1-D maps on a finite grid

Jason Barnett Final project, PHYS 250 UC Davis, 06/04/09

Most of the following results are covered in:

"Simulating chaotic behavior with finite-state machines", Philippe M. Binder and Roderick V. Jensen, Phys. Rev. A 34, 4460 -4463 (1986)

Why study discretized 1-D maps?

- Complex from simple:
 - Simple 1-D maps have complex behavior on the real interval
 - What if we simplify further to a finite grid?
 - Complex? Chaotic?
- Computer simulation:
 - Computers have finite precision
 - Simulations 'look' correct, but are we missing something?

Discretized maps

- Finite-state machine:
 - N states
 - Cycle length at most N
 - Turns out to scale more like N^{1/2}

Setup

- Rounding down to a grid of 'N points':
 - N is actually a continuous grid scaling factor
 - Pseudo code for the discretized logistic map:

$$X = floor(Nrx(1-x))/N$$

First period doubling

First period doubling

First period doubling

Transient/cycle lengths

- Both appear to scale like the power law N^k
 - k depends on r
 - $k \approx \frac{1}{2}$ in chaotic regions
- We can interpret k in terms of entropy (see report for details):
 - Result:
 - Entropy of map := H_{map}
 - Entropy of IID random variable := H_{IID}
 - Then $k \approx H_{map} / H_{IID}$

Transient/cycle lengths

Transient/cycle lengths

In my report:

- Calculating k (power law) for various r
- More on entropy
- Comparison of Lyapunov exponents of continuous and discrete Logistic map
- The tent and cusp maps

Thanks!