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Synopsis

We study variations on the traditional Dorssel-Schwabl cellular automata Forest Fire Model (FFM) that 

show measurable change in  the distribution of  large events while  maintaining scale  invariance.  We 

propose two models that demonstrate measurable deviation from the familiar FFM distribution slope 

(log-log)  of  -1.  We compare  these  models  to  observed  wild  fire  data  in  the  Eastern  US,  Northern 

Territory Australia, southern California US (SCA),  and Baja California Norte Mexico (BCA). We suggest 

that differences in flora, fauna; and perhaps more interestingly, land management policy account for the 

different distributions of large fires. 

In  particular,  we  focus  our  attention  on the  border  region  between SCA and  BCA.  These  regions, 

because they are geographically contiguous, share nearly identical  meteorological  and topographical 

conditions.  Nonetheless,  they demonstrate substantially  different  wild fire size distributions and flora 

clustering patterns. We suggest this is largely a function of land management policy, which we suggest 

that our simulation emulates. We propose that these models, or perhaps enhanced versions of these 

models, might be employed to develop effective wild land management policies.

Introduction

Having seen several devastating fire season in Southern California and throughout the greater western 

United States,  policy makers and home owners have expressed concern and alarm. The traditional 

response to extreme wild fires has been increased fire suppression activity – more bulldozers, more 

bombers,  more firefighters.  While  fire fighting is effective against  small  fires under a wide range of 

“normal” conditions, large fires and exacerbating circumstances, such as extended periods of hot, dry 

weather and strong winds,  produce fires that  are difficult  if  not  impossible for humans to control  or 

contain by any reasonable means. These especially large and ferocious firestorms are relatively rare but 

account for the vast majority of wild-fire related property damage and injuries(10).

It is widely believed in the academic and wild-land management communities that our century or so long 

policy of fire suppression has actually increased our susceptibility to large, uncontrollable fires.   By 

suppressing small fires, so the argument goes, we permit the forest to accumulate large volumes of 

combustible material  and to form large contiguous clusters of  trees,  brush,  and tall  grasses.  These 

regions, burn both hotter and, as per enhanced connectivity, more expansively than they would under 

natural circumstances. It  is  a logical extension of this argument to suggest that an expanded, more 

aggressive wildfire suppression policy further exacerbates this problem, perhaps mitigating damages 

from small to medium size fires but facilitating larger, more ferocious and destructive firestorms. We 



address  this  argument  in  terms  of  clustering  dynamics,  percolation  theory,  and  numerical  cellular 

automata models.

Observations in North America and Australia suggest that real wild fires follow power law distributions in 

size and frequency, though the slope (exponent) of that distribution varies from one region to another. 

For example, fires in the eastern US follow a steeper (fewer large fires) distribution than fires in the 

western  US(7).  This  difference  in  slope  could  be  a  function  of  varying  ecology,  climate,  or  land 

management  policies  including  fire  suppression.  A  more  striking  and  interesting  phenomenon  is 

observed in the chaparral near the southern California, US (SCA) and Baja California Norte, Mexico 

(BCA) border. Here, we observe distinct fire distributions and foliage clustering in two regions separated 

only  by  a  political,  human  enforced  border.  Differences  in  wild  fire  dynamics  near  the  border,  we 

suggest, can be attributed almost entirely to distinct land management policies on either side of the 

border [10, 18].

We understand that real fire dynamics are complex. Observationally and anecdotally, we know that wild 

fire risk is affected by climate, geological topology (such as canyons, water ways, mountains, etc.), and 

meteorological  factors  -  perhaps  most  importantly  wind.  We  remind  ourselves,  as  it  so  happens 

repeatedly throughout this process, that near this border region these factors differ only to the extent that 

political  governors  and  bureaucrats   mandate.  We assume this  factor  to  be small,  even during an 

election year. We can use this region to study, in some isolation, the effects of land management policy 

on foliage clustering and ensuing wild fire dynamics. To this end, we employ variations on the Dorssel-

Schwabl type cellular automata “Forest Fire Model” (FFM). We find the model's characteristic slope of 

approximately -1 surprisingly robust We propose two variations that, in some agreement with findings by 

Yakovlev  et-al(16),  produce  convincing  power  law  distributions  with  steeper  slopes,  by  thinning  and 

fragmenting large clusters.

