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Cellular automata models are used to simulate the spread 
of disease across a population. Two types of infections are 
examined here: disease where individuals become immune 
to the disease and the common cold where individuals are 
only “immune” to the disease for a short period before 
becoming susceptible again. A small increase in the 
probability of an individual infecting a healthy neighbor 
increases the number of individuals infected and the rate at 
which the disease spreads by a greater amount than a small 
decrease in the recovery rate.
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Introduction

 An unfortunate side effect of urban living involves the risk of the spread of a 
highly contagious disease. Studying how a disease will spread can allow ample time for 
preventative measures to be taken. This project will visually display how a disease 
spreads spatially across a population through a cellular automata model. A population 
consists of a grid of cells, which can each have three states: susceptible, infected, or 
recovered. Cells susceptible to the disease have not yet had the disease, and may be 
infected by its neighbors. Cells that are infected may transmit the disease to its neighbors. 
Cells that are recovered are no longer infectious to its neighbors. This project also 
examines the spread of the common cold, where recovered populations become 
susceptible again after a set amount of time. The probability of a cell transmitting the 
disease to another cell (transmit probability) and the probability of a cell recovering 
(recovery probability) was varied to determine which parameter has a greater impact on 
the rate at which the disease spreads. 

Background

 Cellular automata models consist of cells on a grid that may change colors at 
discreet times to represent different states. A cell’s state is determined by a set of rules 
and the state of its neighbors, and therefore the neighborhood of a cell must be specified. 
This project studies two-dimensional cellular automata models, an example of which is 
Conway’s game of life. Cellular automata have long been used to study biological 
systems such as this project does1,2.

Dynamical System

 The Kermack-McKendrick model for infectious disease consists of three coupled 
nonlinear ordinary differential equations3,4:

dS
=   -βSI 1

dt
dI

=   βSI – γI 2
dt
dR

=   γI 3
dt

where S is the number of individuals susceptible to the disease, I is the number of 
individuals infected with the disease, and R is the number of individuals recovered. β is 
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the infection rate, and γ is the recovery rate. The Kermack-McKendrick model assumes a 
constant population size, no incubation period, and the period in which one is infectious 
is the same as the disease. Figure 1 shows the ODEs for the Kermack-McKendrick model 
plotted as a function of time.

Methods

 The cellular automaton model is based on the Kermack-McKendrick model. Each 
cell will have a certain probability of becoming infected:

Pinfect = 1 – (1 – p)R                                                     4

where p is the probability that a infected cell will transmit the disease to a healthy cell, 
and R is the number of cells surrounding the healthy cell. Each cell will also have a 
certain probability of recovering from the disease:

    Precover = q               5

and the values of p and q are between 0 and 1. Pinfect and Precovered are then compared to 
random numbers. If the probability is more than the random number, then the cell will 
become infected or will recover, otherwise the cell will stay in the same state. For the 
common cold, cells that are recovered will become susceptible again after a set amount of 
updates5. The neighborhood used in this project is the Moore Neighborhood. The number 
of neighbors, n, around a cell is given by the following  equation:

n = (2r + 1)2              6

where r is the range6. This project uses a Moore Neighborhood with range 1, giving nine 
possible neighbors for each cell.

The state of each cell will be updated accordingly and displayed with the 
following colors: green if the cell is susceptible, red if the cell is infected, and black if the 
cell is recovered. The number of susceptible, infected, and recovered cells is then plotted 
as a function of time. 

Results

Each simulation (figures 2 through 4) was run with an initial infected population 
of 100 and a 150x150 cell grid for a total population of 22500. At p=0.3 (figure 4) the 
model starts to deviate from the Kermack-McKendrick model, since there is a significant 
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jump in the number of infected individuals at the beginning of the epidemic. Therefore, 
the values of p and q will be varied centered on p = 0.2 and q = 0.5 (figure 3).

