

Simulated speaker feedback using Python
Jason Kaszpurenko

UC Davis Physics Department
June 9, 2009

jkaszpurenko@ucdavis.edu

In this paper I will attempt to create a speaker feedback loop with multiple speakers,
different gains in each speaker, and even demonstrate the Doppler effect with moving
speakers. The applications can range from data storage, noise generation, and creating
unique audio effects. A mathematical framework will be given that will relate this system
to an analogous system of ring buffers or circular buffers that are used for data storage
in computer systems. Results showing the various sound effects that can be achieved
using this simple setup will be shown.

Introduction/Background:

Speaker feedback is a commonly seen phenomenon in daily life, a speaker at a
presentation accidentally makes a loud screech when they walk in front of the speakers
with their microphone, a person hears a small echo when talking on a speaker phone, or a
person calling a radio station leaves a loud screech. All of these things occur when the
speaker outputs its signal to a microphone that retransmits it back to the speaker, creating
a loop. I originally investigated this system as an intellectual curiosity but in my research
I have found that other scientist and engineers had already discovered it and have been
using it for quite some time.

The system exhibits several interesting behaviors that are worthwhile studying, first it is
non-linear. In figure 1 we see a basic speaker feedback loop. If the speaker is far enough
away, and the gain from the speaker isn't large enough, the sound will be repeated many
times but will fade out after a number of cycles. This can be thought of as an echoing
behavior, a repeating signal but continually getting smaller and eventually going away.
However if the source is to close to the microphone it will continue to repeat itself getting
louder and louder. This is the same process that creates a screech from a speaker at a
conference.

Figure 1

A microphone that is connected to a speaker that is pointed towards it

The system is also not limited to using linear amplification sources or one speaker. There
may be regions where the signal never dies out fully or explodes to infinity with multiple
speakers. The amplification can also be a more complicated function such as a logistic
function or a piecewise function designed so that the signal never decays to zero or
diverges off to infinity.

An analogous data structure called a ring buffer, (also known as a circular buffer), has
been used as a data storage and output architect as far back as the 1960's, possibly even
before that. As well as being used in current engineering and scientific equipment. The
data structure allows for an infinite (analog) or finite dimensional system (digital), see
figure 2. In this setup new information about the world is constantly replacing old
information within the system, however a certain number of bits of information are still
being stored. Essentially for every degree of freedom you add to the system you create
an extra bit of information that can be read, stored, recorded over or analyzed.

Figure 2

Circular buffer diagram showing how certain computer data structures use a similar
concept of a repeating feedback loop

When playing around with the system I was able to create a wide variety of sounds, many
of which were purely noise. However I was able to create several interesting rhythms,
change pitches and produce some very odd signals. These signals are just the beginning,
a person feeling inclined enough could modify there own pitch several times over with
multiple speakers and create there very own one man chorus.

Dynamical system:

In a real speaker and microphone setup you will need an infinite number of points to
describe the sound at a given time in the future, making it an infinite dimensional system.

This infinite dimensional property is from the fact that you need to completely describe
the initial system to describe the system at any time t after but the inputted signal must be
continuous since it is a real world system. This can be discretized in simulation by
discretizing time and creating a finite number of spaces in-between the speaker and the
microphone. This number can easily be in the thousands, so the dimensionality of the
system is still much higher than we are used to dealing with in our daily lives. This can
be very intimidating at first but you can view the system as a bit shift for each time step
that you take, see figure 3. By doing this we create a simple mechanism to describe the
system, equation 1 and 2.

Figure 3

A basic diagram for a bit shift, very similar to figure 2

)1,(),1(!=+ itgitg Eq. 1
))0,((),1(tgfNtg =+ Eq. 2

In this description of the system),(itg is the state at a given time t and position i. When
i=0 you are at the microphone and i=N is the signal at the speaker. The term)(xf is the
function that you choose to run between the microphone and the speaker. The statements
above literally read that the state at a given position is the state of its adjacent space (the
one closer to the speaker) at one time step before. And the state at the speaker is the state
at the microphone at the previous time step passed through some function of our choosing.

This works for one speaker but it should be modified for multiple speakers. Equations 3,
4 and 5 are a set of equations for multiple speakers in a row.

)1,(),1(!=+ itgitg Eq. 3
)1,())0,((),1(++=+ iii NtgtgfNtg Eq. 4

))0,((),1(tgfNtg ff =+ Eq. 5

The term
i
N represents the ith speaker away from the microphone. fN is the speaker

that is the furthest away from the system. Essentially, the description above is still valid
except at certain points where new speakers are located at. The sound will be from the
bit closest to the outside of the system plus a signal from the speaker at that point.

Another point worth mentioning is that these equations are for a discrete system but as
we set the limit of the size of the steps to zero we see that we will create a continuous
system.

Methods:

Although the equations for the system describe the state at any given state at a given time
t later it can take a large amount of time to describe every single point between the
speakers. If there are 4,000 spaces (N) between the furthest speaker and the microphone
and I want to run the simulation for 20 seconds in real time with a low sample rate of
6000 Hz I'm left with keep track of 480 million points. But it is possible to view the
system only from the microphones point of view. Although this greatly reduces the size
of the system we will still keep all the dimensionality of the system. The system can be
described by ~1/N of the size as listed above. To do this I propose a new function

),(zyh .