Introduction to the FFM [3]
The basic Forest Fire Model, a close cousin to dynamic sand-piles, is as follows(3):

1. We establish an NxM site rectangular grid.

2. Like a dart in an English pub, we “throw” a tree at a random spot on the grid.

3. If that site is empty (grid value=0), we plant a tree there (set grid value=1).

4. If that site is occupied by a tree (grid value=1), we do nothing.

5. Every f steps (tree tosses), we throw a match, spark, or lightning strike at a grid element, again 

chosen at random.

6. If that site is occupied by a tree, it ignites.

7. Sites directly adjacent (nearest neighbor sites only, no diagonals) to any burning site burn. We 

iterate this step until the entire cluster is burned.

8. Sites “burned” in (7) return to “dirt” status (grid value=0), and we start over.



We run the model for either a fixed number of time steps or until we get some agreed upon number of 

events. A fixed number of fires some size k0 might be used to readily show slope differences, or a fixed 

total number of events might be used to simplify normalization.

 

Some common variations on the model include:
● Discrete vs Continuous time distributions

Discrete:

● In a given “time-step” we attempt to plant one or more tree on a randomly chosen grid 

square.

● Every f “time-steps” (as per above), we throw a match at a randomly chosen square.
Continuous:

● During a given time-step, each element in the grid spontaneously begets a tree with 

probability Pbeget.

● During  a  given  time-step,  each  tree-bearing  element  spontaneously  combusts  with 

probability Pcombust.
● Probability Distributions:

● Typically,  continuous  distributions  are  used  in  both  spatial  and  temporal  random 

variables. There are strong arguments, however, to use Poisson distributions or some 

other scheme to add periodicity to the system.
● Burning rates and properties:

● Instantaneous Fires: Most  models  meant  to  simulate  real  wild  fire  conditions  use 

instantaneous fires, in which once a fire starts, it burns to completion in a single time-

step. The interpretive assumption, of course, is that a forest fire occurs over a relatively 

short timespan compared to the duration of a fire.

● Continuous fires: Fires can be propagated on the same scale as tree planting. These 

models,  given  the  right  parameters,  do  not  require  sparking;  fires  naturally  burn 

continuously. In this scenario, for a given turn:

● A tree is planted, maybe a match is thrown.

● A tree next to a burning tree ignites.

● Tress burning from the previous time-step return to the ground state.

Clearly,  these  models  do  not  simulate  real  wild  fires.  However,  they  often  produce 

spectacular images and they might, be useful to model other phenomenon like galaxy 

spiral arms or other steady state variations in pressure and density.
● Immunity:

● Immunity  to  fire  can  be  parameterized  to  simulate  differences  in  foliage  type, 

meteorological conditions, or fire suppression activities. We suggest two basic types of 

immunity:

● Mean Field Immunity:  Mean field immunity is suggested from the basis that 

large fires are difficult  to put  out.  As the fire propagates, then,  we include a 



probability  related  to  the  size  of  the  fire  that  either  the  entire  fire  will 

spontaneously quench itself or that the fire will spread to connected elements, in 

the  normal  way.  As  implied,  this  probability  diminishes  to  zero  as  the  fire 

becomes large.

● Local Immunity: Local immunity attempts to address the issue of immunity 

directly between elements. We assign, a finite probability that a tree element 

adjacent to a burning tree element does not catch fire. A highly connected tree, 

with several burning nearest neighbors for example in a dense cluster, is less 

likely to survive by chance than elements in a narrow, sparse filament.  This 

approach,  in  principle,  might  emulate 

the observation that large fires are more 

difficult  to  suppress  than  their  smaller 

cousins  and  does  not  require 

geographically  disparate  elements  of 

the fire to share information.

