Φ(t) are as shown in Figure 1.  
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Figure 1: Kinematic description of the proposed passive walking model

Rigid body model assumptions 
It is assumed that the ground is perfectly rigid and that the impact of the foot is a perfectly 
plastic  collision  with  no  slip  and  no  bounce.   As  a  consequence  of  this  plastic  impact 
assumption, the impact process is instantaneous and impact forces are impulsive.  Further, 
the instantaneous impact implies that there are discontinuities within the velocity variables. 
Other forces during this impact period are assumed to be negligible.   The contact foot is 
assumed to remain fixed to the ground throughout the stance phase and acts as a frictionless 
revolute  joint.   The  transition  of  the  foot  from  swing  to  stance  is  assumed  to  occur 
instantaneously, thus there is no double support phase.  Also, the swing leg is permitted to 
pass through the ground-slope during mid swing.  This final assumption can be justified in two 
ways: (1) since the feet are much less massive than the hip, the swing foot has negligible 
effect on the dynamics and (2) it could be implemented by using a checker-board surface 
[McGeer, (1990a)].  

The  equations  of  motion  (EOM)  for  this  two-degree  of  freedom  system  are  derived  in 
AUTOLEV using Kane’s method and numerically integrated using a custom 4th order Runge-
Kutta algorithm in Python.  By assuming that the mass of the hip is >> mass of the feet and 
non-dimensionalizing with respect to leg length and time, the EOM simplify to:

θ̈  t −sin θ  t −γ =0 (1)

θ̈  t −φ̈  t θ̇ t 
2
sin φ  t  −cos θ  t −γ sin φ t  =0 (2)

Notice that equation one describes the dynamics of the stance leg and, due to the mass of 
the feet being negligible, the swing foot makes no contribution to the angular momentum of 
the stance leg.  Therefore, no terms involving phi or its time derivatives appear in equation 
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one.  Also, this system of equations has only one free parameter in these equations, the 
ground slope, γ.  

By  virtue  of  the  system’s  geometry,  the  ground-foot  impact  event  is  recognized  when 
Φ(tHS)-2Θ(tHS) = 0, where tHS is the time at heelstrike.  Since this geometric condition is also 
satisfied at the beginning of the swing phase and as the swing leg passes in front of the 
stance leg, provisions in the code are made to ignore these non-interest events.  It is my goal 
to focus on solutions of the EOM that have “real world” significance, i.e., those that will yield a 
stable, “period-one gait.”  

Methods:  

The Search for Stable Periodic Solutions

A primary goal is to find initial conditions that lead to periodic gaits.  A Poincaré map 
has  proven  to  be  a  particularly  useful  tool  in  this  endeavor.   Geometrically  speaking,  a 
Poincaré map can be thought of as a transverse slice through an arbitrary portion of a state-
space trajectory.  Each time the trajectory crosses the plane defined by the transverse slice, it 
creates a point, , on the map.  Since the state space trajectory depicts the evolution of the 
system’s dynamics, there is some function that relates sequential crossings and in general 
may be written in the form (Hilborn, 1994),

 (3)
If after m crossings two points on the return map are coincident, the system is said to have a 
period-m limit cycle.  The discovery of a limit cycle requires finding “fixed points” of (X), i.e., a 
vector of initial conditions, , such that 

  (4)
McGeer, (1990b) called the function  F in (X) a “stride map”, although “step map” is 

perhaps a more precise term since it is mapping of the system’s state at the beginning of 
sequential steps.  Specifically, the function F involves the numerical integration of the EOM 
during single support, the detection of heel strike, the calculation of post-impact velocities, the 
integration of the EOM during double support, and a re-ordering of the state elements at the 
end of double support.  In short, F maps the state of the system at the beginning of step n to 
the state at the beginning of step  n+1.  The re-ordering is necessary because the walker 
actually requires two steps to return to a similar initial configuration, e.g., beginning single 

support with the stance leg described by .  The re-ordering ensures that the sign of each 
element in the state vector at the beginning of a step is the same as it was at the beginning of 
the previous step, which is necessary for an accurate estimate of the stride map error.  

