

### Alex Jing Wei Huang

## Goals of this Project

Analyze the ball collision rates under different conditions (parameters).

- Different container shapes).
- Different numbers of balls,
- Different initial velocity ranges.
- Analyze the velocity distribution of these balls.

## State Space of the System

State space: 4 dimension.

- Position (x and y coordinates)
- Velocity (x and y directions)

### Other parameters of the system

- Shape of the container
- Radius of balls



## Simulation Tools

### Python

- Pygame pakage
- Visual pakage

## Properties of the System

- Balls are moving in 2D space.
- Balls have random initial velocities.
- All balls have same radius and mass.
- Balls can collide with walls and other balls.
- Energy is conserved during all time.

Experiment 1: The collision rates with respect to different container shapes

10 balls (with random initial velocities between –5 to 5) are put in three containers with same area and different shape.

- $-600 \times 600$  (pixel x pixel)
- 400 x 900
- 300 x 1200

We calculate the number of collisions after moving for a day (24\*60<sup>2</sup> seconds).

- Note by "second", I mean iteration.









600 x 600 square window

|              | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Average |
|--------------|--------|--------|--------|--------|--------|---------|
| Ball to wall | 8373   | 8565   | 7114   | 7471   | 5755   | 7455,6  |
| Ball to ball | 9673   | 6905   | 7186   | 5357   | 4387   | 6721.6  |
| Total        |        |        |        |        |        | 14177.2 |

#### 900 x 400 rectangular window

|              | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Average |
|--------------|--------|--------|--------|--------|--------|---------|
| Ball to wall | 9032   | 7903   | 7539   | 9442   | 6929   | 8169    |
| Ball to ball | 6543   | 5165   | 8268   | 6768   | 4457   | 6240.2  |
| Total        |        |        |        |        |        | 14409.2 |

#### 1200 x 1200 rectangular window

|              | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Average |
|--------------|--------|--------|--------|--------|--------|---------|
| Ball to wall | 10409  | 10688  | 9323   | 9696   | 10400  | 10103.2 |
| Ball to ball | 5840   | 6205   | 4710   | 6264   | 5914   | 5786.6  |
| Total        |        |        |        |        |        | 15889.8 |

### Summary of data

|              | 600 x 600 | 900 x 400 | 1200 x 300 |
|--------------|-----------|-----------|------------|
| Ball to wall | 7455,6    | 8169      | 10103.2    |
| Ball to ball | 6721.6    | 6240.2    | 5786.6     |
| Total        | 14177.2   | 14409.2   | 15889.8    |

### Conclusion

 We can minimize the number of ball-to-wall collisions by putting them in a square container. Experiment 2: Collision rates with respect to different numbers of balls

Window size: 600 x 600 .

- Number of balls
  - 10
  - 15
  - 20

10 balls (same data from Experiment 1)

|              | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Average |
|--------------|--------|--------|--------|--------|--------|---------|
| Ball to wall | 8373   | 8565   | 7114   | 7471   | 5755   | 7455,6  |
| Ball to ball | 9673   | 6905   | 7186   | 5357   | 4387   | 6721.6  |
| Total        |        |        |        |        |        | 14177.2 |

### 15 balls

|              | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Average |
|--------------|--------|--------|--------|--------|--------|---------|
| Ball to wall | 10709  | 11188  | 12681  | 11876  | 11753  | 11641.4 |
| Ball to ball | 13004  | 13756  | 14361  | 13929  | 13834  | 13776.8 |
| Total        |        |        |        |        |        | 25418.2 |

#### 20 balls

|              | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Average |
|--------------|--------|--------|--------|--------|--------|---------|
| Ball to wall | 15023  | 17600  | 15865  | 18095  | 13209  | 15958.4 |
| Ball to ball | 22627  | 29090  | 25182  | 29167  | 22140  | 25641.2 |
| Total        |        |        |        |        |        | 41599.6 |

#### Summary of data

|              | 10 balls | 15 balls | 20 balls |
|--------------|----------|----------|----------|
| Ball to wall | 7455,6   | 11641.4  | 15958.4  |
| Ball to ball | 6721.6   | 13776.8  | 25641.2  |
| Total        | 14177.2  | 25418.2  | 41599.6  |

### Conclusion

 Both ball-to-wall and ball-to-ball collisions increase as the number of balls increases. Experiment 3: Collision rates with respect to different initial velocity ranges

Window size: 600 x 600 .

- Number of balls : 10
- Initial velocity ranges
  - -[-5, 5] in each x and y direction
  - [-10, 10]
  - [-15, 15]

Initial velocity range : [-5, 5]

|              | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Average |
|--------------|--------|--------|--------|--------|--------|---------|
| Ball to wall | 8373   | 8565   | 7114   | 7471   | 5755   | 7455,6  |
| Ball to ball | 9673   | 6905   | 7186   | 5357   | 4387   | 6721.6  |
| Total        |        |        |        |        |        | 14177.2 |

Initial velocity range : [-10, 10]

|              | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Average |
|--------------|--------|--------|--------|--------|--------|---------|
| Ball to wall | 12593  | 13801  | 13514  | 14209  | 16859  | 14195.2 |
| Ball to ball | 11418  | 11176  | 10218  | 11809  | 12878  | 11499.8 |
| Total        |        |        |        |        |        | 25695.0 |

Initial velocity range : [-15, 15]

|              | Data 1 | Data 2 | Data 3 | Data 4 | Data 5 | Average |
|--------------|--------|--------|--------|--------|--------|---------|
| Ball to wall | 17701  | 23766  | 21139  | 17312  | 22281  | 20439.8 |
| Ball to ball | 13301  | 17173  | 14962  | 13830  | 16048  | 15062.8 |
| Total        |        |        |        |        |        | 35502.6 |

### Summary of data

|              | [-5, 5] | [-10, 10] | [-15, 15] |
|--------------|---------|-----------|-----------|
| Ball to wall | 7455,6  | 14195.2   | 20439.8   |
| Ball to ball | 6721.6  | 11499.8   | 15062.8   |
| Total        | 14177.2 | 25695.0   | 35502.6   |

### Conclusion

 Both ball-to-wall and ball-to-ball collisions increase as velocity range increases.

## Velocity Distribution

- Balls' velocities are changing during the experiment (due to collisions with each other).
- We analyze the velocity change by plotting the histogram of these balls' velocities at each time step.

## Velocity Distribution (cont.)

The simulation verifies that, after certain period of time, the balls' velocities will follow the Boltzmann distribution.



For proof, please look up Wikipedia

## Future Exploration

How the collision rate is affected

- if the balls are moving in 3D?
- if the container is a triangle or a circle?
- if balls have different radius and mass?