
dypy: Dynamical Systems in Python
PHY250 • Project Report • Spring 2008

SOPHIE ENGLE AND SEAN WHALEN
Department of Computer Science

{sjengle,shwhalen}@ucdavis.edu

Abstract: This project introduces dypy – an extensible Python framework for visu-
ally exploring dynamical systems. The framework allows for new dynamical sys-
tems to be added to the tool, as well as new methods for visualizing those systems.
It additionally provides a powerful gui component, allowing on-the-fly changes to
the visualization parameters. While still under construction, dypy already contains
over 1600 lines of code, with over 800 lines dedicated to the gui.

1

1 Introduction

In this course, we have seen and created numerous tools for visualizing dynamical systems. Many of these
tools illustrate the power of visualization and simulation. However, these tools are implemented on a wide
array of platforms and programming languages and sometimes lack graphical user interfaces.

Our goal is to integrate some of these ideas and tools we’ve seen in class into a single, extensible cross-
platform framework. We chose Python since it is cross-platform and used by many scientists in the field.
We additionally chose to use OpenGL to allow for hardware-accelerated three-dimensional visualizations.
Ideally, this will allow anyone with minimal Python experience the ability to extend the framework to new
systems and visualization tools without having to do extensive gui programming. This allows the focus to
be on the exploration of new systems.

The result of our work is dypy (named for dynamical systems in python), which is both a tool and a
custom Python package. While it is a work in progress, dypy supports dynamically loaded systems and
visualization tools, and an interactive gui allowing for visualization parameters to be changed in real-time.

2 Background

The visualization tools we chose to first integrate into dypy focus on a Monte-Carlo animation approach to
traditional visualizations such as orbit diagrams or phase portraits. Instead of presenting a static picture,
we animate the iteration of these systems based on a randomized set of initial states.

Our first implementation of these ideas was in Processing, an open source programming language and
environment based on Java. This implementation can be found at:

http://www.node99.org/projects/bifurcation/ or
http://www.phien.org/wiki/index.php?title=Logistic_Map_Bifurcation

OpenGL is the industry standard environment for developing 2D and 3D graphics applications. OpenGL
has standard language bindings for languages such as C++ and Java, and can be used in Python through
the Pyglet package.

For gui programming, the package wxPython provides a Python interface to the open-source, cross-platform
wxWidgets C++ class library, which provides gui applications with a native look and feel.

3 Methods

We used Python v2.5, Pyglet v1.0.1, wxPython v2.8.4, and Numpy v1.0.4 to implement our framework. We
developed the code under Windows and Macintosh systems.

We created a dypy Python package with separate subpackages/folders for systems, demos, visualization
tools, and the gui components. The package structure is as follows:

dypy <- main package
demos <- subpackage containing demos named SystemName__Demo#.py
gui <- subpackage containing general gui components
images <- internal folder containing toolbar and logo images
systems <- subpackage containing systems named SystemName.py
tools <- subpackage containing tools named ToolName.py and ToolNameGUI.py

To start dypy we execute the following Python code:

2

http://www.node99.org/projects/bifurcation/
http://www.phien.org/wiki/index.php?title=Logistic_Map_Bifurcation

import dypy
dypy.show()

To allow for new systems, demos, and visualization tools to be added to the dypy framework, we had to
support dynamic loading of modules. Most of this code is in the file utils.py in the gui folder of the dypy
package. For example, to add a new system to the package, create a Map or ODE class for that system and
place the module file in the dypy/systems directory. Example code for the dynamic loading can be found
in figure 1.

Each tool is made of two components, and hence two different Python modules. The first module must
extend the DynamicsTool class. Each DyanmicsTool contains a DynamicsWindow class which automati-
cally handles setting up the OpenGL visualization window in Pyglet. The second module must contain
a wx.Panel class which provides a gui interface to that tool. The dypy gui loads this panel when necessary.

The gui code is separated into 17 different modules, and handles displaying and updating all the necessary
system and visualization parameter settings. The major gui classes include:

Module Description
MainPanel.py Displays widgets allowing user to select a system, demo, and tool

dynamically loaded from the package.
SystemPanel.py Displays widgets allowing user to select the state (x, y, z) ranges

and parameter ranges to explore, adjusting to the system dimen-
sion as necessary.

