
Evolutionary Dynamics

Shane Celis
Applied Science

secelis@ucdavis.edu

June 10, 2008

Abstract

This paper examines genetic algorithms and asks whether coevo-
lutionary algorithms produce qualitatively different results than those
employing fitness functions, and can one derive a fitness function from
a coevolutionary algorithm?

1 Introduction

Genetic Algorithms (GAs) are a stochastic search method inspired by biolog-
ical evolution. They are useful for searching large multidimensional spaces
usually for local minima or maxima to achieve some objective. The basic
recipe for a GA looks like this:

1. Seed a population (all random for generation 0)

2. Evaluate fitness of individuals

3. Select individuals proportionate to their fitness

(a) Copy fittest individuals to the next generation

(b) Mutate fittest individuals to seed the next generation

4. Restart at step 2 with the new population

1

Despite the simplicity of this algorithm, it can produce non-trivial results.
The fitness function used in step 2 can be arbitrarily complex and comes in
two varieties. Explicit fitness functions operate on the gene values directly.
Implicit fitness functions do not have “global” knowledge, and instead may
use simulation, or some other indirect means to measure fitness [2]. For ex-
ample, Karl Sims’ work [3] demonstrates virtual creatures that were evolved
for visually realistic locomotion. Sims’ work is what initially provoked my
interest in GAs. Sims’ work uses an implicit fitness function where the dis-
tance the creature moved in the physics simulation from its starting position
after a certain time is its fitness; the farther it moves the fitter it is.

Another form of a GA is a coevolutionary algorithm. In the coevolu-
tionary algorithm, there is no fitness function (either explicit or implicit).
Instead there is an environment that defines a replication dynamic. There
can be “death” and “competition” as well. This mirrors natural evolution
much closer, since the only objective measure of fitness is differential repli-
cation of genes.

I would like to consider the case where one does not have a fitness function.
When one has a fitness function, one can take any two genes and determine
which is better or more fit. However, in a coevolutionary algorithm, one can-
not pluck two genes out of the population and determine which is more fit.
The questions I would like to entertain are, does a coevolutionary algorithm
produce qualitatively different results than a GA with a fitness function?
Some of my thinking about whether something is qualitatively different or
new was provoked by [1]. It may be that the coevolutionary algorithm is
merely an obscured fitness function. If so, one could approximate the results
of a coevolutionary algorithm by finding that obscured fitness function. And
following up on that, supposing that coevolutionary algorithms are quali-
tatively different, therefore are not merely obscured fitness functions, over
certain time intervals can one still approximate them with a fitness function?

1.1 Motivation

One motivation of this paper is that being able to derive an approximate
fitness function could be useful. Consider a scenario where there is a GA,
but no clear cut means of evaluating fitness at least not computably (e.g.,
human selects what they find aesthetically pleasing). GAs are terribly tedious
if a human must oversee every individual to rate its fitness. If, however, one
could observe what the human selects and infer a fitness function, one could

2

still leverage a GA despite the non-computable fitness function. Another
motivation is that assuming one has a biological model implemented as a
coevolutionary GA, one could analyze it to determine what kind of selective
pressure was being applied to the population, and perhaps analyze how that
changed over time.

1.2 Synopsis

This paper details the simulation used, the results of the simulation run in
two different modes, and unfortunately is inconclusive as to whether coevo-
lutionary algorithms are qualitatively different from those employing fitness
functions. It does dicuss how one might actually come to an answer and
what extensions to the simulation may be worthwhile.

2 Method

A difficult part of this project was trying to think of a replication dynamic.
I wanted something that was not so simple that there was only one stable,
trivial solution that the GA quickly settled on. I wanted something that
was not so complex that it would be too difficult to analyze. I settled on
simulating particles on a plane.

The concept is that these particles live on a flat grid with an edge. If
they go over the edge, they “die.” If they stick around in the simulation
long enough, they will replicate themselves with a chance of mutation. The
behavior of a particle is partially controlled by its genes. The genes define
the acceleration the particle experiences. A second order differential equation
was selected so that collisions could be implemented between the particles.
The gene is a vector of real numbers (in my case n = 17, which also encodes
some non-functional elements like color).