FFM Analytics

Consider the simple observation that, for a discrete FFM step:

1. Pany fire=f⋅

where f is the firing frequency and ρ is the mean density of the 

grid. Similarly, we identify a single fixed point in the density. We can estimate the mean steady state grid 

density as follows:

2.
dn
dt

≡ṅ=1−−f⋅⋅∑
k

pk⋅k

3. ∑
k

pk⋅k=〈k〉=〈fire size〉

4. ṅ=0

5. =
1

1f⋅〈k〉
⇒

1
2
−f 

6. experimental=.400±.019

In (5), we recognize that the average fire size per sparking interval, in the limit of well tuned parameters 

and steady state, is nearly equal to the firing frequency such that the average number of trees removed 

per sparking interval equals the average number that arrive. Experimentally, we find an average density 

of .400 +/- .019 over a modest sample, which is consistent with findings by Grassberger et-al [1]. The 

average difference between the density before and after a fire was on the order of .0001.

Clustering dynamics are a bit more complicated. Employing some elements from percolation theory, we 

can write the balance equations for new arriving nodes:

Illustration 1: Cluster  
circumference is a function 
of shape.



7. nk, t1=nk ,tCk−1nk−1−Cknk

8. n1,t1=n1, tC0n0−C1n1

9. n1,t1=n1, t1−
5
−4⋅n1

10. n1=N⋅⋅1−
4

11. Pattach,1≡C1=n1⋅4

12. n0=1−

13. C0=1⋅n0=1−

Cluster coalescence can be written as:

14.
dPk ,t1= ∑

kik j=k;i j

Cki
⋅nK i

⋅Ck j
⋅nk j

−nk−1⋅
Ck−1⋅∑

i

nk i
⋅Ck i

−nk⋅
Ck⋅∑

j

nk j
⋅Ck j

15. Ck=Ck−loops

Here, Ck are cluster circumferences which, as we indicate in (5), are equivalent to the probability that a 

new node attaches to a cluster of size k. In the third equation, we observe that new nodes form size one 

clusters if the new site and the four adjacent sites are empty; a size one cluster becomes a size two 

cluster if a newly arrived node lands on any of the four sites adjacent to it.  If we limit cluster growth to 

newly arriving elements, ignoring the coalescence of existing clusters, we could construct a recursion 

relationship  similar  to  the Barabasi-Reka preferential  attachment  network  [15].  Cluster  coalescence, 

however,  is  integral  to  FFM dynamics,  and  as  (14)  shows,  is  quite  complicated  for  large  clusters. 

Accordingly, we employ our discrete, numerical model as our primary tool to study FFM dynamics.



The FFM is often touted as a classic degree-scale invariant, self organizing critical (SOC) model. Strictly 

speaking, however it is neither scale invariant, nor is it truly critical. As Grassberber et-al discuss quite 

thoroughly(1),  scale  variance  emerges  for  small  fires  and  in  the  limit  of  very  large  or  small  firing 

frequency. Over a broad range of parameters (grid size and sparking frequency), however, the model 

demonstrates convincing power law behavior over a 

wide range of fire sizes. We focus our attention on this 

region and consider the small and large fire ends of 

the distribution prone to artifacts of the model.

Unlike  a  truly  critical  system,  the  FFM  cannot  be 

triggered  by  simply  loading  the  grid.   It  is  more 

correctly  described  as  “critical  susceptible.”  The 

system evolves to a state in which it is, in conjunction 

with an a stochastic process, increasingly susceptible 

to some sort of cascading catastrophe. In a nutshell, 

as  large  clusters  form,  the  system  becomes 

susceptible to large fires,  but  a spark is required to 

actually trigger an event [1]. 

