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This paper and its associated Python programs explore the dynamics of single 
electron tunneling junction (SETJ) circuits.  SETJs can potentially be used as 
nonlinear circuit elements to implement new paradigms for information processing.  
I show that an isolated SETJ circuit with a constant bias voltage and sinusoidal 
pump offset can produce a variety of interesting nonlinear behavior. By adjusting 
certain input parameters, the frequency and phase of tunneling events can become 
entrained to any super-harmonic of the pump, although the robustness of the basins 
of attraction typically diminishes as we increase the tunneling period.  Capacitively 
coupled SETJs can interact to display new types of behavior, as the voltage across 
one tunneling junction will influence the voltage of its neighbors.  After looking at 
the behavior exhibited by two-coupled SETJs, I examine the mutual interaction and 
tunneling outputs of arbitrarily large MxN SETJ arrays.   

 
 

 



Introduction 
 

Single electron tunneling junctions (SETJs) offer an opportunity to not only 
downsize electronic components, but also to enhance the functionality of large 
arrays of components by exploiting their nonlinear dynamics to access an emergent 
level of information processing.  However, nanoparticle arrays of capacitively 
coupled SETJs have many interacting variables and associated parameters that 
gives rise to a complexity that is useful only to the extent that we understand these 
dynamics.  Therefore, to better understand the range of behavior allowed by such 
tunneling junctions, I have studied the dynamics of isolated SETJ circuits, two-
coupled SETJ circuits, and finally one-dimensional and two-dimensional systems of 
arbitrary size.  I show how one can alter the behavior of an isolated SETJ, and 
explore how parameter values can change the behavior of large SETJ networks. 

 
 
Background 

 
Sandwiching a molecule with metal contacts forms a single capacitive 

junction.  In the simplest isolated SETJ circuit, this capacitive junction is in series 
with a resistive element.  Applying a voltage across these two elements would seem 
to yield a simple RC circuit, except that a single electron will tunnel through the 
tiny junction once a critical voltage (~ 
e / 2Cjunction) has built up across the 
junction.  Therefore, the isolated 
SETJ circuit behaves as a relaxation 
oscillator, discharging a single 
electron every time a threshold 
voltage has been obtained across the 
metal-molecule-metal junction.  
Figure 1, borrowed from Yang et al., 
shows a schematic circuit diagram of 
the isolated SETJ circuit [1].  The 
system becomes interesting because 
SETJs can be capacitively coupled to 
form a dense array of interacting 
tunneling junctions.  The dynamics 
are further enriched since each SETJ 
can be driven by an applied voltage at 
one of its terminals.   

 
 
 
 
 



Dynamical System 
 
 SETJ arrays are nonlinear and time-dependent dynamical systems. A 
tunneling event in one SETJ will discontinuously change the tunneling junction 
voltage of other coupled SETJs, implying that both discrete and continuous time 
phenomena are of interest, and a combination of differential equations and discrete 
difference equations must be used to accurately model the system.  The primary 
variables of interest are the voltage across the tunneling junctions and the 
corresponding phase of a tunneling event.   

The phase of a tunneling event can be described in various ways, but can be 
given as either a binary or continuous variable that takes on a new value for each 
tunneling event.  The tunneling phase depends on when the last tunneling event 
took place in relation to the phase of the pump voltage.  I chose to represent the 
grey-scale tunneling-phase output as: 

 

! 

fgrey"scale (# ij
last
,$(t)) =

# ij
last
mod2%

2%
 

 
and I represented the binary tunneling-phase output as: 
 

! 

fbinary (" ij
last
,#(t)) =  1 if 

! 

" ij
last
mod2# > # ,  or  0 if 

! 

" ij
last
mod2# < #  

 
where 

! 

" ij
last  is the time of the last tunneling event in the SETJ cell indexed as ij.  

Therefore, this definition applies to any SETJ cell, whether it is in an isolated 
circuit, one-dimensional lattice, or two-dimensional array.  The following discussion 
of the dynamics describes the system in terms of the physically natural variables, 
such as voltages at nodes, or across the junctions and coupling capacitors (except 
that these variables are algebraically simplified to reveal the essential dynamical 
characteristics).  However, given the physical evolution of the system, the 
aforementioned output variables, 

! 

fgrey"scale  and 

! 

fbinary , can easily be found. 
 An isolated SETJ circuit can be modeled as shown in Figure 1.  For this case 
of a constant bias voltage, Vb, applied at one end of the cell, and a sinusoidal driving 
voltage applied at the other, the nonautonomous impulsive differential equation for 
the voltage across the junction, vC, is: 

     [1]. 
 