2.1 Dynamical System

g ∈ Rn (1)

ẍ = g0 + g1x + g2x
2 + g3y + g4y

2 + g5vx + g6vy (2)

ÿ = h0 + h1x + h2x
2 + h3y + h4y

2 + h5vx + h6vy (3)

hi = gi+n
2

(4)

3

The mutation operator has two parameters: mutation chance per vector
element cm, and standard deviation of mutation σm. The mutation chance
per vector element is evaluated against a uniform distribution (A ∼ U [0, 1]).
If A ≤ cm, then the element is mutated using a Gaussian distribution simi-
larly to what is described below for an offspring’s position.

The coefficients for drag (g5, g6, h5, and h6) can be turned on or off
conditionally. In this paper I have turned drag off. The condition for falling
off the edge is if |ri| ≤ 2 where r is the position of the particle, so the grid
goes from [−2, 2] on each axis.

2.2 Fitness Mode

The simulation has two major modes: the fitness function mode, and the
coevolutionary mode. The fitness function mode runs the basic evolution-
ary algorithm as described in the introduction. The population of genes is
a constant parameter N . To evaluate a gene, M particles with the same
gene but different initial conditions are run in the simulation for a number
of simulation steps. Collisions are turned off so that the particles behave
independently of one another. The fitness for the gene is the average of the
time the particles lived. The bigger the average time, the more fit the gene is
considered to be. (One concern with this method is that the evaluation of the
gene’s fitness might have large fluctuations since the initial conditions can
change, but the fact that we’re averaging over M independent trials leads me
to think this is fine.) Selection is implemented simply as taking a percentage
of the N genes with the highest fitness. The percentage of genes to keep is
encoded in parameter k ∈ [0, 1] and floor(kN) genes are kept and mutated
to seed the next population.

2.3 Coevolutionary Mode

The coevolutionary mode does not have a fitness function, instead it has a
replication dynamic, i.e. long lived particles replicate, and the population
fluctuates. It starts with random genes. The particle population is kept
above a minimum Pmin and below a maximum Pmax. If the population of
particles sinks below the minimum, a new particle is added by randomly
(uniformly) selecting an existing particle in the population to replicate with
a chance of mutation. The particles interact by colliding.

4

The particles have a reproduction clock t that keeps track of how long
they have been alive since they last reproduced. A cumulative exponential
distribution is used to determine when the particle replicates (if 1−e−λt < B
where B ∼ U [0, 1]), the thinking being that the longer the particle has been
alive the more likely it is to replicate. After it replicates, its reproduction
clock is reset to zero. (Because this conditional replication is evaluated every
clock tick, finding the appropriate λ value was a non-trivial task, for me at
least. Ultimately, I ended up finding a linear relation between the mean time
to replicate and λ empirically.)

When a particle replicates, its genes are copied with a chance of muta-
tion to its offspring. Each gene has generation number gn and its offspring
receives a generation number of gn + 1. The initial population has a gn of
0. The offspring’s position R is inherited from the parent’s position r using
a random Gaussian distribution as shown below. The offspring’s velocity is
done similarly.

X ∼ N(ri, σ
2
r) (5)

Ri = X (6)

Collisions are turned on for the coevolutionary mode. There is a coeffi-
cient of restitution parameter er ∈ [0, 1] where er = 0 is a perfectly inelastic
collision, and er = 1 is a perfectly elastic collision. By default er is kept at
0.5, and all the cases examined in this paper keep it there.

The aim is to run these two different modes and compare the results.
The fitness function and replication dynamic were selected in an attempt to
make their results somewhat comparable and try to avoid comparing apples
to oranges.

3 Results

Here are the results from the two modes of the simulation.

3.1 Fitness Mode Results

I used the following parameters for the fitness mode runs: N = 10, M = 10,
k = 0.2, σm = 1.0, radius = 0.05, ∆t = 0.05, and cm = 0.1. Figure 1 is a
graph of the mean fitness for the simulation run in fitness mode.

