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In this paper I will attempt to create a speaker feedback loop with multiple speakers, 
different gains in each speaker, and even demonstrate the Doppler effect with moving 
speakers.  The applications can range from data storage, noise generation, and creating 
unique audio effects.  A mathematical framework will be given that will relate this system 
to an analogous system of ring buffers or circular buffers that are used for data storage 
in computer systems.  Results showing the various sound effects that can be achieved 
using this simple setup will be shown. 



Introduction/Background: 
 
Speaker feedback is a commonly seen phenomenon in daily life, a speaker at a 
presentation accidentally makes a loud screech when they walk in front of the speakers 
with their microphone, a person hears a small echo when talking on a speaker phone, or a 
person calling a radio station leaves a loud screech.  All of these things occur when the 
speaker outputs its signal to a microphone that retransmits it back to the speaker, creating 
a loop.  I originally investigated this system as an intellectual curiosity but in my research 
I have found that other scientist and engineers had already discovered it and have been 
using it for quite some time. 
 
The system exhibits several interesting behaviors that are worthwhile studying, first it is 
non-linear.  In figure 1 we see a basic speaker feedback loop.  If the speaker is far enough 
away, and the gain from the speaker isn't large enough, the sound will be repeated many 
times but will fade out after a number of cycles.  This can be thought of as an echoing 
behavior, a repeating signal but continually getting smaller and eventually going away.  
However if the source is to close to the microphone it will continue to repeat itself getting 
louder and louder.  This is the same process that creates a screech from a speaker at a 
conference. 
 

 
Figure 1 

A microphone that is connected to a speaker that is pointed towards it 
 



The system is also not limited to using linear amplification sources or one speaker.  There 
may be regions where the signal never dies out fully or explodes to infinity with multiple 
speakers.  The amplification can also be a more complicated function such as a logistic 
function or a piecewise function designed so that the signal never decays to zero or 
diverges off to infinity. 
 
An analogous data structure called a ring buffer, (also known as a circular buffer), has 
been used as a data storage and output architect as far back as the 1960's, possibly even 
before that.  As well as being used in current engineering and scientific equipment.  The 
data structure allows for an infinite (analog) or finite dimensional system (digital), see 
figure 2.  In this setup new information about the world is constantly replacing old 
information within the system, however a certain number of bits of information are still 
being stored.  Essentially for every degree of freedom you add to the system you create 
an extra bit of information that can be read, stored, recorded over or analyzed. 
 

 
Figure 2 

Circular buffer diagram showing how certain computer data structures use a similar 
concept of a repeating feedback loop 

 
When playing around with the system I was able to create a wide variety of sounds, many 
of which were purely noise.  However I was able to create several interesting rhythms, 
change pitches and produce some very odd signals.  These signals are just the beginning, 
a person feeling inclined enough could modify there own pitch several times over with 
multiple speakers and create there very own one man chorus. 
 
Dynamical system:  
 
In a real speaker and microphone setup you will need an infinite number of points to 
describe the sound at a given time in the future, making it an infinite dimensional system.  



This infinite dimensional property is from the fact that you need to completely describe 
the initial system to describe the system at any time t after but the inputted signal must be 
continuous since it is a real world system.  This can be discretized in simulation by 
discretizing time and creating a finite number of spaces in-between the speaker and the 
microphone.  This number can easily be in the thousands, so the dimensionality of the 
system is still much higher than we are used to dealing with in our daily lives.  This can 
be very intimidating at first but you can view the system as a bit shift for each time step 
that you take, see figure 3.  By doing this we create a simple mechanism to describe the 
system, equation 1 and 2. 

 

 
Figure 3 

A basic diagram for a bit shift, very similar to figure 2 
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In this description of the system ),( itg  is the state at a given time t and position i.  When 
i=0 you are at the microphone and i=N is the signal at the speaker.  The term )(xf  is the 
function that you choose to run between the microphone and the speaker.  The statements 
above literally read that the state at a given position is the state of its adjacent space (the 
one closer to the speaker) at one time step before.  And the state at the speaker is the state 
at the microphone at the previous time step passed through some function of our choosing. 
 
This works for one speaker but it should be modified for multiple speakers.  Equations 3, 
4 and 5 are a set of equations for multiple speakers in a row.   
 

)1,(),1( !=+ itgitg  Eq. 3 
)1,())0,((),1( ++=+ iii NtgtgfNtg  Eq. 4 

))0,((),1( tgfNtg ff =+  Eq. 5 
 



The term 
i
N  represents the ith speaker away from the microphone.  fN  is the speaker 

that is the furthest away from the system.  Essentially, the description above is still valid 
except at certain points where new speakers are located at.  The sound will be from the 
bit closest to the outside of the system plus a signal from the speaker at that point. 
 
Another point worth mentioning is that these equations are for a discrete system but as 
we set the limit of the size of the steps to zero we see that we will create a continuous 
system. 
 