Notice that these equations consist of a continuous differential equation (the 
differential equation for t is implicitly assumed to be unity) and a simple discrete 
difference equation. The differential equation suffices to model the voltage across 
the junction when its magnitude is less than the threshold tunneling voltage, VT.  
However, when the voltage across the junction exceeds VT, it is energetically 
favorable for an electron to tunnel to the other side of the metal-molecule-metal 
junction.  This tunneling behavior is modeled by the discrete difference equation, 
and is assumed to happen immediately when vC > VT.  This is clearly an 
approximation, since each tunneling event is stochastic in nature (the events will be 
distributed near VT = e/2C) [2], but for large resistances, R, this turns out to be a 
good approximation [3]. 
 Although the previous interdependent set of equations most directly 
represents the isolated SETJ circuit with its natural variables, it is convenient to 
use algebraically simplified equations to isolate the dynamical activity and 
adjustable variables.  Again borrowing notation and equations from Yang et al., the 
previous equations can be rewritten as: 
 

 where  [1]  
   
 This is similar in nomenclature to the dimensionless forms used for higher 
dimensional arrays (remember the isolated SETJ circuit is still zero-dimensional, as 
far as arrays are concerned), however each neighbor that an SETJ cell is coupled to 
brings along a new coupling capacitor with an accompanying voltage across it that 
will change the dynamics of the original system.  For simplicity, a nearest neighbor 
approximation has been made, so that only the nearest SETJ neighbors, and the 
coupling capacitors between them, instantaneously influence a given SETJ cell.  
This is reminiscent of a similar approximation used in solid-state physics for 
oscillators in a lattice coupled to nearest neighbors with springs.  Because cells at 
the edge of the lattice have a different number of nearest neighbors, these cells will 
have different dynamical equations describing their behavior.  Again returning to 
the solid-state analogy, these edge cells can be thought of as lattice defects, and 
introduce reflection and other ‘non-ideal’ behavior into the system of coupled 
oscillators.  In short, circular boundary conditions are not used, but rather the 
boundary conditions are stated and implemented explicitly. 
 For the one-dimensional lattice, I have used a set of equations similar to 
Yang et al.’s: 
 



[1], 
 
where theta again represents the tunneling voltage across the tunneling junctions 
in the lattice.  Some new variables introduced are s, which is a normalized time, k, 
which represents the ratio of the coupling resistance and load resistance (i.e. 

! 

k =
Rcoupling

R
), 

! 

", which represents the ratio of the coupling capacitance to the 

tunneling junction capacitance (i.e. 

! 

" =
C junction

Ccoupling

), and 

! 

" , which represent the voltages 

across the N - 1 capacitors in a 1xN lattice. 
 For a two-dimensional lattice with four nearest neighbors, two more 
capacitors and two more SETJ cells with associated voltages influence each inner 
cell of the array.  The dynamical equations are thus more complicated, and the 
boundary conditions are more numerous.  The impulsive differential equations 
describing the behavior of a four-coupled inner cell of a two-dimensional MxN SETJ 
array, located at ij are: 



     [1], 
 
where 

! 

xij  now takes the place of theta as the voltage across the junction. 

! 

pij  
represents the voltage across the coupling capacitor between 

! 

xi"1, j  and 

! 

xi, j . 

! 

qi, j  
represents the voltage across the coupling capacitor between 

! 

xi, j"1 and 

! 

xi, j .  This is 
somewhat of a strange notation, however, since there are no 

! 

p
1, j  or 

! 

qi,1 capacitor 
voltages in the array (although, for programming purposes and consistency, they 
can be considered present but always zero).  Notice also, that the applied bias 
voltage term 

! 

a =
V
b

V
T

, has been replaced with the new notation, 

! 

uij , to emphasize that 

this voltage term can have a different value at each cell. 

! 

uij  is potentially an 
important term for inputting information to be processed into the system.  The 
boundary conditions for the two-dimensional array are too numerous to list here, so 
I refer the interested reader to a theoretical overview by Yang et al. [1], or an 
example of implementation in my TPL_CNN.py code, which includes many 
subclasses of SETJ types with appropriate boundary conditions. 
 The dynamical system above is a rather general description of a capacitively 
coupled MxN SETJ array.  By varying parameters and array types, systems can be 
designed to exhibit a wide range of behavior.  As one example of the generality of 
this setup, consider that the simpler non-driven SETJ array described by Kikombo 
et al. [3] can be realized by setting b = 0 (i.e., turning the pump off creates an array 
of coupled relaxation oscillators).   
 