Interpreting the FFM Results and Observed  Wildfire Data

The classic FFM produces a power law distribution of events as a function of the event size. This slope 

appears  to  be  invariant  over  a  wide range of  grid  size  and firing  frequency.  Often,  the power  law 

behavior does not persist over the full range of the resulting distribution; very large and very small events 

may fall  off  the power law distribution.  Specifically, 

the range of small events can become noisy, and we 

see   an  exponential  cutoff  of  large  events  where 

clusters are removed aggressively, for example by an 

rapid sparking frequency.  Also, we see high counts 

of very large events, often referred to as the “finite 

volume  effect,”  when  grid  density  is  permitted  to 

exceed the critical percolation, permitting clusters to 

grow very large between sparking events.

We focus our interest on the power law region, and 

somewhat freely discard anomalies at the large and 

small event ends of the distribution, for two reasons. 

Firstly,  we  do  not  wish,  nor  do  we  feel  we  are 

qualified,  to  define  a  characteristic  length  for  the 

model. In terms of real wile fires, we assume our grid 

Illustration 2: Distribution of standard 
FFM events (nEvents vs nBurned) fit  
to lines, slope~-1. red: f=125, blue:  
f=500, cyan: f=2000

Illustration 3: Interpreting FFM data:  
We for some variations and 
parameterizations of the FFM, we 
expect small and large events to  
deviate from the power-law 
distribution.
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elements represent regions ranging from perhaps dozens of trees to a few hectares, to several square 

kilometers. Our objective is to develop a model capable of describing phenomenon over large areas of 

wild-land that we can run on a desktop workstation, which is to say using a relatively small number of 

grid elements. Secondly, and perhaps more importantly, observed wildfire data convincingly fit power 

law distributions with exponent ranging between roughly -2 and -1.



Drawing 1: Observed wild fire distributions as reported by Turcotte, Morein,  
Malamud 1998 [2]



Failed Models

It is worth taking a moment to discuss models that yielded null results, both to appreciate the robustness 

of the FFM and to illustrate the governing dynamics of the model – cluster density. We examined three 

distinct approaches to changing the fire size distribution. First, we attempted to steer the fire dynamics 

using information in the system nodes – the trees or individual grid elements. In particular, we employed 

parameters that  emulated the age of  the tree or  stand of  trees.  Second,  we addressed the overall 

density of the grid, and thirdly we study the effect of connectivity between grid elements. These three 

approaches yielded null results.

Node Level Information

The original approach was to directly correlate stand age with propensity for large fires. Obviously, a rule 

such that young trees do not burn is equivalent to those elements arriving to the grid at some later time, 

so we look for another way to parameterize age or otherwise place information into the nodes of the 

system. We experimented, then, with a rule that young trees would burn but not spread to adjacent 

elements; older trees burn and ignite adjacent cells as per the standard model. The thinking behind this 

model was that  the young trees would form small  fire breaks.  Elements would be removed without 

triggering larger fires.  Ultimately, however, we find that we get two populations with similar clustering 

properties, and aside from a little bit of noise in the small-fire end of the distribution, we end up with the 

standard FFM. We further  modified this  model  to  preferentially  plant  new trees  on  the “outside”  of 

clusters, but again observed a null result.

Connectivity

In a second group of models, we address the connectivity of individual grid elements. In the first model, 

we dilute the grid with some density of “rocky” sites where trees could not be planted. We suggest the 

possibility that the probability with which a fire continues to propagate might follow a relationship of the 

form:

16.
Pt ∝∏

k i ,t

kmax

∏
〈k 〉t
kmax

  〈k〉burningkmax

t−t0

0≤k≤4

where k, in this case, represents the connectivity of individual grid elements. That is to say that burning 

grid  elements  ignite  adjacent  grid  elements  with  some  finite  probability;  at  each  time  step  of  fire 

propagation, there is some finite probability that the fire will continue to burn. If we reduce the average 

connectivity of the grid, we potentially impede a fire's capacity to propagate through a large number of 

time steps.

