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Abstract

The Lyapunov characteristic exponents (henceforth LCE’s) provide a quantitative numerical indica-
tor of chaos. A tool was developed in Python that calculates all n LCE’s for an n-dimensional system
of continuous first order ODE’s, and additionally calculates the Kaplan-Yorke dimension of the system.
This tool is released under the GNU General Public License. It is then applied to various systems,
including the Lorenz system, the Rössler system, and the frictionless pendulum. The results were found
to be consistent with published results found for the Lorenz and Rössler systems. The pendulum is
not a chaotic system, and the simulation results agreed with this. The algorithms in the code are well
commented, and only the general mathematics are discussed in this paper.

Introduction

The original aim of this project was to compute the Lyapunov spectrum of the three body problem, and to
search for different mass ratios that would result in chaotic behavior. The three body problem is a model
of three particles that move in response to the forces that they exert upon each other due to gravitational
attraction. The formulation of the equations of motion for the three body problem is relatively simple.
Technical issues regarding collisions or near collisions of the particles and the numerical accuracy of such
solutions led me to focus on applying my code to simpler, more easily verifiable systems.

Why are we interested in the LCE’s, and what exactly do they tell us? A rigorous definition of chaos
has historically proven to be a bit slippery, but the numerical (as opposed to analytical) computation of
the LCE’s provides an approach that is commonly accepted as a way to determine if chaos is present in a
system. Knowing whether or not chaos is present in a system, and to what degree it is present, is important
if you have any desire to make long term predictions of the behavior of a system. What the LCE’s tell
you is exactly this – whether or not your system is chaotic. If a system has one or more positive LCE’s, it
means that arbitrarily close initial conditions will grow exponentially far apart, thus reducing the ability
to predict the long term behavior. The magnitude of the positive LCE’s indicate how quickly these initial
conditions separate, thereby giving one an idea of how long it might be feasible to predict the behavior of
a system before predictions become meaningless.

Technical Development

The theoretical development of the calculation of the LCE’s is rather lengthy, see [1] and [2] for a rigorous
development of the theory and the numerical application. The basic idea is as follows. Given a dynamical
system of the form:

ẋ = f(x, t) x ∈ Rn, t ∈ R
f : Rn × R → Rn
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This system can be linearized about any point in Rn, and this linearized mapping governs the local dynamics
near the point of linearization. It is this linearized flow that allows us to compute the LCE’s, simply by
time averaging the amount of stretch that a spanning set of basis vectors undergo as they flow along the
trajectory. This will be discussed in more detail later. The linearized flow at an arbitrary point x ∈ Rn is
then simply:

δẋ =
∂f

∂x (x,t)
δx =


∂f1

∂x1

∂f1

∂x2
. . .

∂f2

∂x1

∂f2

∂x2
. . .

...
...

. . .


(x,t)

 δx1

δx2
...


Where ∂f

∂x is the Jacobian matrix. The above equation is used to evaluate how the basis vectors are
changed along trajectories of the system. So, given an n-dimensional system, we need to integrate n first
order ODE’s to find the trajectory of the system. Additionally, we need to integrate the linearized flow for
each of the n basis vectors in Rn. This amounts to n(n+ 1) first order ODE’s.

From an implementation point of view, one can see that for small systems (n ≤ 3), it wouldn’t be too
difficult to hard code the above equations, but since the number of equations grows with n2, at some point
it becomes more efficient to generalize the above procedure. To do so, first, define the composite state
vector as:

x̄T = [x e1 . . . en] ∈ Rn(n+1)

Where each ei ∈ Rn is a basis vector at the point of linearization along the trajectory. Then we can write
the composite differential equations as: 

ẋ
ė1
...
ėn

 =


f(x, t)
∂f
∂xe1

...
∂f
∂xen


Where ∂f

∂x denotes the Jacobian matrix evaluated at the current point (and time) along the trajectory. By
inspection, one can see that this is indeed a system of coupled ordinary differential equations. The right
hand side of this composite system of differential equations can conveniently be generated given x, t, f(x, t)
and ∂f

∂x (x, t). The tool developed in Python takes these function definitions and generates the function for
the composite system, which is then easily numerically integrated. For the initial condition of the state,
one should simply choose an initial condition that isn’t in a basin of attraction for a stable fixed point or
limit cycle. As for the initial conditions of the basis vectors, the easiest choice is the standard basis in Rn.
In fact, any linearly independent basis will suffice, it has been shown in [1] that the LCE’s are independent
of the basis vectors that are chosen.

