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Abstract: A simple two patch logistic model with symmetric dispersal be-
tween patches is explored and compared with a single patch model. Numer-
ical simulations show that stable attractors cannot only be conserved when
a moderate amount of dispersal is added to the system, but dispersal can
also be a mechanism of organization in a two patch system. Furthermore,
the two patch system is extremely sensitive to initial conditions.
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Introduction

Most ecological environments are not spatially uniform. The simplest way
to account for a spatially heterogeneous environment is to divide a given
area into patches which may differ in resource quality. In the simplest case,
one can look at a two patch system. Because dispersal allows for gene flow,
more advantageous exploitation of the environment and determines the abil-
ity of invasive species to displace resident species, it is of much interest to
conservation biology and restoration biology; it is therefore essential that
dispersal be accounted for when modeling an ecological system. This can be
done in a many ways, each varying greatly in complexity. The simplest way
to include dispersal dynamics is to include a constant dispersal parameter
which represents the fraction of the population in each patch which leaves
after the growth event at each time step. When this parameter is larger
than zero, the patches are said to be coupled.

Background

Much is known about the dynamics of the one dimensional logistic map,
x(n + 1) = rx(n)[1 − x(n)]. For example, for r∈[3,1+

√
6] the map exhibits

a stable period-2 cycle; thereafter a series of period doublings occur as r
increases, with chaos setting in at just below r=3.572. Another notable
interval of the growth parameter is around r=1+

√
8, where a superstable

period-3 cycle occurs2.
If one models a species with non overlapping generations in a hetero-

geneous environment by considering a two patch system, each experiencing
logistic growth followed by symmetric dispersal event, many questions arise.
One can consider how including dispersal affects the previously mentioned
stable cycles, as well as what affect dispersal will have in a setting where a
single logistic patch experiences chaos.

Dynamical System

The dynamics of a two patch model with logistic growth in each patch can
be described by the following equations:
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x1(n + 1) = x̂1(n) + d[x̂2(n)− x̂1(n)]

x2(n + 1) = x̂2(n) + d[x̂1(n)− x̂2(n)]

Where the dispersal parameter, d∈[0,0.5] and

x̂1(n) = r1x1(n)[1− x1(n)]

x̂2(n) = r2x2(n)[1− x2(n)]

describe the dynamics before dispersal is accounted for.

Here, x1 and x2, which take values in [0,1], are the populations levels
of patch 1 and patch 2, respectively, and r1 >0 and r2 >0 are the logis-
tic growth rates for each patch. The behavior for different parameter sets
(r1,r2,d) is explored and compared to a one patch logistic system. Unless
noted otherwise, all results are for r1 = r2, and all initial conditions are
chosen randomly from a uniform [0,1] distribution.

Methods

A variety of numerical methods can be employed when investigating the
behavior of this system. Using the pylab module of matplotlib to create bi-
furcation diagrams is particularly useful for identifying parameter sets which
may lead to significant behavior. Using pylab to plot the time series for var-
ious parameter sets allows one to analyze the range of behavior of the two
patch system. Furthermore, Lyapunov characteristic exponents can be nu-
merically estimated in order to measure the degree of chaos in the system
for various parameter sets. Plotting the time series starting from a cluster
of different initial conditions demonstrates how sensitive the system is to
initial conditions.

Results:

Behavior

Bifurcation diagrams of r vs x1 +x2 and r vs x1−x2 for various fixed values
of d reveal that for larger values of d the dynamics of the total population
is analogous to that of a single logistic patch, and for intermediate values
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of d behavior unique to the two patch system may occur. A few notable
parameter sets discovered from bifurcation diagrams for a range of d values
are (3.7,3.7.0.1) (shown below) and (3.8,3.8.0.15). The dynamics of these
parameter sets are further investigated with other numerical methods.

Figure 1: There is an interval around r=3.7 where the total population has a period-2
cycle and the difference has a period-4 cycle. Similar behavior is seen in a smaller window,
starting at r=3.8, for d=0.15.