Specifically, we employed an even-random distribution of “rocky” sites.  For low to moderate densities of 



these barren sites,  we observed no measurable change in the distribution.  For densities above the 

critical  percolation threshold,  not  surprisingly,  we observed an exponential  cutoff  for  large fires,  but 

otherwise the standard FFM power law distribution with exponent -1 persisted. It may be possible to 

reduce the number of large clusters  by using more targeted arrangements of  these rocky sites,  for 

example single width vertical or horizontal structures, but to do so without imposing a  characteristic 

length, and so breaking scale invariance, is tricky. A linear structure of rocky sites, for example, has little 

effect on a cluster who's extent in the same direction as the line is much larger. Put another way, as 

clusters become larger, linear structures begin to appear point-like, and we are back to our original 

random distribution of sites. It might also be possible to produce a measurable signal from this model in 

conjunction with some form of local immunity parameterized such that (16) converges.

We  also  address  grid  element  connectivity  directly  by  permitting  next-nearest  neighbor  (NNN)  fire 

propagation. Obviously, a given set of points distributed randomly onto the grid form “larger” clusters 

when NNN connections are permitted. The distribution of events, however was unchanged. We further 

modified the model by including only older NNN elements in fires and varying sparking frequency, to 

emulate increased combustibility of older stands. Again, the resulting distribution was indistinguishable 

from the standard FFM with slope of -1.

Illustration 4: red +: Standard FFM, green x:  
FFM with fire propagating to all NNN.



Fractal Planting Substrate

We  extended  this  idea  to  plant  the  grid  on  a 

Sierpinski like fractal structure such that nk~k-.5. We 

lay down a fractal  substrate  of  fertile  and,  again, 

“rocky” sites where trees cannot be planted.  When 

we run the model, we plant trees at random on the 

grid as usual. The grid, however, is subdivided into 

sub-grids that  burn independently  of  one another; 

fires do not  spread from one sub-grid to another. 

When we drop a match,  we it  will  land on a grid 

element  which is  part  of  a sub-grid  of  some size 

according to our chosen fractal distribution. At low 

firing  frequency,  where  each  cell  was  unlikely  to 

saturate, we expect and observe the standard FFM 

distribution. When we run the model with a a very 

low  firing  frequency,  such  that  the  grid  will  likely 

saturate beyond its critical percolation limit, the  ensuing fire will burn a large percentage of the cells in 

that sub-grid. We expect then, to see the fractal substrate in the fire size distribution. For moderate 

saturation, we see peaks around our fractal sub-grid size values and a sawtooth pattern with slope -1 

between eigenvalues. Dissatisfied, we retired this model while it was still quite young. A more convincing 

variation of the model might be to use a more continuous distribution of sub-grid sizes.  For example, to 

create  a  distribution  on  a  large  but  finite  grid  with  a  distribution  slope  -1/2,  we  use  the  following 

distribution of sub-grid sizes:

cluster substrate for P(k)=a*k^(-.5):

N
(number of
sub-grids)

k
(number of grid
 elements)

P(k) P(k)/Ntot
al

L side

1 1024 1024 0.0156 32

8 256 2048 0.0313 16

64 64 4096 .0625 8

512 16 8192 .125 4

4096 4 16384 .25 2

32768 1 32768 .5 1

Illustration 5: Fire distribution of a 
FFM planted on a Sierpinski gasket for  
varying firing frequencies: green: 50, 
red: 500, blue: 5000. Plots for slope -1 
(magenta) and -.5 (cyan) are shown for  
reference.



The resulting distribution of fires is heavily peaked around the k values; the space between is dominated 

by  a  slope  of  -1.  Further  statistical  analysis  of  the  peaks  might  yield  a  different  distribution,  but 

preliminary analysis indicates the peaks also demonstrate a slope of -1. It might be possible to construct 

a  smoother  distribution  of  events  by  selecting  a  more  continuous  set  of  k-size  sub-grids  from the 

distribution, being careful to maintain consistency with the prescribed distribution.

