
A Plausible Neural Model for Perceptual waves:

A report on ”Dynamics of travelling waves in

visual perception.” -

by Hugh R. Wilson, et. al.

Joel Gutierrez and Mark Valente

June 8, 2007

1 Introduction

This article gives a model for the visual phenomenon of travelling waves in
perception. The basis of the model is the phenomenon of binocular rivalry,
which is defined as ”a phenomenon in which visual perception alternates between
different images presented to each eye.”1 The reason this occurs is due to the
connectivity and selectivity of neurons. Neurons can be connected to each other
directly or indirectly, via some other neuron. There are also different types of
neurons, some excite other neurons and others inhibit other neurons. Neurons
are classified according to their morphology and behaviour. The attriubute of
selectivity of a specific type of neuron is described as the neurons response to
a particular stimulus. For example, some neurons might responed vigorouly
when the eye is exposed to a black vertical line, while others respond weakly.
A neurons response is characterized by the firing frequency of the neuron when
it is exposed to a particular stimulus. The firing frequency is the rate at which
the neuron sends messages to neighboring connected neurons. The basis of the
model given by Wilson et. al. can be described by four neurons connected in
a particular way, such that the increasing firing rate of one neuron causes the
firing rate of the other neuron to decrease. Hence, there exists a rivalry between
two neurons.

2 Description and Discussion

The behaviour of the firing rate of a single neuron, imagining that its firing rate
is high at t = 0, can be modeled mathematically by the following simple firing
rate model.

τ
dT

dt
= −T

1

This states that the firing rate of a neuron will exponentially decrease over
time, as long as the neuron receives no stimulus after t = 0. However, neurons
are not isolated in our brains. Therefore, in order to include the contribution
of neighboring neurons, the model must consider the influence of some stimuli.
This can be accounted for by the Naka-Rushton fucntion, which is a Sigmoid.

f(s) =
[

fmax
sn

θn+sn s ≥ 0
0 s ≤ 0

]
,

where fmax is the maximal firing rate of the neuron, s is the amplitude of the
stimulus, and θ is the value of s at which the firing rate is 1

2fmax. The question
may arise as to how Naka and Rushton decided that the response of a neuron
when introducing some stimulus can be respresented by a function of this form.
Imagine taking an isolated neuron and exposing it to a constant stimulus for
some time. The firing rate of the neuron will increase to some maximal level and
then decrease to some steady state. The reason for the decrease in firing rate is
do to adaptation, which very much like fatigue in the muscle. Then, record the
firing rate of the neuron at its steady state. Repeat this procedure for several
values of s and you will see that the fitted function is a sigmoid. Therefore, the
mathematical model for a neuron exposed to some stimuli is

τ
dT

dt
= −T + f(s).

In this model the input of a rivaling neuron will take away from the firing
rate of the opposing neuron. This is called inhibition. In order to account for
the inhibition, adaptation, and some outer stimuli, the simple firing rate model
is for a neuron with outer stimuli, adaptation, and inhibition is expressed as

2

τ
dT

dt
= −T +

100P 2
T

(10 + HT)2 + P 2
T

τIT

dIT

dt
= −IT + T

τHT

dHT

dt
= −HT + 2T

PT = max

[
ET

0

]
,

where T is the firing rate of a neuron that is selective to target shaped stimuli,
HT is the adaptation variable of the neuron, IT is the firing rate of the inhibitor
neuron that is driven by the T neuron, PT is the input into the T neuron,
and ET is some outer stimuli. The two rivaling neuron model the can then be
expressed as

τ
dT

dt
= −T +

100P 2
T

(10 + HT)2 + P 2
T

τIT

dIT

dt
= −IT + T

τHT

dHT

dt
= −HT + 2T

PT = max

[
ET − IS

0

]
,

τ
dS

dt
= −S +

100P 2
S

(10 + HS)2 + P 2
S

τIS

dIS

dt
= −IS + S

τHS

dHS

dt
= −HS + 2

PS = max

[
ES − IT

0

]
.

Notice that the only difference here is that the input to each neuron accounts
for the inhibition from their oppositional neighbor.

These equations decribe a very basic model for rivalry in a system of two
neurons.

The two rivaling neuron model can be considered the basic unit of rivalry.
Hence, a network of rivaling neurons will be composed of many units of rivaling
neurons. It is in a network of neurons that waves can occur. First, the model for
a network of neurons must incorporate the influence of all neurons in the network
on any particular neuron within the network. To do this, Wilson et. al. proposes

3

that the inhibition from opposing neurons be summed over and weighted. In
order to see waves of dominance in the model inhibition by opposing neurons is
all that is necessary2. The model proposed by Wilson et. al. also incorporates
collinear facilitation, which is a positive contribution from neighboring cells of
the same type.

