1-D maps on a finite grid

Jason Barnett

Final project, PHYS 250
UC Davis, 06/04/09

Most of the following results are covered in:

"Simulating chaotic behavior with finite-state machines", Philippe M. Binder and Roderick V. Jensen, Phys. Rev. A 34, 4460 4463 (1986)

Why study discretized 1-D maps?

- Complex from simple:
- Simple 1-D maps have complex behavior on the real interval
- What if we simplify further to a finite grid?
- Complex? Chaotic?
- Computer simulation:
- Computers have finite precision
- Simulations 'look' correct, but are we missing something?

Discretized maps

- Finite-state machine:
- N states
- Cycle length at most N
- Turns out to scale more like $\mathrm{N}^{1 / 2}$

Setup

- Rounding down to a grid of ' N points':
- N is actually a continuous grid scaling factor
- Pseudo code for the discretized logistic map:

$$
X=\text { floor }(\operatorname{Nrx}(1-x)) / N
$$

Scaling factor N

Bifurcation diagrams

First period doubling

First period doubling

First period doubling

Bifurcation diagrams (N)

Transient/cycle lengths

- Both appear to scale like the power law N^{k}
- k depends on r
- $k \approx 1 / 2$ in chaotic regions
- We can interpret k in terms of entropy (see report for details):
- Result:
- Entropy of map := $\mathrm{H}_{\text {map }}$
- Entropy of IID random variable := $\mathrm{H}_{\text {IID }}$
- Then $k \approx H_{\text {map }} / H_{\text {IID }}$

Transient/cycle lengths

Transient/cycle lengths

In my report:

- Calculating k (power law) for various r
- More on entropy
- Comparison of Lyapunov exponents of continuous and discrete Logistic map
- The tent and cusp maps

Thanks!