The  scientific  justification  behind  this  model  was  to  emulate  natural  fractal  topologies.  It  is  widely 

accepted,  for example,  that  drainage basins, landslides, and other natural  planting substrates follow 

fractal distributions. Though we retired this model quite quickly, the preliminary results are characterized 

better by the standard FFM distribution of k-1 than by the imposed fractal distribution of k-.1/2. The model 

also problematically requires a very large grid, to contain a suitable number of sub-grids, to the extent 

that  it  arguably  exceeds  the  scope  of  desktop  workstation  science.  In  short,  this  approach  seems 

contrived,  unpromising,  and  computationally  burdensome  though  further  investigation  would  be 

necessary to say so conclusively.

Models that Work:
Clustering and Cluster Density

Having investigated models exploiting nodal information, connectivity, mean density, and environmental 

topology, we turned our attention to clustering. Work by Yakovlev et-al(16) suggest that cluster density is 

fundamental to characterizing cluster, or fire, size distribution. We look for models that directly address 

cluster density of modify fire propagation with respect to cluster size or number of elements involved in a 

fire. We present two models that yielded measurable changes in fire distribution slope. These models 

are designed to either directly modify cluster density or fragment existing large clusters into smaller 

pieces.

Mean Field Immunity

Starting with the standard FFM, we introduce a “quenching” function. Fires propagate via a breadth-first 

algorithm. As the fire propagates outward, we test a the function:

17.
(random number)immunityParameter

1nBurning
5





where immunityParameter is provided at run-time, nBurning is the number of trees burning in the current 

fire,  and  the  denominator  5  was  chosen  by  trial  and  error  to  provide  sufficient  modulation.  If  this 

condition is true, we quench the fire.  Note that as fires become large, the right side of the inequality 

becomes very small. As the the plot shows, this model provides measurable changes in the slope of the 

distribution. Because this model permits large fires to burn freely, we interpret the results to suggest that 

the smaller fires tend to fragment large clusters, resulting in a steeper distribution of events. This type of 

immunity might account for natural differences in the distribution of fires in regions with distinct fauna 

and climatological conditions, for example the lush eastern US compared to the drier chaparral regions 

in southern California and northern Mexico.

It seems, however that not all immunity models are created equal. Initial results from a model where 

immunity fell off exponentially,

1. Pquench∝e−a⋅k 

showed promising initial results but did not hold up over a large number of time-steps. The results of 

these  two  models  may  yield  suggestions  regarding  proactive  wild  land  management  and  wild  fire 

suppression policies. Excessive suppression of very small fires, for example, may prevent larger, but still 

quite small and non-destructive, fires from fragmenting large clusters. 

Illustration 7: The same  MFI model data 
binned logarithmically.Illustration 6: Fire distributions from a Mean 

Field Immunity (MFI) model: 512x512 grid, 10 
million time steps, immunity factors, red:0,  
green: .3, blue: .6, violate: .9.



Illustration 8: Mean Field Immunity with  
exponential decay over 108 times teps. Note 
the slopes converge to nearly -1 for medium 
to large fires

Illustration 9: Mean Field Immunity with  
exponential decay over 107 time steps yields  
promising results.



Trapped Sheep

Another model that yields measurable results incorporates virtual sheep. Basic sheep behave as follows:

1. N herds of sheep are placed randomly on the grid.

2. During each time step, each sheep (heard) moves with probability P:

● If the square they occupy is also occupied by a tree, they eat it

● If the square they occupy is empty, they look to adjacent squares. If one or more of 

these squares has a tree, they move to one of those squares

3. To sheep, the grid is toroidal.

Note that sheep seek out clusters fundamentally differently than the firing mechanism. Specifically, a 

cluster's  cross  section  to  the  fire  starting  mechanism is  exactly  its  area,  or  number  of  contiguous 

elements. To sheep, however, a cluster's cross section is proportional to its circumference (empty grid 

elements adjacent to occupied elements) minus any loops. Also observe that sheep often to not eat an 

entire cluster and may, in fact, fragment a cluster into several smaller pieces. In these respects, sheep 

address clusters very differently than do forest fires.