5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50

f̄

generation

’explicit-C.data’

Figure 1: Mean fitness for a run of the simulation in fitness mode

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 10 20 30 40 50

σf

generation

’explicit-C-std.data’

Figure 2: Standard deviation of the fitness

To try and cut down on the noise, I ran the simulation with the same pa-
rameters for 50 generations and then averaged the results from three different
runs.

6

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35 40 45 50

¯̄f

generation

’averaged.data’

Figure 3: The mean of the mean fitness from three different runs

As one can see, the average fitness appears to approach an asymptote,
which is the expected result. The way fitness is being calculated there is a
maximum fitness, where all the particles stay alive for the entire duration of
the run. The maximum possible fitness is 5 for the parameters I used.

3.2 Coevolutionary Mode Results

One of the difficulties of this project is determining what measurement is im-
portant for the coevolutionary results. I ended up making a lot of measure-
ments in the hope that examining them would present a graph comparable
to Figure 1 which shows the mean fitness increasing to an asymptote, which
seems to be the telltale sign of a fitness function. Indeed, in the limit where
one has an infinite population, the mean of the fitness is a monotonically
increasing function with respect to time as shown in [4], so I think that pro-
vides support to look for increasing functions as candidates for the obscured
fitness function.

The results shown used the following parameters: Pmin = 5, Pmax = 20,
cm = 0.1, σm = 1.0, radius = 0.05, ∆t = 0.05, and collisions are turned on.
Figure 4 shows the mean of the particles’ reproduction count rc for each time
step. What I thought I might see is a graph that approached an asymptote,

7

much like Figure 1, as the “fittest” individuals got better at surviving and
therefore replicating. However, that does not appear to happen.

0

0.5

1

1.5

2

2.5

3

0 10000 20000 30000 40000 50000 60000 70000

r̄c

time step

’reproduction-count-mean.data’

Figure 4: The mean of each particle’s reproduction count (run A)

Figure 4 did inspire me to run another simulation and capture the max-
imum of the reproduction count. Perhaps the newly born particles were
adding too much noise to the data.

8

0

2

4

6

8

10

12

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

max(rc)

time step

’reproduction-count-max.data’

Figure 5: The maximum of the particles’ reproduction count (run B)

Figure 5 shows the maximum, and it is less noisy, but the trends do not
reflect anything like Figure 1.

4

6

8

10

12

14

16

18

20

22

24

0 10000 20000 30000 40000 50000 60000 70000

pc

time step

’particle-count.data’

Figure 6: The count of particles (run A)

Figure 6 shows the population count over time, which fluctuates pretty

9

severely. In Figure 7, one can see that there are number of extinctions where
all particles die out, and the population is seeded with a new set of randomly
created genes whose generation number starts at 0.

0

20

40

60

80

100

120

140

160

180

200

0 10000 20000 30000 40000 50000 60000 70000

ḡn

time step

’generation-number-mean.data’

Figure 7: The mean of the particles’ generation number (run A)

Figure 7 looks similar to the mean fitness shown in Figure 1, but I believe
that is merely superficial. The mean fitness is increasing on average for finite
populations, and here the generation number is increased monotonically so
its average is increasing unsurprisingly. Although this superficial similarity
is easy enough to dismiss, it does bring up questions that I will address in
Section 4.

One interesting result is if one takes the real vector that represents the
gene g and takes the the mean of the magnitude of all the genes as shown in
Figure 8.

10

0

5

10

15

20

25

30

0 10000 20000 30000 40000 50000 60000 70000

¯|g|

time step

’gene-mean-mag.data’

Figure 8: The mean of the particles’ genes magnitude (run A)

It appears as though the initial random seeding of genes have mean mag-
nitude of 5 but that as the simulation runs, the magnitude population of
genes increase. Figure 8 does bear some similarities to Figure 1, the mean
fitness graph, excepting the extinctions.

