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Abstract:  In this paper, I explore Multiagent Dynamical Systems, a model of learning 
dynamics. After introducing the equations of motions, I investigate what the equations 
parameters do. Specifically, I use Python to plot several solutions to investigate the effect 
of parameters on bifurcations. Finally, I note some of the difficulties in solving the 
problem. 
 
 
 
 
 
 



 There are many situations in which one may want to study the dynamics of 
learning and decision-making. Whether a scientist would like to study the interaction of 
colonies of insects, the actions of a network of servers that have to find the best way to 
divide up a task, or the behavior of players in a game, the problem can be looked at from 
a learning dynamics viewpoint. Studying Multiagent Dynamical Systems helps one to 
understand the dynamics of learning:  how memories of past rewards affect current 
decisions.  In this paper, I qualitatively explore the dynamics of a model of the Rock-
Paper-Scissors game.    
   
 A Multiagent Dynamical System is a model of learning dynamics in which agents 
— or players — are able to choose from a finite number of decisions, basing subsequent 
decisions on memories of the rewards for previous actions. It is important to note that in 
the model I explore, agents do not have a global view of their environment; they only 
have knowledge of past rewards for their own actions. 
  
 To better understand the affect of different parameters on the system, let us first 
look at the single agent case.  In this model, a single agent is presented with a set of 
decisions to make.  The environment is static in that the reward for taking a particular 
action is fixed. The situation is analogous to caged monkey with the option of either 
pressing a button that reveals food, pressing a button that shocks the monkey, or pressing 
no button at all.       
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Here 
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" # [0,1)  controls the agent’s memory loss rate, and 
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T > 0 controls the agent-
environment interaction time scale, and 
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The time dynamic is then given by: 
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where 
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" # [0,$) controls the agent’s adaptation rate. 



  
 Recall our poor caged monkey. A larger value of 

! 

T  means the monkey is making 
fewer decisions as time evolves, a larger

! 

"  means the monkey remembers fewer of his 
previous actions, and a larger

! 

"  means the monkey adapts faster to its environment. This 
case is illustrated in the following figure. The agent in Figure 1 interacts with a static 
environment but has no ability to adapt to the environment, i.e. 

! 

" = 0. The agent’s 
probability distribution converges to the point (1/3,1/3,1/3)—the point in the phase space 
that represents the agent making completely random decisions. This agrees with the 
equation above in the limit as 

! 

"  approaches zero, as well as with our intuition. 
Conversely, the agent in Figure 2 adapts to the environment rapidly, i.e. 

! 

" >>10 . In this 
case, the agent converges to quickly to the top vertex, where the reward is the greatest. 
Again, this agrees with intuition and the above equation in the limit as 

! 

"  approaches 
infinity.   
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 Continuing with the development of the model, the discrete-time map can be 
extended to a continuous-time model 
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Shannon entropy of the system. The term 
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model can easily be generalized to a multiagent model. 
 
 For my project, I analyzed the rock-paper-scissors game between two agents.     
In this model, two agents interact by choosing to play rock, scissors or paper.  Rock beats 
scissors, scissors beats paper, and paper beats rock. The dynamics are given by the 
equations 
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where the 

! 

H 's  are as above. Here 
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where 

! 

"
X
,"
Y
# [$1,1] are tie breaking parameters. For the purposes of my simulations, I 

took 
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= "
Y

= 0.  
 
 The only difference between the single agent and multiagent equations is the first 
term, which still represents the reward for choosing action 

! 

i . Note the coupling of the 
equations that simulates the interaction of the two agents. To understand this coupling, 
consider the term 

! 

(Ay)
i
" x # Ay  of the first agent equation. The first term in the 

difference determines how the first agent makes decisions based on the choice 
distribution of the second agent. The second term is still just the net reinforcement 
averaged over all rewards. Given this coupling, one may expect that the equations—
known as the replicator equations—exhibit complicated and interesting dynamics.  This 
is certainly the case. 
                                                           
 The system exhibits a wide range of dynamical behavior: fixed points, limit 
cycles, quasiperiodicity, and deterministic chaos.   Given below are some interesting 
solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
  
 
 

 
The solutions above illustrate the bifuracation of limit cycles. Besides being just 

pretty pictures, we can gain more insight into how parameters affect behavior. For 
example, in this simulation 
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"
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= 2"
X

. We can see the effect of this in the upper left 
figure.  The Y agent on the right exhibits a solution that is closer to the edge of the 
simplex than the solution of the X agent. This is because the Y agent is adapting faster to 
its environment, thus the agent has more “confidence” in its actions. In other words, the 
solution is farther from the center of the simplex—where the agent’s decisions are more 
random. There are two more notable aspects of the solutions above. First, the way in 
which the two very similarly shaped limit cycles bifurcate is surprisingly different. 
Second, these solutions all had chaotic transients. This one example starts to illustrate just 
how rich the dynamics of this model are. 

 
 
  The figure on the left exhibits chaotic transients. This was a common 
phenomenon in many simulations.  The transients were not always chaotic. In the case 
illustrated below, I explored a bifurcation after which the stable fixed point (1/3,1/3,1/3) 



goes unstable, and solutions are attracted to a torus and become quasiperiodic. Finally, 
the solutions go chaotic. 

 
 
 Given the wide range of solutions, one must be sure to take care when integrating 
this system.  This system turned out to be fairly difficult to integrate numerically. I used 
the Runge-Kutta fourth order integrator. Initially, I had found many parameter values that 
I thought lead to interesting solutions. In order to find these quickly, I had to integrate 
with a time step of 

! 

dt = .1, which is considered rather large and inaccurate.  When I 
integrated the exact simulation again, this time using 

! 

dt = .01, the volatility of the 
equations became apparent.  The following solution on the left was integrated with a time 
step of size .1, and the solution on the right with a step size of .01. The differences are 
surprising and drastic, illustrating the need for care when integrating these equations. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 This model has many aspects that make it interesting to investigate. Whether one 
is interested in possible applications of the models to various fields or its beautiful 
solutions, the equations offer a rich range of dynamics to study. Also, the system is 
interesting because it is challenging both to understand and to solve numerically. I had 
originally planned to include I bifurcation diagram. While I have the program written, it 
runs excruciatingly slow, a result of the small time step needed for accuracy.  
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