The attractors of the two patch system can be revealed by plotting the
time series x1(n) vs x2(n). By allowing d to vary, plotting the time series for
a fixed value of r elucidates the affect of the coupling parameter. Recall that
in the case of a single logistic patch with r=3.3 there is a stable period-2
cycle. Plotting the time series for various values of demonstrates that even
as the fraction of the population dispersing at each time step is increased
from zero, the period-2 cycle remains. The corresponding Lyapunov charac-
teristic exponents*0are all negative, indicating that both organization and
stability are maintained as d is increased to it’s maximum allowed value.
Similarly, if one plots the time series for r=3.83, the stable period-3 cycle
remains stable for large values of d:

0Lyapunov characteristic exponent tables are included in the supporting information
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r=3.83: Stability is maintained for large values of coupling.

This case is more interesting, however, as for some intermediate values or-
ganization is lost and then regained in the form of closed trajectories. The
Lyapunov characteristic exponents indicate that these closed trajectories are
chaotic attractors. This occurrence of multiple attractors is different from
the behavior seen in a single patch.

Another interesting behavior unique to the two patch system can be seen
by plotting the time series for values of r which lead to chaotic behavior in
the one patch system. For example, consider the previously mentioned pa-
rameter value r=3.7:
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For r=3.7, increasing d creates organization.

As expected, for d=0 the iterates are scattered about the unit square. No-
tice though, as d is increased slightly to 0.05, organization already starts to
occur and as it is increased further, iterates cluster around four values. The
Lyapunov characteristic exponents for d=0.1 and 0.11 are negative indicat-
ing that this is a stable solution. Further increasing d leads to solutions on
the line x1 = x2. This is very intriguing as increasing movement between
patches each exhibiting chaotic behavior leads to both organization and sta-
bility. Another such example occurs for r=3.9:
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For r=3.9, increasing d creates both organization and stability.

As in the case for r=3.7, increasing d leads to organization. The two patches
in the time series for d=0.09 and 0.1 are chaotic attractors, however, the
closed trajectories obtained for d=0.11 have negative Lyapunov exponents
and are thus stable attractors. The case of two stable quasiperiodic attrac-
tors is not possible in the one patch system.

Sensitivity to Initial Conditions

As previously mentioned, the initial conditions for all numerical simulations
are chosen at random from a uniform [0,1] distribution. Running these sim-
ulations multiple times for any given parameter set may lead to different
behavior, indicating a sensitivity to initial condition. For example, consider
the parameter set (3.7,3.7,0.1). The bifurcation diagram shown above in-
dicates that the total population has a period-2 cycle while the difference
in the populations has a period-4 cycle. Also, the time series plot shows
(x1, x2) accumulate around four points. However, if a different initial con-
dition is chosen, the total population is constant, while the difference in the
population has a period-2 cycle. In this case the time series plots shows
(x1, x2) accumulate around two points, rather than four (see supporting in-
formation). This can be visualized in a different manner by plotting n vs
x1, x2 and the total population:
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Time series for r=3.7, d=0.1 starting from 6 different random initial conditions

The above figure shows that for this parameter setting there are several
possible behavioral outcomes. There are two different out of phase solutions:
one in which each time series is of period-2 and the total population is
constant and another where each time series is of period-4 and the total
population has a period-2 cycle. In the former case, the two populations
bounce back and fourth between the same to values leading to a constant
total population. In the latter case, the two populations oscillate between
the same four values in such a way that the total population is of period
two. Even when initial conditions are clustered, both solutions are seen,
indicating that the basin of attraction for these two stable solutions do not
have a nice shape. If one considers the parameter set (3.8,3.8,0.15) solutions
starting from a cluster of initial conditions either exhibit one of the two out
of phase solutions previously described, or chaotic behavior (see supporting
information). The basin of attraction of these three outcomes is not apparent
revealing that this system is extremely sensitive to initial condition.