4 Discussion

The results shown in this paper between the coevolutionary algorithm and
fitness mode do not provide a conclusive answer to the question of whether
they are qualitatively different. There are a few issues which may have pro-
hibited coming to a direct answer. The cases may differ too significantly to
compare them directly, e.g. in fitness mode particles behave independently
while coevolutionary mode has collisions. (Overcoming that barrier is not
difficult; it just requires more time. One could run the fitness mode with col-
lisions.) The instability of the coevolutionary mode where extinctions result
may be due to poor parameter settings. It may also be that the simulation is
not rich enough to support the variety of behavior that I imagine would be
relevant for a coevolutionary GA. I will discuss some extensions in Section 5.

Comparing Figure 8 and Figure 1 may make one wonder if there is an
obscured fitness function that is increasing some element of the gene gi, but

11

how might one determine whether the gene’s change in magnitude is causing
the particles to “live” longer and replicate more rather than it just being
coincidental? For instance, some non-functional elements may be becoming
larger. I do not yet know how to make that discrimination between the causal
and coincidental, but I have a hunch that if one perturbs the parameters
of interest, one could determine whether they are causally relevant or just
coincidental.

Another issue in trying to find what the fitness function may be in a
coevolutionary model is that it could easily be a composition of different
measurements. Suppose that one had measurements f(t), g(t), and h(t) for
a coevolutionary GA. One would want to look at those functions separately
of course but one may also want to examine different compositions of them,
e.g. 1

f(t)
, f(t)

g(t)h(t)
, and many more (unfortunately).

5 Future Work

I mentioned that the simulation may not be rich enough to support certain
behaviors. The behavior that I had in mind was this. One of the trivial
survival strategies for a particle is to just come to an immediate stop, i.e.
have a large drag. That is one of the safest strategies. However, it isn’t
evolutionarily stable because there need only be one mutant who doesn’t
adopt that strategy and, say, instead moves in a circle around the board.
That mutant might end up hitting particles off the board freeing up room
for it to replicate. Essentially, it wouldn’t allow for a “conspiracy of doves”
as evolutionary biologists would call it. One can see traces of predator/prey
models between the two different strategies.

I did implement drag in this simulation, and the particles as expected
evolved large drag parameters and all came to a stop. Unfortunately, there
was no “natural” death dynamic, so once you had all the particles stopped,
none would die so their “conspiracy of doves” would last for all time, which
is why I kept drag turned off in the results I presented. Implementing a
“natural” death dynamic would hopefully alleviate this issue and allow for
that predator/prey behavior to develop.

In the interest of seeing the predator/prey dynamic, it might be worth-
while to make mass and radius genetically determined for the particles. Per-
haps have a constant mass density, and have the radius determine the mass.
That would open up two strategies: be small because you take less colli-

12

sions but you will be more affected by them, or be big because you won’t be
affected by collisions but you will take more of them.

ẍ = g0 + g1x + g2x
2 + g3y + g4y

2 + g5vx + g6vy + g7sx + g8sy (7)

Another feature of interest may be to give the particles some form of
sight. Consider Equation 7 where s would be the relative position vector
from the particle to its closest neighbor. It may have a limited sight radius,
and s = 0 when there were no particles in its sight radius. This would allow
for more interesting interactions than just collisions. It would allow for them
to be reactive to their environment.

6 Conclusion

This paper was not able to answer the question it posed: are coevolutionary
GAs qualitatively different from GAs employing fitness functions? But it
does provide some directions that may lead to more fruitful results.

References

[1] J P. Crutchfield. Is anything ever new? - considering emergence. In
Integrative Themes, XIX, pages 479–497, Reading, MA, 1994. Santa Fe
Institute Studies in the Sciences of Complexity, Addison-Wesley.

[2] D Dumitrescu. Evolutionary computation. CRC Press, Boca Raton, FL,
2000.

[3] Karl Sims. Evolving virtual creatures. In SIGGRAPH 94 Conference
Proceedings, Annual Conference Proceedings, pages 15–22, 1994.

[4] E. van Nimwegen, J. P. Crutchfield, and M. Mitchell. Finite populations
induce metastability in evolutionary search. Physics Letters, 229:144–150,
1997.

13

