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Abstract 
 
 A simulation of the Belousov-Zhabotinsky (BZ) reaction in a Continuous-flow Stirred-Tank 
Reactor (CSTR) has been built and investigated. The model for the system is from a paper by 
Gyorgyi & Field (1992). Using mainly packages from the Enthought Python Distribution (EPD), the 
governing ODEs have been numerically integrated and visualized. The simulator was calibrated by 
solving a similar by simpler (non-chaotic) system of ODEs known as the Oregonator- a task 
performed successfully. The chaotic system was then investigated under two sets of conditions: a 
‘High’ flowrate and a ‘Low’ flowrate, where the flowrate is associated with a set of parameters and 
with a particular range of the bifurcation parameter kf, which is defined as an inverse residence time 
(s-1) of a particle of fluid in the reactor. All the constants used were from the literature. Although 
there were some discrepancies in the results with the literature under the Low flowrate conditions, 
there seemed to be better agreement under the High flowrate conditions. Under the Low flowrate 
conditions, a period-doubling transition to chaos was observed. The corresponding strange attractor 
was virtually 2D. Under the High flowrate conditions, an intermittency route to chaos was observed, 
and a 3D attractor was found.  
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Introduction 
 
 The motivation for this topic was interest due to the famous designs produced by the Belousov-
Zhabotinsky reaction in small Petri dishes. Such images have permeated texts on nonlinear 
dynamics, chemistry, catalysis, and related fields, due to their fascinating and appealing designs. 
The complexity becomes even more interesting in a Continuous-flow Stirred Tank Reactor (CSTR), 
where the system is thermodynamically “open,” and equilibrium can be avoided(Epstein and 
Pojman, 1998). Dropping our concerns about the 2nd law (with respect to oscillatory behavior), 
more interesting behavior becomes possible, and with modern visualization tools, it is relatively 
easy to visualize. In a sense, the artistic merit of the spiral designs of the Petri dish can be replaced 
by the artistic merit of the strange attractors built by a computer simulation. In this project, a chaotic 
three-variable model for the BZ reaction in a CSTR has been simulated in Python, and its behavior 
investigated. It was found that, as predicted, interesting and even chaotic behavior occurs when the 
value of the bifurcation parameter, which is related to the flow rate through the reactor, is varied 
appropriately. At very high values of kf, a steady-state is reached because the high kf corresponds to 
a high flow rate through the reactor and a lack of time for the chemicals to react. Similarly, at very 
low values of kf, steady states are reached, but due to equilibrium being reached in the reactor. The 
very low kf case can be compared to the case of the Batch reactor (thermodynamically closed), or 
simple beaker, for which equilibrium is eventually reached. There is, however, a region of kf 
wherein the value of the flowrate parameter kf is conducive to more interesting periodic behavior 
and chaos, meaning that at least some portion of the simulation was successfully replicated from the 
literature. Both periodic and intermittency routes to chaos have been observed, and the 
concentration dynamics have been visualized in 2D and 3D using open-source packages from the 
Enthought Python Distribution (EPD). 
 
 
Background 
 
 By far, the most famous chemical oscillator is the so-called Belousov-Zhabosinsky reaction, 
which is naturally named after its two central founders. Sometime in the late 1950’s, Boris 
Pavlovich Belousov (1893-1970) discovered the reaction when he was looking for an inorganic 
analog of the Krebs cycle, a metabolic process with a citric acid intermediate (Epstein and Pojman, 
1998). He made a solution of bromate (BrO3-), citric acid (C6H8O7), and cerium ions (Ce4

+), 
expecting to see the yellow Ce4

+ solution become clear Ce3
+, but he found that solution oscillated 

between yellow and clear (Epstein and Pojman, 1998). The skeptical scientific establishment was 
less than eager to believe Belousov’s claims- in fact, he was unable to publish his work, even after 
attempting to do so for about six years. Except for the case of one small abstract in a random 
conference on Radiation Biology, where he was able to publish a small mention of the oscillating 
reaction. In general, the objection to the chemical oscillation was that it appeared to violate the 
Second Law of Thermodynamics (Epstein and Pojman, 1998). Finally, in 1961, Anatol Markovich 
Zhabotinsky (1938-2008) began more work on the reaction, and was able to publish what he found. 
An important modification he made to the reaction was to use Ferroin, which is visibly red in 
reduced form and blue in the oxidized form. Such a substance is known as a Redox Indicator. Using 
the Ferroin, the oscillation was much clearer to see than in the pale yellow and clear solution that 
Belousov originally used. As the BZ reaction became better known, experimentalists around the 



globe began to investigate it theoretically and experimentally. In practice, the concentrations of 
various species in solution can be monitored using special electrodes designed for specific ions such 
as the Br- ion (Li, Song et al. 2001). Computer simulations have also proved to be extremely useful 
for understanding the reactions, due to their practical nature.   