The error in the stride map is defined as, 

 (5)
In general, it is impossible to blindly guess a set of initial states that is a fixed point, but a 

Newton-Raphson (NR) algorithm often leads to a root of  .  The NR algorithm relies on 
approximating the error function as a Taylor series expansion about the current state, ,

where N is the number of elements in the state vector and  is the Jacobian of g 
evaluated at , i.e., 
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and solving for .  Neglecting the higher order terms, the change to the initial guess that will 
drive the system towards the fixed point is

  (6)

Thus, the next iteration of the stride map is
(7)

Notice that the calculation of δ x  is a computationally expensive task.  In total, n+1 iterations 
of the stride map are required, once using the nominal state vector, , and n more times for 
the numerical approximation of the Jacobian.  It is also worth noting that the ith column of the 
Jacobian represents the sensitivity of the error function to a small change (perturbation) in the 
ith element of the state vector while all other elements of  are held constant.  

Once  a  limit  cycle  has  been  found,  its  linear  stability  is  checked  with  a  similar 
procedure.  We perform a Taylor series expansion of  F about the fixed point, retaining only 

the linear terms.  If the eigenvalues of the Jacobian of  are all strictly less than one, then 
sufficiently  small  perturbations  will  converge  to  the  fixed  point  and  the  limit  cycle  is 
asymptotically stable [Goswami et al., (1998)].  

Disclaimer:
I worked hard to get my Newton-Raphson algorithm working perfectly but ran out of time.  I 
tried to be careful about making a standard input-output form passing arguments between 
functions; however, I wasn't careful enough.  In the end I used scipy's fsolve function.  

Results:  

The swing phase dynamics are as expected and, in fact, seem to match that of the authors' 
results perfectly.  Both leg angles are initially positive (note that the initial swing leg angle is 
equal to twice that of the stance leg angle – a configuration that would have both feet on the 
ground) and both monotonically decrease until phi equals 2*theta.  The swing phase 
dynamics do seem to be largely pendular in nature, agreeing with the observations of Mochon 
& McMahon, (1980a, 1980b).  The non-dimensional time at which the foot strikes the ground 
is 3.867 (time is non-dimensionalized by multiplying t by sqrt(g / L) ).

In terms of the stance leg angle corresponding to a fixed point, my code also matched the 
predictions of Garcia et al., (1998).  The authors found two fixed points over a range of 
ground slopes between 0 and 0.045 radians.  One fixed point had a slightly longer step time 
(period) and was thus called the “long period” solution, while the other was referred to as the 
short period solution (Figure 4 in Garcia's paper).  The major results reported by Garcia et al., 
(1998) were that: (1) the leg angles of both the long and short period solutions scaled as 
proportional to the ground slope angle to the (1/3) power, (2) the long period solution was 
stable up until ground slopes of about 0.015 radians, and (3) the short period solutions were 
always unstable.  Again, I was able to recreate Garcia's results perfectly.  One minor detail 
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Figure 2: A comparison of my results with those of Garcia et al., (1998).  The stance leg (solid line) 
and swing leg (broken line) seem to match the author's Figure 2 perfectly. Here, gamma = 0.009 
radians. 

Figure 3: A comparison of my results with those of Garcia et al., (1998).  The (*) show my numerical 
calculations of the stance leg angle (theta) corresponding to the fixed point at a given ground slope 
(gamma).  My results seem to agree with the author's assertion that the stance leg angle scales 
approximately to gamma to the 1/3 power.
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to notice when comparing my Figure 3 to Garcia's Figure 3 is that I plot his proposed trend 
line, gamma(1/3), shown as the solid line, while Garcia plots an analytical approximation to the 
fixed point.  Clearly, the proposed trend line is a reasonable description of the affects of 
ground slope on the stance leg angle.  

Finally, I compared the eigenvalues of the fixed points for both the long and short period 
solutions.  My results (Figure 4) are in agreement with Garcia (Figure 4).  The short period 
solutions are always unstable.  The long period solution is stable until approximately gamma 
= 0.015 radians, at this point the magnitude of the eigenvalues is greater than 1.  

Figure 4: A comparison of the stability results 

The Code:
The code is contained within two files: Walker.py (the main file) and WalkerDefs.py.  No 
attempt was made to program this in an object-oriented fashion.  
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Conclusion:   
This project was an attempt to build a analysis and simulation tool of a dynamical system 
using Python.  The dynamical system chosen as a representative model is a challenging one 
because of its hybrid nature, i.e., it exhibits continuous time dynamics that are interrupted by 
discrete events.  It is not a trivial task to detect and terminate an integration routine at a time 
that is not known a priori.  This tool also demonstrates a general procedure for finding fixed 
points of a limit cycle and evaluating their stability.  While still very much in a beta stage of 
development, the functionality is largely there as it showed general agreement with the 
published results of the simplest walking model.
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