Methods: 
 
Although the equations for the system describe the state at any given state at a given time 
t later it can take a large amount of time to describe every single point between the 
speakers.  If there are 4,000 spaces (N) between the furthest speaker and the microphone 
and I want to run the simulation for 20 seconds in real time with a low sample rate of 
6000 Hz I'm left with keep track of 480 million points.  But it is possible to view the 
system only from the microphones point of view.  Although this greatly reduces the size 
of the system we will still keep all the dimensionality of the system.  The system can be 
described by ~1/N of the size as listed above.  To do this I propose a new function 
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We call our initial function ( )t! , essentially our seed for the system.  The sound located 
at the microphone at a given time later can be described as: 
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In this 

i
!  is the time delay of the sound of the ith speaker to the microphone.  As long as 

we record the function ( )tg  we can keep track of all system for any previous time and 
can know the signal at any given future time provided we iterate the system enough times. 
 
In a computer the system has very large maximum numbers in it and certain system 
immediately go off to infinity.  To counteract this problem I implemented a maximum 
signal output.  (This is not actually used in the results in the results section).  This 
maximum signal code replaces the g(t) at a given time by a ±1 if the abs(g(t)) is greater 
than 1.  This corresponds to a physical limitation of the microphone to record sounds 
greater than this value.  So g(t) is the sound recorded at a given time by the microphone 
into the speaker. 
 
This method does leave something to desire however, even if the microphone is unable to 
detect signals of that size it doesn't change the fact that the actual signal at a given point 



could be greater than that which we record.  Although not implemented, this could be 
rectified by including another function that displays the actual current value of the system 
as compared to what the microphone records. 
 
Another advancement I have made with the model is changing the position of the 
microphone as a function of time.  This can be done by implementing a code that as the 
system iterates after a certain number of iterations goes by 

i
!  is increased by a user 

control value. 
 
Results: 
 
One of the first functions that I ran through the system was a short ramped signal through 
a simple linear amplification using 3 different speakers with the same gain.  I placed the 
furthest speaker about 3 times as far away from the source.  This is shown in figure 4 and 
doesn't have a maximum value for the microphone.  In addition I ran a long ramp.  What 
is neat between the two is that the signal will never return back to zero for the long ramp.  
It looks like a growing version of the original wave for the shorter pulse.  I ran the signal 
for a long time and it would always go to zero at one point. 
 

 
Figure 4 

A ramped function, even as time progresses you are still able to see the original signal 
shape as it grows larger and larger 

 



 
Figure 5 

As time progresses the signal moves away from the x-axis and will continue to grow 



 
Another attempt was to see what happens with 3 functions with the logistic with r at 1.3.  
Now I've experimented with this with values converging with 0<r<1 and diverging at 
values r>1.3.  What I found particularly interesting was for a short pulse in the logistic 
function it appears that I've created noise, as seen in the graph as a function of time.  But 
when I plot time vs time +1 I find a very striking linear relationship with several values 
around zero.  I'm assuming those are from the fixed point at zero.  But when I use a 
ramped function I create a very interesting time vs time +1 graph and I have a hard time 
describing precisely what it is. 
 

 
Figure 6 

A 3 map logistic function, it rapidly goes to a region that never exceeds 1 or goes below 
zero.  This signal is originally from a constant 0.5 signal 

 



 
Figure 7 

Plotting the same logistic curve against the signal at t vs the signal at t+1 we notice a very 
linear behavior.  The past position depends heavily upon the previous position in a linear 
fashion.  There are some values between ~.5 and ~.9 on the Signal[t] that lie on the zero 

point, these most likely correspond to the fixed point at zero 
 



 
Figure 8 

This is the same logistic system above but this time with a ramped input signal.  I am 
unable to identify that pattern that it is making but it does appear to be somewhat chaotic 

to me.  More investigation would be needed to confirm if it is indeed chaotic. 
 
Another effect that I was able to create was the Doppler effect with a single speaker.  I 
took it and every fourth iteration I moved the speaker away from the microphone one 
spot.  As time goes on you can see the signal get longer and when you hear it you hear a 
very definite change in tone.  The amplification was linear and r was set to 1. 
 



 
Figure 9 

An example of the Doppler effect using my simulation.  Although zoomed in it is 
difficult to see the fact that the different sections correspond to different frequencies.  

This system used only one speaker. 
 
Finally I tried to see if I could make some odd noises using just a simple two speaker 
setup.  I set the gains to linear an played a simple sine wave through it.  I later 
implemented some code to confine most of the signal between +-1.  This allows a better 
conversion to a wave file.  There are several different frequencies heard and a changing 
rhythm can also be heard. 
 



 
Figure 10 

This is a signal that was produced with an initial signal of a sine wave that was than 
modified to be confined with +-1.  Even if it isn't confined you can hear a noise, but it is 

very noisy making it harder to hear the rhythm. 
 

Most of these finding are better heard than viewed on a diagram, for that reason I have 
included the Python file, so you can create your own, and several of the sounds that I 
have produced. 
 
Conclusion: 
 
In starting this project the goals were very abstract and not done for any particular 
application.  The whole experiment was started from an observation of two cell phones 
put on speakerphone and held next to each other and my personal fascination with audio.  
More of a thought experiment to see if I can could create a dynamic feedback system 
with a non-linear behavior.  But through my exploration of the system I've found that it 
has applications in memory management and can be used to create unique sounds. 
 
I believe I have come up with a simple model computer model to describe feedback loops 
within Python's framework.  This system is versatile and allows the user to add many 
more speakers than I did, as well as more microphones and different effects they can try 
with the speakers, (moving them, different amplifications, amplifications varying over 



time....)  In the end the tool I created can be used to allow the user to explore with there 
own creativity. 
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