Bouncing Balls

\square

Alex Jing Wei Huang

Goals of this Project

- Analyze the ball collision rates under different conditions (parameters).
- Different container shapes).
- Different numbers of balls,
- Different initial velocity ranges.
- Analyze the velocity distribution of these balls.

State Space of the System

- State space: 4 dimension.
- Position (x and y coordinates)
- Velocity (x and y directions)
- Other parameters of the system
- Shape of the container
- Radius of balls

Simulation Tools

- Python
- Pygame pakage
- Visual pakage

Properties of the System

- Balls are moving in 2D space.
- Balls have random initial velocities.

■ All balls have same radius and mass.

- Balls can collide with walls and other balls.
- Energy is conserved during all time.

Experiment 1: The collision rates with respect to different container shapes

10 balls (with random initial velocities between -5 to 5) are put in three containers with same area and different shape.
-600×600 (pixel x pixel)
-400×900

- 300×1200

We calculate the number of collisions after moving for a day ($24^{*} 60^{2}$ seconds).

- Note by "second", I mean iteration.

Experiment 1 (cont.)

Experiment 1 (cont.)

- 600×600 square window

	Data 1	Data 2	Data 3	Data 4	Data 5	Average
Ball to wall	8373	8565	7114	7471	5755	7455,6
Ball to ball	9673	6905	7186	5357	4387	6721.6
Total						14177.2

Experiment 1 (cont.)

■ 900×400 rectangular window

	Data 1	Data 2	Data 3	Data 4	Data 5	Average
Ball to wall	9032	7903	7539	9442	6929	8169
Ball to ball	6543	5165	8268	6768	4457	6240.2
Total						14409.2

Experiment 1 (cont.)

- 1200×1200 rectangular window

	Data 1	Data 2	Data 3	Data 4	Data 5	Average
Ball to wall	10409	10688	9323	9696	10400	10103.2
Ball to ball	5840	6205	4710	6264	5914	5786.6
Total						15889.8

Experiment 1 (cont.)

- Summary of data

	600×600	900×400	1200×300
Ball to wall	7455,6	8169	10103.2
Ball to ball	6721.6	6240.2	5786.6
Total	14177.2	14409.2	15889.8

Experiment 1 (cont.)

- Conclusion
- We can minimize the number of ball-to-wall collisions by putting them in a square container.

Experiment 2: Collision rates with respect to different numbers of balls

■ Window size: 600×600.

- Number of balls
- 10
- 15
- 20

Experiment 2 (cont.)

- 10 balls (same data from Experiment 1)

	Data 1	Data 2	Data 3	Data 4	Data 5	Average
Ball to wall	8373	8565	7114	7471	5755	7455,6
Ball to ball	9673	6905	7186	5357	4387	6721.6
Total						14177.2

Experiment 2 (cont.)

- 15 balls

	Data 1	Data 2	Data 3	Data 4	Data 5	Average
Ball to wall	10709	11188	12681	11876	11753	11641.4
Ball to ball	13004	13756	14361	13929	13834	13776.8
Total						25418.2

Experiment 2 (cont.)

- 20 balls

	Data 1	Data 2	Data 3	Data 4	Data 5	Average
Ball to wall	15023	17600	15865	18095	13209	15958.4
Ball to ball	22627	29090	25182	29167	22140	25641.2
Total						41599.6

Experiment 2 (cont.)

- Summary of data

	10 balls	15 balls	20 balls
Ball to wall	7455,6	11641.4	15958.4
Ball to ball	6721.6	13776.8	25641.2
Total	14177.2	25418.2	41599.6

- Conclusion
- Both ball-to-wall and ball-to-ball collisions increase as the number of balls increases.

Experiment 3: Collision rates with respect to different initial velocity ranges

- Window size: 600×600.
- Number of balls : 10
- Initial velocity ranges
$-\left[\begin{array}{cc}-5 & 5\end{array}\right]$ in each x and y direction
$-[-10,10]$
$-[-15,15]$

Experiment 3 (cont.)

- Initial velocity range : [-5,5]

	Data 1	Data 2	Data 3	Data 4	Data 5	Average
Ball to wall	8373	8565	7114	7471	5755	7455,6
Ball to ball	9673	6905	7186	5357	4387	6721.6
Total						14177.2

Experiment 3 (cont.)

- Initial velocity range : [-10, 10]

	Data 1	Data 2	Data 3	Data 4	Data 5	Average
Ball to wall	12593	13801	13514	14209	16859	14195.2
Ball to ball	11418	11176	10218	11809	12878	11499.8
Total						25695.0

Experiment 3 (cont.)

■ Initial velocity range : [-15, 15]

	Data 1	Data 2	Data 3	Data 4	Data 5	Average
Ball to wall	17701	23766	21139	17312	22281	20439.8
Ball to ball	13301	17173	14962	13830	16048	15062.8
Total						35502.6

Experiment 3 (cont.)

- Summary of data

	$[-5,5]$	$[-10,10]$	$[-15,15]$
Ball to wall	7455,6	14195.2	20439.8
Ball to ball	6721.6	11499.8	15062.8
Total	14177.2	25695.0	35502.6

- Conclusion
- Both ball-to-wall and ball-to-ball collisions increase as velocity range increases.

Velocity Distribution

- Balls' velocities are changing during the experiment (due to collisions with each other).
- We analyze the velocity change by plotting the histogram of these balls' velocities at each time step.

Velocity Distribution (cont.)

- The simulation verifies that, after certain period of time, the balls' velocities will follow the Boltzmann distribution.

- For proof, please look up Wikipedia

Future Exploration

- How the collision rate is affected
- if the balls are moving in 3D?
- if the container is a triangle or a circle?
- if balls have different radius and mass?