 
Figure 1: Simple Oscillation in the BZ reaction, indicated by the changes in the Ferroin oxidation state (GNU open-
source licensed photo) 
 
Dynamical System 
 
 One of the earliest models for the BZ reaction, proposed by Prigogine and Lefever in 1968, was 
known as the “Brusselator.” The Brusselator became perhaps the most widely used model for 
chemical oscillations in general (Scott, 1992).  For the BZ reaction, however, the most widely used 
model is known as the “Oregonator.” The Oregonator, which is based on the Field-Körös-Noyes 
(FKN) chemical reaction mechanism put fourth in 1972, has now been thoroughly analyzed both 
theoretically and experimentally and is considered to be the most successful simple BZ model 
(Scott, 1992). The FKN mechanism is shown in Equations 1-5. The simulated results of the 
Oregonator agree very well with experimental data (Ren et al. 2008). 
 
  
A + Y  X + P r = k3AY 

 
A ≡ BrO3

- (1) 

Z + Y  2P r = k2XY 
 

B ≡ all oxidizable organic species (2) 

A + X   2X + 2Z r = k5AX 
 

X ≡ HBrO2 (3) 

2X  A + P r = k4AX2 
 

Y ≡ Br- (4) 

B + Z  (1/2) f Y r = koBZ 
 

Z ≡ Ce4
+ 

 
(5) 

 
dx/dt = k3AY – k2XY + k5BX – 2k4X2 

 
(6) 

dy/dt = -k3AY – k2XY + fkjZ 
 

(7) 

dZ/dt = 2k5BX - kjZ (8) 
 



 The differential equations (rate expressions) for systems of chemical equations are typically 
formulated using the so-called Law of Mass Action, and are given by Equations 6-8. In 1979, John 
J. Tyson showed that the rate expressions could be reduced to a convenient dimensionless form, 
shown by Equations 9-11. 
 
dx/dτ = (qy – xy + x(1-x)/ ε1 
 

(9) 

dy/dτ = (-qy –xy +fz)/ ε2 
 

(10) 

dz/dτ = x-z (11) 

 
Figure 2: Operation of a Continuous-flow Stirred Tank Reactor (CSTR). 

 
 Once it had been accepted that the oscillations were genuine, people naturally began to wonder 
whether or not any chaotic behavior might be found in the reaction. However, the simple beakers 
and dishes would no longer suffice, since inside them there could only be simple oscillations until 
equilibrium was reached. So researchers began to investigate the behavior of the reaction in a 
CSTR, where, as an open system, equilibrium could be avoided and therefore more interesting 
behavior could be found. Complex periodicity, multistability hysteresis, and chaos have now been 
observed both experimentally and in various simulations of the BZ reaction (Swathi and Kulkarni, 
2009). But it was long before any simple equations were found that could account for complex 
behavior.  
 
 In 1992, Gyorgyi and Field published the first three-variable chaotic model for the BZ reaction in 
a CSTR. The three-variable model was reduced from an eleven-variable model that had been 
published in a paper in 1991.The scaled differential equations for the chaotic model are given by 
Equations 12-14. As with the equations by Tyson, the species variables in Equations 12-14 are 
scaled, and the log10 of the values is taken before plotting. 
 
 

dx/dτ = To{-k1HYoxy + k2AH2Yo/Xoy- 2k3Xox2 + 0.5k4A0.5H1.5Xo – 0.5(C-Zoz)x0.5 – 0.5k5Zoxz 
– kfx} 
 

(12) 

dz/dτ = To{k4A0.5H1.5X0.5(C/Zo – z)x0.5 – k5Xoxz – αk6Vozv – βk7Mz - kfz 
 

(13) 

dv/dτ = To{2k1HXoYo/Voxy+k2AH2Yo/Voy + k3Xo
2/Vox2 – αk6Zozv - kfz (14) 

 
 
 



Methods 
 
 In order to investigate and understand the behavior of the BZ reaction in a CSTR, a Python 
(Version 2.5.2) simulation was constructed. ActiveState ® Komodo IDE 5.1.3 was used for the 
editing. In general, most of the Python packages were installed with the open-source Enthought 
Python Distribution (EPD). Before simulating the more complicated chaotic model given by 
Equations 7-9, the simpler model given by Equations 4-6 was simulated as a baseline check on the 
overall methodology. Although Equations 4-6 are relatively simple, they are still known to be stiff 
ODEs and therefore they require more elaborate integration schemes than, for example, a standard 
Runge-Kutta scheme (Epstein and Pojman, 1998). So an ODE integration package from SciPy, 
which incorporates variable step-sizes for stiff ODEs, was used. After Equations 4-6 were 
successfully integrated and plotted using SciPy’s odeint module, it was assumed that the 
methodology was sound and then the same procedure was applied to the chaotic CSTR model, 
given by Equations 7-9. The ODE solving routines in odeint are based on popular set of Fortran 
ODE solvers called odepack. The vector solution is returned as an array object, and the solutions for 
each variable can then be plotted in 2D using matplotlib or in 3D using MayaVi.  
  
 There were two categories of flowrate examined for interesting behavior: a ‘Hi’ flow rate and a 
‘Low’ flowrate, each corresponding to a particular set of constants, initial conditions, and range of 
kf values. For the ‘Low’ flowrate conditions, A = 0.1M, M = 0.25M, H = 0.26M, C = 0.000833M, α 
= 666.7, β = 0.3478. For the ‘High’ flowrate conditions, A = 0.14M, M = 0.3M, H = 0.26M, C = 
0.001M, α = 333.3, β = 0.2609. The initial conditions were typically based on the points contained 
by the Poincaré plane from Gyorgyi and Field (1992). 
 