MainWindow.py Displays the primary dypy window.

We discuss the implementation of systems in the next section.

4 Dynamical Systems

We implemented 11 dynamical systems in our framework. This includes:

1. Cosine Map
2. Cubic Map
3. Cusp Map
4. Exponential Map
5. Henon Map
6. Logistic Map
7. Lorenz ODEs
8. Neuron Map
9. Rossler ODEs

10. Standard Map
11. Tent Map

To implement these systems, we created two classes: a Map class and a ODE class. Every system implemented
inherits one of these two classes. The Map class includes functions to iterate the map, return the derivative,
and get the state and parameter ranges and names for the map. The ODE class is almost identical, except for
a Runga-Kutta integrator. Both classes use arrays to allow for systems of any dimension.

3

5 Results

The resulting framework consists of over 1600 lines of code, with over 800 lines of code dedicated to just
the gui. We implemented 11 systems and two visualization tools in the gui. The gui allows users to config-
ure system and visualization parameters before and during visualization, and automatically adjusts to the
necessary number of dimensions for the system.

However, the framework is still incomplete. The toolbar, allowing the user to load a system, demo, or tool
from a Python file outside the dypy package is not functional. The demo concept is not yet implemented,
some usability improvements can be made to the gui, and some code optimization is possible.

We found the implementation of wxPython to vary across systems – making the gui almost unusable on
some Mac systems. This creates an obstacle to making dypy a true cross-platform framework. Addi-
tionally, moving from the Java Processing environment to Python, we found some visualization tools ran
significantly slower under Python and Pyglet.

Figure 2, 3, and 4 demonstrate the dypy gui and visualization tools.

6 Conclusion

dypy is an extensible Python package allowing for users with Python experience to easily add new systems
to explore. With slightly more experience, users can even add new visualization tools to dypy .

However, the interface between Python and the various C++ based packages was cumbersome. This espe-
cially affected the gui programming. Trying to the gui interface in wxPython to behave identically across
different platforms has been a challenge.

Having a gui interface increases interactivity with the visualization, allowing the user greater flexibility
when exploring new dynamical systems. However, the amount of code required by the gui interface in
relation to the total amount of code for all of dypy illustrates the need for a framework which allows users
to avoid messy gui programming. While we were unable to fully complete the gui for dypy , we have
shown such a framework is possible in Python.

7 Bibliography

None.

4

8 Figures

from systems/__init__.py:
import dypy, os, os.path

def getall():
path = os.path.join(dypy.__path__[0], "systems")
excludes = ["__init__", "Map", "ODE"]
names = [f[0:-3] for f in os.listdir(path) if f[-3:] == ".py"]

for e in excludes:
if e in names:

names.remove(e)

return names

__all__ = getall()

from gui/utils.py:
import dypy.systems

def get_classes(modules):
classes = []

for module in modules:
class_name = module.__name__.split(’.’)[-1]
exec "current = %s.%s()" % (module.__name__, class_name)
classes.append(current)

return classes

def get_systems():
names = dypy.systems.__all__
names = ["dypy.systems." + name for name in names]
names.sort()

return get_classes(get_modules(names))

Figure 1: Example Python code which allows for systems to be dynamically loaded at startup.

5

Figure 2: A screenshot showing both the dypy gui and the visualization window, displaying a Monte-Carlo
animated orbit diagram for the Logistic Map with x ranging from 0 to 1 and r ranging from 3.5 to 4.0.

6

Figure 3: A screenshot showing the other tabs of the dypi gui. The “Logistic Map” tab is automatically gen-
erated based on the system selected in the “Main” tab. The “Orbit Diagram” tab is automatically generated
based on the visualization tool selected in the “Main” tab. Ideally, the demo selected would automatically
populate the parameter values in the “Logistic Map” tab. However, demos have not yet been implemented
in dypy.

7

Figure 4: dypy is designed to allow for systems with any number of dimensions. In this screenshot, we
show how the dypy gui automatically adjusted to the 3-dimensional Lorenz odes.

8

	Introduction
	Background
	Methods
	Dynamical Systems
	Results
	Conclusion
	Bibliography
	Figures