The complete model presented by Wilson et. al. considers a network of neu-
rons that are coupled to each other, and it is by this coupling that neighboring
neurons can contribute to the input into one particular neuron. The model can
be expressed mathematically as follows,

τ
dT

dt
= −T +

100P 2
T

(10 + HT)2 + P 2
T

τIT

dIT

dt
= −IT + T

τHT

dHT

dt
= −HT + 2T

PT = max

[
ET − 0.27

∑
k ISk

exp
(
−x5

nk

σ5

)
+ g

∑
k 6=n Tkexp

(
− x5

nk

(2σ)5

)
0

]
,

τ
dS

dt
= −S +

100P 2
S

(10 + HS)2 + P 2
S

τIS

dIS

dt
= −IS + S

τHS

dHS

dt
= −HS + 2

PS = max

[
ES − 0.27

∑
k ITk

exp
(
−x5

nk

σ5

)
+ g

∑
k 6=n Skexp

(
− x5

nk

(2σ)5

)
0

]
.

In order for the model to reproduce experimental data the time constants
were chosen to be:

τ = 20ms

τI = 11ms

τH = 900ms.

We attempted to model the rivaling between two neurons. Therefore, we
omitted summation over neighboring inhibition and we omitted collinear fa-
cilitation all together, since the sum is over k 6= n. In doing so, we used the
following parameters for get oscillation in the firing rates of the rivaling neurons:

4

τ = 20ms

τI = 11ms

τH = 300ms.

Also, we change the weight on the summation over the inhibition to 0.45
and the weight on T in the adaptation equation to 0.47, rather than 2.

It was our ambitious goal to have a 2-D simulation to show the occurance
of waves. One thing to consider in the computation of a 2-D model is how to
compute the distance between the nth and kth neuron. It is simply triangulation
(see code).

Waves would occur in the lattice due to the fact that not all neurons of one
type will switch stability at the same time. It would be one, or maybe a few,
neurons of one type switching stability at one moment in time, and thereby
contributing strongest to their nearest neighbor’s excitation. Hence, creating a
dominance wave propagating outward.

3 Conclusion

The model presented by Wilson et. al. is a simple and plausible neural model
describing the phenomenon of travelling waves in visual perception. It considers
a very basic model for rivalry between two neurons and expands into a network
of rivaling neurons. It is only when multiple neurons are considered that waves
can occur. Wilson et. al. also incorporates collinear facilitation, which is in
agreement with experimental data3,4. Even though we were not able to create a
2-D simulation, we were able to see the bistable behaviour of the model. Hence,
we could see how the model supports wave phenomena.

4 References

1. http://en.wikipedia.org/wiki/Binocular rivalry

2. Rinzel, J., Terman, D., Wang, X. J. & Eremtrout, B. Propagating activity
pattern in large scale inhibitory neuronal networks. Science 279, 1351-
1355 (1995).

3. Field, D. J., Hayes, A. & Hess, R. F. Contour integrations by the human
visual system:evidence for a local ’association’ field. Vision Res. 33, 173-
193 (1993).

4. Kamitani, Y. & Shimojo, S. Manifestation of scotomas created by tran-
scranial magnetic stimulation of human visual cortex. Nature Neurosci.
2, 767-771 (1999).

5

5 Code

This code models the dynamics between two rivaling neurons. It will produce
a series of plots of the phase portrait with nullclines. These plots can then be
made into a movie, which will show how the nullclines move as the neurons
rival. I thought I had a movie, but the program I was using to put the movie
together decided to fail today!

Author : Joel Gutierrez
Date : 5/22/07
Place : UC Davis
Class : Chaos and Nonlinear Dynamics

Project - Presentation of binocular rivalry model based on the following article.
Dynamics of Travelling Waves in visual perception
Hugh R. Wilson, Rondolph Blake, and Sang-Hun Lee

Right now the system is ignoring the summations! This code will be used to make a
movie of the phase portrait showing the nullclines moving in time, therefore
demonstrating the bistability of a rivaling system.

Import plotting routines
from pylab import *
from numpy import *

’’’
To convert the rendered frames into a video use the command:
ffmpeg -i figs/null_%5d.PNG video/null.mpg

For better quality output:
ffmpeg -i figs/null_%5d.PNG -b 98000 video/null.avi

To view the video with mPlayer:
mplayer video/null.mpg
mplayer video/null.avi

To delete the frames:
rm figs/null_*.PNG

To delete the video:
rm video/null.mpg
’’’
Time
time_step = 0

6

time_interval = 500
dt = 0.25
time = []

Control parameter for the model:
tau_E = 20
tau_I = 11
tau_H = 300
E_S = 10
E_T = 10
I_wt = 0.45
H_wt = 0.47

T = []
I_T = []
H_T = []
S = []
I_S = []
H_S = []

#T cell
T.append(20)
I_T.append(10)
H_T.append(15)

#S cell
S.append(10)
I_S.append(8)
H_S.append(3)