By themselves, sheep do not appear to yield a scale 

invariant  result,  probably  because   they  are  not 

dynamic with respect to the grid density or cluster 

numbers; there are either too many, and we see an 

exponential cutoff or there are too few and they have 

little affect. The system seems to suggest some form 

of logistic map whereby well fed sheep beget sheep, 

and sheep who have not eaten for some time are 

painlessly and humanely removed from they system. 

This  involves  a  level  of  programmatic  and 

computational  complexity  that  we  had  hoped  to  avoid.  By  accident,  however,  we  introduced  an 

inexpensive dynamic with similar consequences. By removing the rule that transitions sheep from the far 

right side of the grid around to the left side created a trapping region along the far right side of the grid. 

In the absence of vegetation, sheep random-walking in this area are weakly attracted, albeit not strictly 

confined, to the edge of the grid. As clusters form in this region, they follow them, eating as they go, 

deeper into the grid. Thus on, grids made sparse either by very active sheep or large fires, sheep tend to 

retire; as grid density increases or extended clusters are formed, sheep become more active and are 

funneled into the grid. It is worth noting that trapped sheep, as described above, are not ergodic. A 

single fast sheep tends to clear the trapping region very efficiently, and so rarely ventures very far into 

the grid. Many slower sheep, however, follow and remove clusters on a time scale more comparable to 

the rate of cluster formation, and so spend more time deeper in the grid.

Illustration 10: Sheep will fragment a 
T-shape cluster.



We acknowledge that the slope change under the current model appears to be modest, but it does 

suggest a proof of concept. A more explicit dynamic, by which sheep are activated by high grid density 

or some more explicit measurement of clustering might yield improved results.  The “sheep” concept 

might be modified to emulate insects, disease, or some abstract circumference seeking phenomenon.

 

Illustration 12: FFM distribution with 
"Trapped Sheep" suggests a power law 
relationship as a function of the number 
of sheep. From right to left, nSheep=0, 1,  
5, 10, 25, 50.

Illustration 11: FFM distribution with  
"Trapped Sheep" logarithmically binned.



Determinism?
FFM Poincare Map

In nature it may be possible to predict triggers, such as lightening, fireworks, or arson. Also, in nature, 

we can potentially observe clustering patterns via satellite or aircraft, and if we can establish a cluster 

map  of  a  region,  we  can  use  standard  percolation  theory  type  methods  to  statistically  predict  the 

coalescence time of  existing clusters  into  super-clusters.  Accordingly,  we could  very likely  produce 

useful risk assessments of large fires.

So far as the scope of this work is concerned, however, wildfires – both real and simulated, are not 

deterministic [10].  This is not  terribly surprising since we our model is  based on evenly distributed 

random numbers and in our analytic analysis, we find just a single fixed point in density. Nonetheless, 

we construct a Poincare map of the grid density after a fire as a function of the grid density at the time of 

the previous fire.

18. firen1=f firen

We observe fairly  tight  clustering along a line with a slope slightly less than unity and a positive y 

intercept. At first glance, this appears almost deterministic. However, when we consider the distribution 

of fire events, we observe that most fires are small and so will  result  in a small  change in density. 

Further, a sparse grid cannot have large fires. We expect a sparse grid to accumulate trees just as we 

expect a dense grid to shed trees.  We observe that the scatter crosses unity at more or less ρ=.4, as 

expected. As the grid density increases beyond the fixed point density, we see larger fires. At densities 

above the critical percolation density (~.7),  we see very few points, presumably because above this 

density, where clusters become very large very quickly, huge fires occur very quickly. Here, we show 

results averaged by 1, 10, 100, and 1000 with error bars to show trends. The scatter plots suggest there 

might be multiple 

fixed  points  at 

higher density.