The procedure for calculating the LCE’s is conceptually straightforward. For a good understanding of
it, one must review the Gram-Schmidt orthonormalization procedure that takes a basis and generates an
orthonormal basis. The Gram-Schmidt procedure is an iterative procedure that begins with the first vector
in the list, normalizes it and uses this as the first normal basis vector. Each sebsequent basis vector is then
generated by taking the next vector in the original list, subtracting from it any components in the direction
of the new orthonormal basis vectors, and then normalizing. In order to determine the LCE’s, one needs
to take the time average of the stretching of each of the basis vectors in each of the orthogonal directions.
This amounts to accumulating the Euclidean 2-norm of each of the orthogonalized basis vectors, which
can be efficiently implemented as an intermediate step in the Gram-Schmidt procedure. It is essential to
understand that the norms to be accumulated are not just the norms of each of the basis vectors after they
have evolved for some period of time – one must compute the norm of the vector that is orthogonal to the
previous orthonormal vectors in the list.
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Given a basis {e1 . . . en}, the procedure is as follows:

d1 = ||e1||2
ẽ1 =

e1
d1

d2 = ||e2− < e2, ẽ1 > ẽ1||2

ẽ2 =
e2− < e2, ẽ1 > ẽ1

d2
. . . = . . .

di =

∣∣∣∣∣∣
∣∣∣∣∣∣ei −

i−1∑
j=1

< ei, ẽj > ẽj

∣∣∣∣∣∣
∣∣∣∣∣∣
2

ẽi =
ei −

∑i−1
j=1 < ei, ẽj > ẽj

di

Where < ∗, ∗ > is the standard inner product on Rn, and ||∗||2 is the standard Euclidean 2-norm. The
LCE’s are then simply:

λi = lim
T→∞

1
T

T∑
t=0

ln (di(t))

In practice, we cannot integrate indefinitely, and we can only compute each di at some multiple of the
integration time step, so this becomes:

λi ≈
1

NlceTpb

Nlce∑
k=1

ln (di(kTpb))

Where Tpb is the period of time between each ‘pull-back’ or orthonormalization procedure, and Nlce is the
number of ‘pull-back’ iterations to perform during the computation of the LCE’s.

This procedure of normalizing the basis vectors can be done at varying time intervals. Conceptually, it
would makes sense to do it continuously, but due to the discrete nature of the numerical implementation,
one can perform it at most once per integration time step. In practice, this procedure can be performed even
less frequently and still achieve reliable results. However, if one doesn’t perform the normalization process
frequently enough, the basis vectors will tend to align in the direction of the largest LCE, and numerical
errors will arise due to the vectors becoming very closely aligned, as well as some becoming very long and
others becoming very short, both of which will degrade the accuracy of the Gram-Schmidt procedure. In
all of the studies in this project, the normalization procedure was performed once every 10 integration time
steps, although this is a parameter that can be changed in the function call of ComputeLCE().

Once the LCE’s have been computed, the Kaplan - Yorke dimension of the system can be easily
computed. Ordering the LCE’s from largest to smallest, λ1 ≥ λ2 ≥ . . . λn, the Kaplan - York dimension is
then:

DKY = j +
∑j

i=1 λi

|λj+1|
Where j is the largest integer for which λ1 + λ2 + . . .+ λj ≥ 0. The Kaplan - Yorke dimension is an upper
bound on the information dimension of the system [4]. This is implemented as KaplanYorkeDimension()
in the code.