 
Methods 

 
Initial efforts to simulate an SETJ circuit led me to develop 

Isolated_TimeSeries.py, which ended up becoming my tool for plotting time series, 
phase portraits, and limit cycles.  For bifurcation diagrams and Poincare maps, I 
created a OneDimMap class with appropriate subclasses and modules for specific 
applications.  These programs use an early set of Runge-Kutta (RK4) integrators 
that I developed that can store trajectory information and tunneling events, or can 



store minimal information to run through transient time steps.  Since time is an 
explicit variable in the SETJ differential equations, time must be updated explicitly 
in the intermediate steps of the RK4 integrator (but, although explicit time 
evolution in RK4 is theoretically appropriate, an accidental experiment with the 
time evolution in RK4 revealed that its omission typically led to negligible 
discrepancies in trajectories since the time dependence varies so slowly for typical 
parameter settings).  An n-dimensional RK4 integrator eventually supplanted the 
one-dimensional RK4 for the first several programs developed for this project.  

TPL_CNN.py and CNN_lattice_simulator.py were developed as a universal 
tool for SETJ array design and manipulation.  While good headway has been made 
towards this goal, there are many ways that I hope to enhance these programs now 
that the infrastructure is in place.  TPL_CNN.py allows for the creation and 
manipulation of any MxN SETJ array.  One of the main features of this program is 
the structure and hierarchy of SETJ objects.  When an SETJ array is created, each 
object in the array inherits the characteristics of a generic SETJ class.  However, 
each object is further specialized depending on its connectivity in the array.  There 
are currently sixteen subclasses of the SETJ class, to account for all of the possible 
configurations and boundary conditions of an MxN SETJ array.  The program 
accommodates zero-dimensional arrays (isolated SETJ circuits), one-dimensional 
arrays, and two-dimensional arrays.  An easy way to create these arrays is to make 
an instance of the SETJarray class.  As shown below, MyArray =  
SETJarray(M,N,parameters) automatically creates an MxN array with the correct 
boundary conditions that can then be displayed with the names of each SETJ type 
in the array.  

 
In [16]: MyArray.array 
Out[16]:  
array([[SETJ top left corner cell, SETJ top row cell, SETJ top right corner cell], 
       [SETJ leftmost column cell, SETJ inner cell, SETJ rightmost column cell], 
       [SETJ leftmost column cell, SETJ inner cell, SETJ rightmost column cell], 
       [SETJ bottom left corner cell, SETJ bottom row cell,  
         SETJ bottom right corner cell]], dtype=object) 

 
Additionally, MyArray has many useful attributes and methods for SETJ array 
manipulation and analysis. 
 

In [17]: MyArray. 
MyArray.__class__     MyArray.gamma        MyArray.k3p          MyArray.q_current 
MyArray.__doc__       MyArray.k              MyArray.k3q          MyArray.randomIC 
MyArray.__init__        MyArray.k1p          MyArray.k3u          MyArray.shape 
MyArray.__module__  MyArray.k1q          MyArray.k3x          MyArray.t 
MyArray.array             MyArray.k1u          MyArray.k4p          MyArray.tau_i 
MyArray.b                   MyArray.k1x          MyArray.k4q          MyArray.u_current 
MyArray.binary           MyArray.k2p          MyArray.k4u          MyArray.x_current 
MyArray.dt                   MyArray.k2q          MyArray.k4x          MyArray.y_current 
MyArray.epsilon          MyArray.k2u          MyArray.new_param     
MyArray.evolvearray    MyArray.k2x          MyArray.p_current    

 



In fact, most of the SETJ operations have been transferred to SETJarray.  However, 
if one chooses to play with SETJ cells without the SETJarray class, there are still 
built in methods to do so. 
 

n [18]: Alfred = MyArray.array[2][1] 
 
In [19]: Alfred 
Out[19]: SETJ inner cell 
 
In [20]: Alfred*(2,3) 
Out[20]:  
array([[SETJ inner cell, SETJ inner cell, SETJ inner cell], 
       [SETJ inner cell, SETJ inner cell, SETJ inner cell]], dtype=object)  

 

CNN_lattice_simulater.py works with TPL_CNN.py to create, manipulate 
and analyze SETJ arrays.  This interactive program runs the user through options 
for creating their array and setting parameters, and eventually displays the 
evolution of the dynamical system using the output variable of the user’s choice. 
The SETJarray.evolvearray RK4 method in TPL_CNN.py performs the integration 
of the impulsive differential equations over the spatially extended array. 
 