Illustration 13: Poncare map (nTrees(fire_n) vs nTrees(fier_n+1) ) of a 
FFM, f=1000. nTrees(n+1) are averaged over 1 (red dots), 10 (green 
points), 100 (blue line), 1000 (purple line and errorbars). The cyan line is  
slope=1.



Conclusion and Discussion

We find the  Dorssel-Schwabl FFM to be very robust, producing a distribution of events with slope near 

-1. The model is, within a reasonable range of parameters, invariant with respect to grid size, and firing 

frequency.  The models  dynamics also appear to be independent of  node level  information and grid 

element connectivity. The dynamics appear to be governed, perhaps exclusively, by clustering statistics. 

This conclusion is suggested by Yakolev et-al [16], and supported by the successes of our immunity and 

trapped-sheep models, in contrast with the failure of our node and connectivity based models.

Preliminary analysis indicate that our inverse linear immunity model achieves slopes between -1.5 and 

-1. These data suggest that large fires can be avoided by diminishing or fragmenting large clusters with 

smaller fires. The natural interpretation of this can vary. We might interpret the model, for example, to 

emulate wild fires in regions where fire propagation is hindered either by lush vegetation or by frequent 

rain storms. The immunity, then, can be interpreted as spatial or temporal (seasonal) variation in fuel 

moisture content, probability of precipitation, or possibly as fire fighting activity.

We recall, however, that our exponential immunity model model, converges to the standard FFM slope 

of -1 when iterated over sufficient time steps. We know anecdotally, and have some evidence to support 

the assertion, from wild fire fighters that small fires are easy to control, but large fires quickly become 

unmanageable. The question is, it would seem, how quickly? Does fire suppression potency fall off more 

like inverse linear or exponential?

The debate over proper, healthy management of wild lands in the last decade or so has evolved into  a 

heated discussion between policy makers, scientists, union officials, and manufacturers of equipment 

like bulldozers and shovels. The very history of modern wild fire management policy is born of a history 

plagued by good intentions, ignorance, corruption, greed, and bureaucratic finger pointing. Some might 

argue that fire suppression policies were born of disastrous events like the Hinkley, Minnesota firestorm 

of  1894.  Having witnessed several  towns fully  evaporated in an afternoon and hundreds of  citizens 

burned to death and maimed in terrible ways, citizens demanded protection, lumber companies wanted 

their  fiscal  interests  protected,  and  politicians  seeking  reelection  leaped  into  action.  A  scientifically 

thorough or politically bold investigation of disasters like Hinkley might  have suggested policies and 

practices by the lumber companies contributed heavily  to  these disasters.  Lumber  companies were 

notorious,  for  example,  for  quickly  felling  huge tracts  of  land and  leaving behind the  “slash,”  small 

branches, bark, and otherwise parts of the tree too small to mill, in huge piles to dry in the sun. These 

reckless,  lazy  policies  of  the  lumber  companies  contributed  to  the  conditions  that  facilitated  many 

devastating fires [13]. It is ironic that the resulting modern fire suppression policies, by facilitating the 

growth of thick connected clusters, and suppressing the natural fragmenting processes, may actually 

mimic the lumber companies' negligence that contributed to their misguided institution in the first place.

Our work suggests that  wild fire dynamics are governed strongly by clustering,  and that  the key to 



successful, minimum impact wild fire management lies in finding ways to mitigate the growth of large 

contiguous clusters of foliage. We hope that policy makers will look to our work and work that follows it to 

formulate land management policies based on good science.



Illustration 10: Chaparral patch mosaic (time since fire) in 1971. Taken from 
Minnich 2001 [18]
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