!
"
#

$

<
=

0

00
),(

zy

z
zyh Eq. 6

We call our initial function ()t! , essentially our seed for the system. The sound located
at the microphone at a given time later can be described as:

() ()! ""+=
i

iiii ttghfttg)),(()(##$ Eq. 7

In this

i
! is the time delay of the sound of the ith speaker to the microphone. As long as

we record the function ()tg we can keep track of all system for any previous time and
can know the signal at any given future time provided we iterate the system enough times.

In a computer the system has very large maximum numbers in it and certain system
immediately go off to infinity. To counteract this problem I implemented a maximum
signal output. (This is not actually used in the results in the results section). This
maximum signal code replaces the g(t) at a given time by a ±1 if the abs(g(t)) is greater
than 1. This corresponds to a physical limitation of the microphone to record sounds
greater than this value. So g(t) is the sound recorded at a given time by the microphone
into the speaker.

This method does leave something to desire however, even if the microphone is unable to
detect signals of that size it doesn't change the fact that the actual signal at a given point

could be greater than that which we record. Although not implemented, this could be
rectified by including another function that displays the actual current value of the system
as compared to what the microphone records.

Another advancement I have made with the model is changing the position of the
microphone as a function of time. This can be done by implementing a code that as the
system iterates after a certain number of iterations goes by

i
! is increased by a user

control value.

Results:

One of the first functions that I ran through the system was a short ramped signal through
a simple linear amplification using 3 different speakers with the same gain. I placed the
furthest speaker about 3 times as far away from the source. This is shown in figure 4 and
doesn't have a maximum value for the microphone. In addition I ran a long ramp. What
is neat between the two is that the signal will never return back to zero for the long ramp.
It looks like a growing version of the original wave for the shorter pulse. I ran the signal
for a long time and it would always go to zero at one point.

Figure 4

A ramped function, even as time progresses you are still able to see the original signal
shape as it grows larger and larger

Figure 5

As time progresses the signal moves away from the x-axis and will continue to grow

Another attempt was to see what happens with 3 functions with the logistic with r at 1.3.
Now I've experimented with this with values converging with 0<r<1 and diverging at
values r>1.3. What I found particularly interesting was for a short pulse in the logistic
function it appears that I've created noise, as seen in the graph as a function of time. But
when I plot time vs time +1 I find a very striking linear relationship with several values
around zero. I'm assuming those are from the fixed point at zero. But when I use a
ramped function I create a very interesting time vs time +1 graph and I have a hard time
describing precisely what it is.

Figure 6

A 3 map logistic function, it rapidly goes to a region that never exceeds 1 or goes below
zero. This signal is originally from a constant 0.5 signal

Figure 7

Plotting the same logistic curve against the signal at t vs the signal at t+1 we notice a very
linear behavior. The past position depends heavily upon the previous position in a linear
fashion. There are some values between ~.5 and ~.9 on the Signal[t] that lie on the zero

point, these most likely correspond to the fixed point at zero

Figure 8

This is the same logistic system above but this time with a ramped input signal. I am
unable to identify that pattern that it is making but it does appear to be somewhat chaotic

to me. More investigation would be needed to confirm if it is indeed chaotic.

Another effect that I was able to create was the Doppler effect with a single speaker. I
took it and every fourth iteration I moved the speaker away from the microphone one
spot. As time goes on you can see the signal get longer and when you hear it you hear a
very definite change in tone. The amplification was linear and r was set to 1.

Figure 9

An example of the Doppler effect using my simulation. Although zoomed in it is
difficult to see the fact that the different sections correspond to different frequencies.

This system used only one speaker.

Finally I tried to see if I could make some odd noises using just a simple two speaker
setup. I set the gains to linear an played a simple sine wave through it. I later
implemented some code to confine most of the signal between +-1. This allows a better
conversion to a wave file. There are several different frequencies heard and a changing
rhythm can also be heard.

Figure 10

This is a signal that was produced with an initial signal of a sine wave that was than
modified to be confined with +-1. Even if it isn't confined you can hear a noise, but it is

very noisy making it harder to hear the rhythm.

Most of these finding are better heard than viewed on a diagram, for that reason I have
included the Python file, so you can create your own, and several of the sounds that I
have produced.

Conclusion:

In starting this project the goals were very abstract and not done for any particular
application. The whole experiment was started from an observation of two cell phones
put on speakerphone and held next to each other and my personal fascination with audio.
More of a thought experiment to see if I can could create a dynamic feedback system
with a non-linear behavior. But through my exploration of the system I've found that it
has applications in memory management and can be used to create unique sounds.

I believe I have come up with a simple model computer model to describe feedback loops
within Python's framework. This system is versatile and allows the user to add many
more speakers than I did, as well as more microphones and different effects they can try
with the speakers, (moving them, different amplifications, amplifications varying over

time....) In the end the tool I created can be used to allow the user to explore with there
own creativity.

Bibliography:
Cite background materials and current related papers and books.

Images for figure 1:
http://www.acclaim-music.com 6/9/09
http://www.hometheaterhifi.com 6/9/09

Images for figure 2:
http://www.dspguide.com 6/9/09

Images for figure 3 were modified images from wikipedia:
http://en.wikipedia.org/wiki/Circular_buffer

Nonlinear Dynamics and Chaos: with applications to physics, biology, chemistry, and
engineering, S. H. Strogatz, Second Edition, Addison-Wesley, Reading, Massachusetts
(2001)