 
Results 

 
1. An Isolated SETJ 
 
Before attacking the complexity of large SETJ arrays, I began my study of 

SETJ dynamics by analyzing the isolated SETJ circuit.  However, even a driven 
isolated SETJ circuit can display interesting dynamical behavior, as it is 
characterized by a second order nonlinear differential equation with impulsive 
behavior.  Remember that the equations describing the isolated SETJ are: 

 

 where  [1].  
 
First, let us consider the behavior of the system while 

! 

"# < $ < # , where the 
voltage across the junction is less than the tunneling voltage, and no tunneling 
events occur.  In this range of theta, the equations for the system can be rewritten 
as: 

 



! 

˙ 
t =1

˙ 
" = #

$

%
" + $(a # bcos t)

 

 
Obviously there are no fixed points for time, but we can find any fixed points for the 
junction voltage by setting 

! 

« 
" = #

$

%
"*

+ $(a # bcos t) = 0, from which we find 

! 

"* = # (a $ bcos t) for 

! 

| a + b |<1.  Therefore, if 

! 

| a + b |<1, then the system will reach a 
steady-state where it oscillates about 

! 

"a .  This should come as no surprise: it 
implies that if the applied bias and pump voltage amplitude do not combine to 
exceed the voltage required for tunneling, then the voltage across the capacitive 
junction will build up to the bias voltage, and oscillate about that point in unison 
with the pump.  We can also find that in this limiting case, the eigenvalues, 

! 

" = 0,#
$

%
 correspond to the non-isolated temporal solutions of the steady state and 

the expected decay rate for an RC circuit.  Figure 2 shows the time series and phase 
evolution of such a system with 

! 

a = 0.6, 

! 

b = 0.2 , and 

! 

" =1/3. 
 

 
Figure 2(a) 

 
 
 
 

 



 
Figure 2(b)      Figure 2(c) 

 
Consider next, the behavior of this circuit when 

! 

a >1, but the pump voltage is 
set to zero so that b = 0.  As shown in Figure 3, the system then behaves as a 
relaxation oscillator.  When comparing the two panels in Figure 3, which are plots 
of the time series for two different initial voltages across the tunneling junction, it is 
evident that both trajectories have the same waveform.  The waveforms are merely 
shifted along the time axis according to their initial condition, which is seen to be 
the y-intercept for each plot.  We therefore deduce that there is no transient 
behavior for the isolated tunneling junction when b = 0. 

 

 
 

Figure 3 
 

When the pump is turned on such that 

! 

a =1.77, 

! 

b = 2.0 , and 

! 

" =1/3, as shown in 
Figure 4(a), any initial condition seems to snap to one of two possible waveforms 
after a short transient period.  This entrainment to a super-harmonic of the pump is 
even more evident in panel (b) of Figure 4, where the steady-state trajectories for 

! 

"
0
 

= 0.3 and 

! 

"
0
 = 0.8 are shown.  The corresponding phase portrait shown in panel (c) of 

Figure 4 shows the two cycles converging to a single attractor.  Once we get rid of 



transient behavior, we can see in panel (d) of Figure 4 that the two waveforms do 
indeed converge to the same limit cycle.  However, what is not apparent from the 
figure is that these two waveforms are actually 

! 

2"  out of phase with each other 
(using the pump phase as a common reference) so that the two trajectories are 
actually chasing each other around the limit cycle throughout their 

! 

4"  period. 
 

 
Figure 4(a) 

 
 

Figure 4(b)     Figure 4(c) 
 



 
Figure 4(d) 

 
 Before we get too complacent about the idea of an isolated SETJ circuit 
producing bistable orbits, we should notice that this behavior is unique to the 
parameter space near 

! 

a =1.77.  While keeping all other parameters the same, it 
seems that we can tune 

! 

a  to produce a window of five stable states (at

! 

a =1.95, as 
shown in Figure 5), or even orbits with arbitrarily long periods (see Figure 6 for an 
example of a parameter setting, 

! 

a =1.49, that has fourteen possible steady-state 
orbits, each with a period of 

! 

28" ).   
 

      Figure 5(a)         Figure 5(b)    
 
 
 
 
 
 
 
 
 



 
   Figure 6(a)         Figure 6(b) 
 
To observe the underlying pattern of orbit periodicity, I have plotted the bifurcation 
diagram in Figure 7 as a function of the control parameter, 

! 

a .  For each value of 

! 

a  
from 

! 