Results 
 
 As expected, the only behavior of the simple Oregonator is a limit cycle, as shown in Figures 3a 
and 3b. In general, the log10 is taken of each concentration before plotting so that they can all be 
easily seen on the same image. Otherwise, the differences between the values are very large and so 
the plots are difficult to see. It was not the actual values of the concentrations that were of primary 
interest, as much as the general trends and behaviors. In the case of the simple Tyson-scaled 
Oregonator, the behavior is a periodic oscillation, the characteristics of which can be changed by 
varying any of the three parameters (ε1, ε2,q) (Ren et al. 2008). In Figure 3a, an example of a typical 
limit cycle is shown. All of the values for the constants were taken from Field (2007). 

       
Figure 3. (a) The limit cycle of the dimensionless concentrations (log10) of species from Eqs. 1-3. (b) corresponding 3D 
attractor 
 



 Unlike the behavior from the simpler model, the behavior from the chaotic model was, as 
expected, rich with complexity. Although various routes to chaos have been found for the BZ 
reaction, period-doubling and intermittency were frequent phenomena found in this simulation. A 
typical example of period doubling for the ‘Low’ conditions is shown in Figures 4a- 4f, wherein the 
value of kf decreases from kf = 0.05 in Figure 4a to kf = 0.0003902 in Figure 4f. In Figure 4a, the 
relatively high value of kf corresponds to a very fast flow through the reactor, and so the lack of 
behavior is likely corresponds to a lack of reaction time. As a result of the lack of reaction time, a 
steady-state is quickly reached. As the value of kf decreases further to kf = 0.00291 in Figure 2b, the 
flow through the reactor has slowed sufficiently to allow for periodic oscillations. A period-
doubling bifurcation occurs at kf = 0.0029, as shown in Figure 4c. By the time kf has reached kf = 
0.00285, as shown in Figure 4d, the behavior began to show a hint of complexity, as evidenced by 
the more subtle periodic patterns. The trend continued as kf was decreased to kf = 0.0028, as shown 
in Figure 4e, wherein the period had continued to double and the periodic behavior continued to 
subtly evolve. By the time kf had decreased by another order of magnitude, to kf = 0.0003902, it was 
clear that chaotic behavior was present. A 3D attractor for kf = 0.0003902 is shown in Figure 5, but 
the attractor is virtually 2D, which agrees with the steady state reached by one of the variables in 
Figs. 4a-4f. 

 
(a)                    (b) 

 
(c)                    (d) 

 
(e)                    (f) 

Figure 4. Low flowrate conditions. Period-doubling in Figs. 4a – 4e. Chaos in Fig. 4f at kf = 0.0003902. 



 
 

 
Figure 5. Low flowrate attractor for kf = 0.0003902, virtually 2D 
 
 An example of the behavior at the ‘High’ flowrate conditions is shown in Figs. 6 a-d. Under the 
High flowrate conditions, chaotic windows were found near kf = 0.00208 and kf = 0.00216. The 
latter value was consistent with the literature. In Figures 6a – 6b, the value for kf is decreased from 
kf = 0.00220999 to kf = 0.00213 in varying increments. The chaotic behavior at kf = 0.00216 is 
illustrated in Figure 6d and in Figure 8. Both above and below that particular value, simple periodic 
behavior appears. 

 

 
(a)                    (b) 

 
(c)                    (d) 

 
(e)                    (f) 

Figure 6.  High flowrate conditions; intermittent chaos at kf = 0.00216 (Figure 6d) 



 

        
(a)              (b)  

Figure 7. Low flowrate region. (a) a burst of chaos at kf = 0.0020800   (b) the onset of ordered periodicity at kf = 
0.0020812 

 

 
Figure 8. High flowrate region. Chaos at kf = .0021600  (see Fig. 6d) 
 
Conclusion 
 
 Using open-source Python software and the Enthought Python Distribution, a simulation of a 
chaotic three-variable BZ model was created and used to better understand the BZ reaction in a 
CSTR and to attempt a replication of a simulation from literature. Before the chaotic model was 
examined, the simpler, Tyson-scaled Oregonator was tested as a baseline check on the overall 
method. Since the results from the simpler model agreed well with literature, it was assumed 
thereon that the general method was valid. For two sets of conditions, values of kf were manipulated 
and the behavior was analyzed. The set of ODEs was integrated using the SciPy integrate package, 
and the solutions sets were plotted using matplotlib and MayaVi. It was found that at the Low 
flowrate conditions, chaos appeared as a result of a period-doubling sequence as kf was decreased. 
The attractor was essentially 2D, due to a lack of activity of the Cerium ions. Under the High 
flowrate conditions, the intermittency route to chaos occurred over certain windows of kf values. 
The appearance of chaos at kf = 0.00216 under the High flowrate conditions is consistent with the 
literature, and another chaotic window near kf = 0.00208 was found. 
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