If the value of p is raised from 0.2 to 0.25 while the value of q remains at 0.5, 
there is a clear increase in the number of infected individuals compared to p = 0.2 (figure 
5). However, if the value of p is kept at 0.2 and the value of q is lowered to 0.45, the 
highest number of infected individuals in time is less than that for when p was raised 
(figure 6). It is also apparent that the rate at which individuals are infected for the 
changed q is lower than that for the changed p. Therefore, raising p leads to a longer 
lasting infection that affects a greater number of people at the height of the epidemic than 
lowering q by the same amount.
 For the model for the common cold, each of the following simulations (figures 7 
through 9) were also run with an initial infected population of 100 and a 150x150 cell 
grid. A cell will stay recovered for 10 updates, and then they become susceptible again. 
The number of susceptible, infected, and recovered individuals is plotted as a function of 
time for various values of p while q is kept at 0.3. At p = 0.15 (figure 7), there seems to 
be mostly random increases and decreases in the graph. For p = 0.17 and p = 0.2, it is 
apparent that there are periodic oscillations in the susceptible, infected, and recovered 
populations. If the value of p is increased, the amplitude and frequency of the oscillations 
increases, meaning a greater number of individuals are becoming infected in a shorter 
amount of time. The oscillations all eventually become small random increases and 
decreases in the graph, but are centered about a constant percentage of the total 
population. Figure 10 shows the change of the cellular automata distribution as time 
increases. At t = 0, the initial distribution of infected individuals is shown. As time 
progresses, it is apparent how quickly the patches of recovered individuals become 
randomly distributed throughout the population. However, when the time an individual 
spends as recovered is increased to 29 updates, the infection dies out completely, since 
time it takes for cells to become susceptible again is longer than the time it takes for all 
infected cells to recover.

Conclusion

 By increasing p, it is evident that a small change in p can lead to a longer 
epidemic with larger number of individuals suffering from the disease. Yet a decrease in q 
does not have as large of an effect on the epidemic as an increase in p by the same 
amount. This leads to the conclusion that a deadlier epidemic depends more on how 
quickly the disease spreads rather than how quickly the individual recovers.
 The model for the common cold displayed periodic behavior not seen in the SIR 
model. When the length of “immunity” is long enough for this model, the epidemic dies 
out. This is consistent with the rise and fall of “flu season” we see in society. 
 Although the Kermack-McKendrick model is a highly simplified model, changes 
may be made to the model to account for factors such as birth, death and spatial structure 
that make the model more realistic. Models such as these may help authorities take 
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necessary precautions when a disease outbreak is suspected, as well as explain the 
outcome of past epidemics. 
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Figure 2: Percent of total population of susceptible, infected, and recovered individuals for the cellular 
automata SIR model with respect to time, averaged over 10 simulations. Initial infected population of 
100, population size 150x150 grid, p = 0.1 and q = 0.5. 

Figure 1: Kermack-McKendrick model using values β = 0.4 and γ = 0.2, with initial infected population 
100 and population size 22500



Figure 4: Percent of total population of susceptible, infected, and recovered individuals for the cellular 
automata SIR model with respect to time, averaged over 10 simulations. Initial infected population of 100, 
population size 150x150 grid, p = 0.3 and q = 0.5. 

Figure 3: Percent of total population of susceptible, infected, and recovered individuals for the cellular automata 
SIR model with respect to time, averaged over 10 simulations. Initial infected population of 100, population 
size 150x150 grid, p = 0.2 and q = 0.5. 



Figure 5: Percent of total population of susceptible, infected, and recovered individuals for the cellular 
automata SIR model with respect to time. Initial infected population of 100, population size 150x150 grid, 
p = 0.25 and q = 0.5. 

Figure 6: Percent of total population of susceptible, infected, and recovered individuals for the cellular 
automata SIR model with respect to time. Initial infected population of 100, population size 150x150 
grid, p = 0.2 and q = 0.45. 

Figure 7: Percent of total population of susceptible, infected, and recovered individuals for the cellular 
automata model for the common cold with respect to time. Initial infected population of 100, population 
size 150x150 grid, p = 0.15 and q = 0.3
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Figure 9: Percent of total population of susceptible, infected, and recovered individuals for the cellular 
automata model for the common cold with respect to time. Initial infected population of 100, population 
size 150x150 grid, p = 0.2 and q = 0.3

Figure 8: Percent of total population of susceptible, infected, and recovered individuals for the cellular 
automata model for the common cold with respect to time. Initial infected population of 100, population 
size 150x150 grid, p = 0.17 and q = 0.3
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a) t = 0 b) t = 10

c) t = 20 d) t = 30

Figure 10: Cellular automata distribution at: a) time t=0; b) t=10; c) t=20; d) t=30 for the common cold. It is 
apparent how rapid the spots of infectivity become randomly distributed
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