"0.5 < a < 2.5 , a random initial junction voltage has been chosen, and a steady-
state snapshot of 

! 

"  has been taken thousands of times at a single phase of the 
pump cycle.  Therefore, this bifurcation diagram suggests that a given value of 

! 

a , 
which intercepts 

! 

N  diagonal striae, corresponds to a waveform of period 

! 

"2N#  (the 
period should in fact be 

! 

2N"  although the diagram is not quite sufficient evidence to 
prove this).  Since each tightly packed 

! 

a  value was plotted with a random 

! 

"
0
, we 

can also assume that the diagram has uncovered all of the attractors for this 

! 

a , 

! 

b, 
and 

! 

" .   

 
Figure 7 



For any 

! 

a , we can alternatively verify the number and stability of orbits by 
overlaying the Poincare return maps for periods of all integer multiples of the pump 
period, and observing its intersections with the diagonal.  These maps are shown in 
Figure 9 for the previous 

! 

a-values examined.  Although the Poincare maps display 
local instabilities where the slope of 

! 

P(") diverges, the steady-state orbits tend to be 
stable since the points of intersection usually all have local slope, or equivalently 
Floquet multipliers, less than one.  The Poincare maps can all be seen to flatten out 
as periods progress, indicating that most 

! 

"
0
 lead to the same waveform.  However, the 

plots of pump vs tunneling voltage (which would more naturally be mapped to a 
toroidal surface than the paper here) are perhaps the clearest way to see that all 
orbits converge to the same limit cycle with only an offset in phase by multiples of 

! 

2" . 

 
    

    Figure 9(a)      Figure 9(b) 

 
Figure 9(c) 



 2. Two-Coupled SETJs 
 
 Now that we know what to expect from the dynamics of an isolated SETJ, let 
us consider how the dynamics are enriched when an SETJ is coupled to another 
through a capacitor and a small resistance.  Throughout my simulations, the most 
important requirement for strong interaction seemed to be a low 

! 

k =
Rcoupling

R
, as one 

might expect from the governing equations.  As shown in Figure 10, a tunneling 
event causes the most drastic interaction between SETJs since a small 
discontinuity is induced in the non-tunneling junction.  However, mutual 
interaction continually influences each SETJs behavior.  Playing with a three-
dimensional plot, which relates voltages in the pump and the first and second SETJ, 
helps one to make sense of the tangle of voltages.  Panels (d) and (e) show how this 
single plot contains the information from both (b) and (c).   
 
 

 
Figure 10(a) 



 
Figure 10(b)     Figure 10(c) 

 

 
  Figure 10(d)      Figure 10(e) 
 
 
 
 
As shown in Figures 11 and 12, two SETJs biased at different voltages can also find 
a compromise frequency to produce periodic behavior.  This entrainment can be 
achieved by giving the SETJs bias voltages that are opposite in sign but equal in 
magnitude as shown in Figure 11 (a)-(c).  However, unified behavior can also be 
achieved when bias voltages for each SETJ are similar, as shown in Figure 12 (a)-
(c), where the bias voltages are 

! 

a
1

=1.77 and 

! 

a
2

=1.6 . 
 



 
  Figure 11(a)     Figure 11(b) 
 

 
Figure 11(c) 

 
 

 
 
          Figure 12(a)      Figure 12(b) 



 
 
 
 
 
 
 
 
 
 

Figure 12(c) 
  

3. SETJ Arrays 
 
 The behavior of large arrays of SETJs can be appreciated qualitatively 
through the colorful output simulations generated by CNN_lattice_simulator.py.  
This program can directly output voltages across tunneling junctions, or it can 
output tunneling phase logic states as described in [1].  Tunneling phase logic states 
indicate the pump phase at which the last tunneling event occurred, and can be a 
continuous or binary output function.  The first two outputs are displayed as 
colorized grey-scale while the third necessarily only utilizes two colors.   
 The sequence of events in Figure 13 shows that the checkerboard bias voltage 
setting can be used to see how tunneling events can cascade through the array and 
even be reflected by the boundary cells.  The output setting here is the voltage 
across the tunneling junction. 

 

   
Figure 13(a)  Figure 13(b)  Figure 13(c) 

   
Figure 13(d)  Figure 13(e)  Figure 13(f) 



Other settings can be used to show how SETJs might process information given as 
bias voltage inputs. As shown in Figure 14, my simulations confirm that SETJ 
cellular nonlinear networks (CNNs) could be used for edge detection, as first shown 
by Yang et al. [1].  
 

