
Michael Riedlin
Department of Physics
mvriedlin@ucdavis.edu
Michael Van Veen
Department of Computer Science
michael@mvanveen.net

Wealth of Automatons

 Economics, the study of the management of goods, has been a topic of interest
to man throughout time. In general, the economist is concerned with the most
efficient distribution of resources. Adam Smith proposed in his Wealth of
Nations, that the free market provides an “invisible hand” that drives a market
towards its equilibrium and most efficient state. In this project we sought to test
this notion with a multi-agent model, where a number of agents are given some
initial conditions and then set loose upon an unsuspecting free market.

mailto:mvriedlin@ucdavis.edu
mailto:michael@mvanveen.net

Introduction

 The housing bubble bursts, creditors tank, and the global economy slumps. If
the base assumption of economics is that individual entities universally act in their
own self interest, one must wonder how something could go so catastrophically
wrong. Our money is not backed by anything real, it's only worth what society
thinks it's worth. That makes nonsense at a surface glance.

 The above, while motivating interests and explainable, are regrettably outside
the scope of this project. Given the scarce resources allocated for the project we
sought the behavior of a simple two-good-market. This proved to be more
difficult than we originally thought. The two good market looks at a very basic
problem. People have guns and butter, but no one is satisfied with the guns and
butter that they have. Some people want more of something, some people want
less.

Background

 The most important idea we need introduce is that of a production possibility
frontier. A production possibility frontier is the set of all possible things an
entities can produce. The rates in the simulation represent this.

Dynamical System

 For our dynamical system, we chose to model a two good market. We set
about this by first defining what an agent would look like and how it should
behave. An agent knows seven things. It knows how much of each resource it
has, how rapidly that resource is replenished or depleted and it knows how much
of that resource it needs to survive. In addition to those we found it useful to
determine whether or not the agent knew if was dead.

 Agent behavior is admittedly very simple. The agents we designed for this
project have no conception of “future”, they only know how to be satisfied at the
present. This lack of foresight also appear in an agent's choice to buy or sell
something. Our agents will always sell their surplus over the threshold until it's
gone or there is no buyer. Trade rates are decided by the individual agents based
on their individual production possibility frontiers discussed above.

 We then have a market. What a market does is generate X agents with

characteristics taken from a Gaussian. The market handles the trades by
comparing the trade values between the agents and allowing the ones that that
satisfy each other to trade. The order in which that is handled is mostly random.

Methods

 We ran our simulation over and over, looked at the graphs and tried to deduce
what types of initial conditions lead to what trends. The thing that's been looked
at most extensively is the average value of agents as time goes on. This was
originally implemented as a simple sanity check but it was observed to exhibit
some interesting behavior and that the average value could be seen as a measure
of global wealth for the system.

Results

 Initially, our simulation had the agent rates setup so as to perform
multiplicative updates. This setup is gross and wrong for real world simulations
for a couple of reasons. The first reason is that it means for rates less than zero,
the agent values will be negative every other iteration. Another reason is that it's
just too fast. For rates greater than one, you quickly reach a point where values
jump by orders of magnitude each time step. It is interesting to note however that
in this scenario, for rates between zero and one there is what appears to be an
exponential decay until some critical point in the rate value where it would switch
over to some flavor of exponential growth.

 So, the rates are set to be additive instead. This didn't completely work out
either but it did make more sense. For nonzero rates we observed exponential
trends but they seemed more reasonable. Also, a negative rate meant a decay, a
positive rate always meant a growth and zero rate meant nothing changed. There
was a recurrent edge case that we could not appropriately address and that was a
negative rate creating a negative sloping line for average values.

 Now for something more interesting. First, we implemented a workaround to
the ZeroDivisionError that had been barring high iterates by saying that agents
would always at minimum have one resource of each type. Then we thought
about threshold. As it was implemented, it didn't really mean anything. It was
this arbitrary static amount that agents would surpass and not care about. Also,
we changed from trading based on quantity, to trading based on production. What
that means is we started zeroing the quantities at each iteration. Each agent now
has its production rate minus its threshold to trade and meet its quota (still needs

to meet the threshold to survive).

To the left what you see
is the latest version of the
agents. Note the small
oscillations in values that
occur. Ultimately, rates
turn out to be the
dominant behavior in
many types of settings.
Below, I've placed two
more graphs off the final
version of agent.py. The
1000 iterate graph was
initial a test of a
workaround, but it
produced this misleading
graph. A zoom showed it
to be just rapidly
oscillating. The zoomed

picture is another run on the same settings (50 agents, thresholds of 70, rates of
80, standard deviations 10). We ask that the reader remember that all agents are
randomly generated, so there is always some variance in results, even with the
same initial settings.

This is the revision 20 agent on with rates drawn from
around 80 and thresholds drawn from around 10

Test run on comparable rates and
thresholds

The same driver as the one at the left
on a lower iteration run.

 Lastly, I'd like to show two graphs that came off the drivers called
coupdegrace.py and coupdegrace2.py. It turns out, that the graph of heavily
oscillating behavior and the graph with the rise are extreme cases and that a range
exists (thresholds ~ 15-20 tested)wherein you see a mix of both behaviors.

The coupdegrace2 graph is the most interesting behavior our model has yielded
thus far.

Conclusion

 Our feelings based on these results and discussion of our simulator, is that this
is a good first stab at providing a model. Playing around with agent.py and
varying the driver parameters led us to some interesting results and perhaps there
are trends we haven't discovered yet. However, agent.py comes off too simple
and in some cases wrong. For one, a real agent would seek to maximize its value
or profits where as ours will only subsist and throw away it's excess. Also, it is
unclear to us that the agents are dying properly. There is very convincing
evidence that they are, but not all metrics are consistent.

 A few avenues of exploration are immediately obvious to us. An expanded
analysis tool and more thorough exploration of initial conditions would likely
provide more information for the system. Introducing buyer preference into
market.py has also been considered. As it is now, agents trade essentially at
random but it might be more accurate to reality to say the top 20% go first.
Monetizing the system would allow us to make more abstract decisions about
trading and would allow us to remove the two-good restriction. We could also
potentially modify the agents to have varied behaviors and a sense of history or
success, like a genetic algorithm.

graph from coupdegrace.py Graph off coupdegrace2.py