Arrays used to calculate the nullclines.
Tarray = arange(-1,30,0.01)
Sarray = arange(-1,30,0.01)

RKThreeD(Firing rate (T) time constant, Inhibition (I) time constant, Adaptation (H) time constant, T, I, H, dT/dt, dI/dt, dh/dt, time step size)
def RKThreeD(tau_E, tau_I, tau_H, p, E_fr, I_fr, H_fr, E_fcn, I_fcn, H_fcn, dt):

k1E = dt * E_fcn(tau_E, p, H_fr, E_fr)
k1I = dt * I_fcn(tau_I, I_fr, E_fr)
k1H = dt * H_fcn(tau_H, H_fr, E_fr)

k2E = dt * E_fcn(tau_E, p, H_fr + k1E / 2.0, E_fr + k1E / 2.0)
k2I = dt * I_fcn(tau_I, I_fr + k1I / 2.0, E_fr + k1I / 2.0)
k2H = dt * H_fcn(tau_H, H_fr + k1H / 2.0, E_fr + k1H / 2.0)

k3E = dt * E_fcn(tau_E, p, H_fr + k2E / 2.0, E_fr + k2E / 2.0)

7

k3I = dt * I_fcn(tau_I, I_fr + k2I / 2.0, E_fr + k2I / 2.0)
k3H = dt * H_fcn(tau_H, H_fr + k2H / 2.0, E_fr + k2H / 2.0)

k4E = dt * E_fcn(tau_E, p, H_fr + k3E, E_fr + k3E)
k4I = dt * I_fcn(tau_I, I_fr + k3I, E_fr + k3I)
k4H = dt * H_fcn(tau_H, H_fr + k3H, E_fr + k3H)

E_fr = E_fr + (k1E + 2.0 * k2E + 2.0 * k3E + k4E) / 6.0
I_fr = I_fr + (k1I + 2.0 * k2I + 2.0 * k3I + k4I) / 6.0
H_fr = H_fr + (k1H + 2.0 * k2H + 2.0 * k3H + k4H) / 6.0

return E_fr,I_fr,H_fr

Differential equations describing the system
def T_dot(tau_T,P_Tplus,H_T,T):

return (1.0/tau_T) * (-T + 100*P_Tplus**2/((10+H_T)**2 + P_Tplus**2))

def H_Tdot(tau_H,H_T,T):
return (1.0/tau_H) * (H_wt*T - H_T)

def I_Tdot(tau_I,I_T,T):
return (1.0/tau_I) * (T - I_T)

def S_dot(tau_S,P_Splus,H_S,S):
return (1.0/tau_S) * (-S + 100*P_Splus**2/((10+H_S)**2 + P_Splus**2))

def H_Sdot(tau_H,H_S,S):
return (1.0/tau_H) * (H_wt*S - H_S)

def I_Sdot(tau_I,I_S,S):
return (1.0/tau_I) * (S - I_S)

Main program solves the equations at each time step, which describe the state
of two rivaling neurons.
for t in arange(0,time_interval,dt):

#Store time value
time.append(t)

#Solve for input
P_T = E_T - I_wt*I_S[time_step]
P_S = E_S - I_wt*I_T[time_step]

#Ensure input is non-negative
P_Tplus = max(0,P_T)
P_Splus = max(0,P_S)

8

#Solve the three equations governing the T cell and store values
T_firing, T_inhib, T_adapt = RKThreeD(tau_E, tau_I, tau_H, P_Tplus, T[time_step], I_T[time_step], H_T[time_step], T_dot, I_Tdot, H_Tdot, dt)
T.append(T_firing)
I_T.append(T_inhib)
H_T.append(T_adapt)

#Solve the three equations governing the S cell and store values
S_firing, S_inhib, S_adapt = RKThreeD(tau_E, tau_I, tau_H, P_Splus, S[time_step], I_S[time_step], H_S[time_step], S_dot, I_Sdot, H_Sdot, dt)
S.append(S_firing)
I_S.append(S_inhib)
H_S.append(S_adapt)

#Solve for the nullclines and store values
Tnull = []
Snull = []
#Calcuate and save the 100th nullcline
if time_step%100 == 0:

for i in Tarray:
p_t = max(0,E_T - I_wt*i)
p_s = max(0,E_S - I_wt*i)
Tnull.append(100*p_t**2/((10 + H_T[time_step])**2 + p_t**2))
Snull.append(100*p_s**2/((10 + H_S[time_step])**2 + p_s**2))

clf
figure()
title(’H_T = ’ +str(H_T[time_step])+ ’, H_S = ’ +str(H_S[time_step]))
xlabel(’Snull’)
ylabel(’Tnull’)
plot(Sarray,Tnull,’r’,Snull,Tarray,’b’)
axis([-1.0,30,-1.0,30])
savefig(’figs/null_’+str(time_step).zfill(5)+’.PNG’)

#Increment the time index
time_step = time_step + 1

9