             
  (a)        (b)          (c)    (d) 

Figure 14  
Panel (a) of Figure 14 shows the input voltage for the array.  Panels (b),(c), and (d) show the 
continuous tunneling phase logic (TPL) output for the array at the normalized times, 

! 

"  = 10, 25, 
and 100 respectively. 
 
I have also created an option to encode images as grey-scale bias voltage 
distributions in SETJ arrays.  I have found that one function of SETJ arrays is to 
reduce an image to two colors with an adjustable threshold grey-scale value.  To 
obtain a polarized image, I have found that high k-values are desirable.  Figure 15 
shows that when the Poincare image is processed with low k values, the increased 
interaction between cells leads to more active or indecisive domain regions than if 
the image had been processed with a higher k-value.  High b-values also seem to be 
desirable, as they tend to wash-away some of the straggling pixels in foreign 
domains.  To evaluate the array’s success at this task, these figures are compared 
with the same image, processed by Gimp using its Threshold tool. 
 

      
 Figure 15(a)         Figure 15(b) 

Figure 15 (a), (b) 
 
Panel (a) shows the 
original image of 
Poincare.  Panel (b) 
shows the lower 
resolution image 
used as bias voltage 
input for the 
simulations. 



   
Figure 15(c)   Figure 15(d) 

  
Figure 15(e)   Figure 15(f) 

 
       Figure 15(g) 

Figure 15 (c) – (g) 
Panel (c) shows the binary 
TPL output for the array at 
b = 2 and k = 10. 
 
Panel (d) shows the Gimp 
output of the input image 
with a Threshold value of 
136. 
 
 
 
 
 
 
 
 
 
 
Panel (e) shows the binary 
TPL output for the array at 
b = 3 and k = 10. 
 
Panel (f) shows the Gimp 
output of the input image 
with a Threshold value of 
130. 
 
 
 
 
 
 
 
 
 
Panel (g) shows the spotty 
binary TPL output for the 
array at b = 2 and k = 1. 



SETJ arrays can also generate complex patterns that one might expect from 
cellular automata.  Figure 16 shows some examples of patterns that have emerged 
from simple geometric bias voltage inputs.   
 
 
 
 

     
          (a)   (b)        (c)   (d) 

Figure 16 
Panel (a) shows the input voltage for the array (same as Figure 14(a)).  Panels (b) through (d) 
show the continuous TPL output evolution for 

! 

"  = 1000, 2000, 3486 respectively. 
 
 
 
 
 
 

     
Figure 17 

Panel (a) shows the input voltage for the array.  Panels (b) through (d) show the continuous TPL 
output evolution for 

! 

"  = 50, 100, and 257 respectively.  
 
 
 
 
 
 



Figure 17 closes this section with some interesting behavior observed using the 
checkerboard bias voltage distribution and a continuous TPL output function. 
 

       
        (a)   (b)   (c)     (d) 

     
(e)      (f)        (g) 

Figure 17 
Panels (a) through (g) show the continuous TPL output function at the normalized times of 

! 

"  = 
1, 25, 50, 100, 1000, 2000, and 3120.  This simulation was run with 

! 

b = 2 , 

! 

" = 0.1, 

! 

" = 0.1, and 

! 

k = 0.1. 
 
Conclusion 
 
 Single electron tunneling junction circuits provide an excellent setting to 
explore nonlinear dynamics.  While an isolated SETJ circuit displays its own 
interesting dynamics, coupled SETJs are spatially extended nonlinear systems that 
can generate complex behavior and can potentially process information in a useful 
way. A deep understanding of the nonlinear interaction of these SETJ arrays could 
allow us to create new electronic devices that are not only smaller, but also smarter 
than current technology. Although the examples given here are a small subset of 
the possible behaviors exhibited by SETJ arrays, I hope to have conveyed some 
interesting possibilities.  

The core programs I have written for this project should provide a good 
foundation for future exploration of SETJ arrays.  TPL_CNN.py provides a general 
infrastructure for creating and manipulating arbitrarily large MxN SETJ arrays.  
Suggested improvements for this program include faster algorithms, a more 
realistic SETJ model that includes noise, temperature, and other non-ideal effects, 
and arbitrarily connected arrays that could exhibit small-world connectivity, higher 
dimensionality, or modularized functionality. 
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