Dynamical Systems

The code was applied to three dynamical systems, two of which are known to be chaotic, and one of which is
not chaotic. Outlined here are the equations of motion for each system. Also required for the computation
is each system’s Jacobian matrix, which is easily determined from the equations of motion.
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Lorenz

The Lorenz system has three positive parameters: σ, r, b ≥ 0. These parameters were taken to be σ = 10.0,
r = 28.0, and b = 8

3 .

ẋ
ẏ
ż

=
=
=

σ(y − x)
(r − z)x− y
xy − bz

Rössler

The Rössler system is the simplest known system that exhibits chaos because it has only one nonlinear
term. The parameters chosen are the traditional parameters as studied by Rössler, a = b = 0.2, and
c = 5.7.

ẋ
ẏ
ż

=
=
=

−y − z
x+ ay

b+ z(x− c)

Frictionless Pendulum

The pendulum is a well studied system that is not chaotic. The dynamics of the pendulum are similar to
many processes in real life: flying a rocket to outer space (must keep the nose pointed up) and even the
dynamics of a vehicle under front or rear wheel braking exhibit similar dynamics to that of a pendulum.
The pendulum system has two parameters: g and l. The downward position of the pendulum is taken to
be θ = 0. Letting x := θ, and y := θ̇, the equations of motion can be written as:

ẋ
ẏ

=
=

y
−g

l sinx

This system was studied for the case when g = l = 1

Results

All simulations used the following parameters:

• t0: 0.0 s

• dt: 0.01 s

• Tpb: 0.1 s

• Ntrans: 100

• Nlce: 100000

Ntrans is the number of pullback iterations to integrate the ODE’s before starting the calculation of the
LCE’s. This parameter allows one to let a system settle down to an attractor before beginning the LCE
computation. All numerical integration was done with the scipy.odeint module, which is simply a
wrapper to the LSODA integration routine developed by Linda R. Petzold and Alan C. Hindmarsh at
Lawrence Livermore [5]. This code adaptively adjusts the integration method between a stiff backward
differentiation technique and a non-stiff Adams linear multi-step technique. More details can be found at:
http://www.netlib.org/odepack/opkd-sum

The following results were obtained for the three systems:
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1. Lorenz System:

LCE’s: (0.0906509485, 0.000635914405, -14.5738118)

Dky: 2.06220126187

2. Rössler System:

LCE’s: (0.0709792970, 0.0000132794085, -5.39406910)

Dky: 2.01315876674

3. Pendulum System:

LCE’s: (0.00060355, -0.00060395)

Dky: 1.0

The positive LCE’s seen in the Lorenz and Rössler systems indicate the presence of chaos. Additionally,
the Kaplan Yorke dimension of the Lorenz is slight higher than that of the Rössler. The pendulum is a two
dimensional system, and thus cannot exhibit chaos. The numerical results indicate two very small LCE’s,
one positive and one negative, both of nearly the same magnitude. This is an indicator that the system
actually has two zero LCE’s, and if the simulation was run for longer periods of time, these two LCE’s
would continue to shrink.

The results of the Lorenz system are identical to the results obtained by Professor Crutchfield’s code
developed for the course PHYS 250 at University of California, Davis. Additionally, other authors have
published the same results for the Lorenz and Rössler systems when using the same parameters [6].

Conclusions and Future Work

A general tool for numerically estimating the LCE’s of an n-dimensional system was developed. It was
validated on two well studied chaotic systems in order to verify its correctness. Python was found to be a
great asset in the development of a flexible general code that was readable, reliable, and relatively fast.

Further work to be done in this area would be to apply this code to other systems to test for chaotic
behavior. Integrating this tool with PyDSTool [3] is another project to be undertaken in the near future,
and I have been in correspondence with the authors at Cornell University regarding collaboration on this
front. Finally, I plan on using this tool to test for the presence of chaos in a benchmark model of a bicycle.
The bicycle is a challenging nonholonomic system that has very interesting dynamics, and up to this point,
the presence of chaos in the bicycle is unknown.
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