Conclusions

Despite the fact that this model is the simplest model that accounts for
spatial heterogeneity and dispersal, it exhibits behavior which is much more
complicated than a single patch model. Furthermore, the differences occur
when varying the coupling parameter only, as the growth rates for each patch
were assumed to be identical. This mathematically strengthens the assertion
that dispersal plays a key role in determining the long term dynamics of a
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population. Adding dispersal to a system in which each patch exhibits stable
oscillatory behavior does not necessarily add chaos or disorder, but can
preserve stable behavior. Interestingly, in a system where each individual
patch has chaotic behavior, increasing the dispersal parameter can add order
and stability.
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Supporting Information

Lyapunov Characteristic Exponents

r1=3.3 r2=3.3 X0=(0.651382,0.655136)
d minLCE maxLCE Contraction Difference

0.00 -0.618937 -0.618937 1.23787 1.55431e-015
0.05 -0.724298 -0.618937 -1.34323 0.0
0.09 -0.817388 -0.618937 -1.43633 4.52971e-014
0.10 -0.842081 -0.618937 -1.46102 1.08802e-014
0.11 -0.867399 -0.618937 -1.48634 1.53211e-014
0.15 -0.975612 -0.618937 -1.59455 9.76996e-015
0.25 -1.31208 -0.618937 -1.93102 1.68754e-014
0.40 -2.22838 -0.618937 -2.84731 1.64313e-014

r1=3.83 r2=3.83 X0=(0.293494,0.451508)
d minLCE maxLCE Contraction Difference

0.00 -0.36805 -0.36805 -0.7361 0.0
0.05 -0.221206 -0.128426 -0.349632 4.996e-016
0.09 -0.192739 0.00088242 -0.191857 4.16334e-016
0.10 -0.165714 0.000539196 -0.165174 2.77556e-017
0.11 -0.616512 -0.36805 -0.984562 7.43849e-015
0.15 -1.31946 -1.27764 -2.5971 3.9968e-015
0.25 -1.06578 -0.372635 -1.43842 8.88178e-015
0.40 -1.98207 -0.372635 -2.35471 1.95399e-014

r1=3.7 r2=3.7 X0=(0.629608,0.625359)
d minLCE maxLCE Contraction Difference

0.00 .357063 .356934 0.713997 3.33067e-016
0.05 0.0358699 0.14107 0.17694 2.77556e-016
0.09 .0838933 0.15496 0.238853 1.11022e-016
0.10 -0.0086781 -0.00823005 -0.0169082 1.17961e-016
0.11 -0.15356 -0.155202 -0.308763 1.9984e-015
0.15 0.0209622 0.349685 0.370647 1.11022e-016
0.25 -0.345175 0.347972 0.00279733 3.7817e-016
0.40 -1.25149 0.357947 -0.893544 7.77156e-016
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r1=3.9 r2=3.9 X0=(0.0292034,0.941708)
d minLCE maxLCE Contraction Difference

0.00 0.489512 0.497681 0.987193 1.11022e-016
0.05 0.379957 0.441035 0.820992 8.88178e-016
0.09 0.100473 0.174591 0.275064 1.11022e-016
0.10 -0.00523404 0.0662479 0.0610139 5.55112e-017
0.11 -0.218253 -0.000680373 -0.218933 1.66533e-016
0.15 -0.546104 -0.540334 -1.08644 1.02141e-014
0.25 -0.194547 0.4986 0.304052 4.996e-016
0.40 -1.1219 0.487543 -0.634353 4.44089e-016

Sensitivity to Initial Conditions

The first and third bifurcation diagram correspond to the out of phase period-4 solution,
while the middle corresponds to the out of phase period-2 solution. All three initial

conditions where chosen from a uniform [0,1] distribution.
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For a cluster of initial conditions we see both types of out of phase solutions.

We see that the first and third diagrams correspond to out of phase period-4 solutions
and that the window for this behavior is smaller in the third diagram.
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For a cluster of initial conditions both types of out of phase solution as well as more
chaotic behavior are exhibited.
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