
2D Ising Model Simulation

Jim Ma

Department of Physics

jma@physics.ucdavis.edu

Abstract: In order to simulate the behavior of a ferromagnet, I used a 
simplified 2D Ising model.  This model is based on the key features of 
a ferromagnet and the Metropolis algorithm. The whole model  is 
implemented in Python. We can examine how the temperature affects 
the phase transition of ferromagnet generated by executing this 
simulation.  

Introduction      
    In order to simulate the behavior of a ferromagnet, we examine the 
features of a ferromagnet first. Since there are billions of atomic 
dipoles in an ordinary size of a ferromagnet, even the best computer is 
impossible to take it. We use Monte Carlo summation, which generates 
a random sampling, and Metropolis algorithm, which low-energy states 
occur more often than high-energy state, to build the Ising model and 
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implement this model in Python.
   
Features of a Ferromagnet   
    In a ferromagnet, there are an enormous number of small patches 
called domains in which the atomic dipoles are aligned. Since the 
domains are randomly oriented, there is no large scale magnetization.
Accordingly, raising the temperature will increase the random 
fluctuations and destroy the alignment of the atomic dipoles. To every 
ferromagnet, at certain temperature, called Curie temperature, the 
magnetization becomes zero. A ferromagnet will become a paramagnet 
as the temperature is above the Curie temperature.

Ising Model
    To simply our model, we assume:
1. There are N atomic dipoles located on the N sites of a ferromagnet.
2. Each atomic dipole can be in one of the two possible states, called 

spin (S),  S = ±1 (spin up: 1, spin down: -1).
3. The total energy of a ferromagnet is   E = -J∑SiSj ,  J is a constant and 

the sum is over all pairs of adjacent  spins
From assumption 3, the energy of two neighboring pairs is -E  if they 
are parallel and +E if they are antiparallel.
  
      The key point of the Metropolis algorithm is to use the Boltzmann 
factors as a guide to generate the random sampling of states. It starts 
with any state randomly. Calculate the energy of the state, ΔU. If ΔU 
≤0,  the system's energy will decrease or remain unchanged after the 
state flipped, then go and change the state. If ΔU >0, compare the 
probability, exp(- ΔU/kT), of the flip to the probability generated at 
random. If there is no flip of the state, then there is no change of the 
system. This process is repeated over and over again until every state
has chances to flipped. 

Implementation       
     The software code is implemented in Python and listed at the end of 
this report. The program defines a size of nxn domain and a two-
dimensional array state(i,j) for the spin orientations. The size of the 
domain, temperature, size of the cell for dipole, and the number of 



time steps can be changed for different run. The program uses 
subroutine, Initialize, to define the state of the system randomly.
     The heart of the program is the “Main loop,” which executes the 
Metropolis algorithm. Within the loop, we first choose a state randomly 
by using the random(1), which returns a value between 0 and 1. Then, 
use the subroutine, dU, to calculate the ΔU. In the subroutine, dU, we 
implement the Mean Field Approximation method:
           E = -JnŜ ,     n : number of nearest neighbors (n=4 in 2_D)  
                                Ŝ : average alignment of neighbors   
and periodic boundary conditions, which we wrap around the states at 
the boundary (edge). So that the right edge is immediately left of the 
left edge and the bottom edge is immediately above the top edge. 
      At the end of the loop, we color the cell whose spin has flipped by 
using the subroutine, ColorCell. 

Conclusion
     If you like to find the Curie temperature of a ferromagnet, you have 
to set different T (temperature) values for different runs and compare 
their results.  If the T we set is below the actual Curie temperature, 
you'll get the final picture is either totally red or totally blue. Then, you 
can try a higher T  for the next run. Repeat this process until you get 
the best Curie temperature. 
     How many iterations are enough to get the right result? This 
depends on the domain size you define at the beginning of the run. 
Since the Ising model is based on random sampling, I set a infinite loop 
for iteration. Leave the user to decide when to stop execution!  
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Program: 2D Ising Model Simulation
#Phy250 Project: Ising Model Simulator  by Jim Ma
#
# TwoDIsing.py: Two-dimensional Ising Model simulator
# Using PyGame/SDL graphics
#
"""
 Options:
 -t #  Temperature
 -n #  Size of lattice
 -c #  Size of cell
 -s #  Number of time steps
"""

from numpy import *
from numpy.random import *
import getopt,sys
import time
from random import randint
try:

import Numeric as N
import pygame
import pygame.surfarray as surfarray

except ImportError:
raise ImportError, "Numeric and PyGame required."

#
#                 Ising Model routines                    #
#
# Initialize crystal lattice, load in initial configuration
def Initialize(nSites):



state = N.zeros((nSites,nSites))
for i in range(nSites):
   for j in range(nSites):
      if randint(0,1) > 0.5:     # dipole spin up
          state[i][j] = 1
      else :  state[i][j] = -1  # dipole spin down
      
return state

# Use Mean Field approximation and periodic BC to compute 
# dU for decision to flip a dipole
#                
def dU(i, j, nSites, state):    
   m = nSites - 1 
   if i == 0 :                # state[0,j]
      top = state[m,j]
   else : 
      top = state[i-1,j]

   if i == m :                # state[m,j]
      bottom = state[0,j]
   else : 
      bottom = state[i+1,j]  

   if j == 0 :                # state[i,0]
      left = state[i,m]
   else : 
      left = state[i,j-1]

   if j == m :                # state[i,m]
      right = state[i,0]
   else : 
      right = state[i,j+1]  

   return 2.*state[i,j]*(top+bottom+left+right)

# Color the cell based on dipole direction:
#     Dipole spin is up : color cell red



#     Dipole spin is down : color cell blue 
#                
def ColorCell(state,i,j):
   if state[i][j] > 0:    # dipole spin is up

  screen.fill(UpColor,[i*CellSize,j*CellSize,CellSize,CellSize])
   else : 
screen.fill(DownColor,[i*CellSize,j*CellSize,CellSize,CellSize])
  
# Set defaults
T = 2  # Temperature  
nSites   = 30 #30
CellSize = 24  #16
nSteps = 1000   
 

# Get command line arguments, if any
opts,args = getopt.getopt(sys.argv[1:],'t:n:c:s:')
for key,val in opts:

if key == '-t': T        = int(val)
if key == '-n': nSites   = int(val)
if key == '-c': CellSize = int(val)
if key == '-s': nSteps   = int(val)

print 'T = ', T
print 'nSites = ', nSites
print 'CellSize = ', CellSize
print 'nSteps = ',nSteps

size = (CellSize*nSites,CellSize*nSites)
# Set initial configuration

state = Initialize(nSites)

pygame.init()
UpColor = 255, 0, 0       # red
DownColor = 0, 0, 255     # blue

# Get display surface
screen = pygame.display.set_mode(size)
pygame.display.set_caption('2D Ising Model Simulator')



# Clear display
screen.fill(UpColor)
pygame.display.flip()

# Create RGB array whose elements refer to screen pixels
sptmdiag = surfarray.pixels3d(screen)

    # display initial dipole configuration
for i in range(nSites):
   for j in range(nSites):
      if state[i][j] < 0:

 
screen.fill(DownColor,[i*CellSize,j*CellSize,CellSize,CellSize])

t = 0
t0 = time.clock()
    # total execution time
t_total = time.clock()

# Main loop
flag = 1
while flag > 0:

for event in pygame.event.get():
    # Quit running simulation

if event.type == pygame.QUIT: sys.exit()
# randomly select cell 

        i = int(random(1)*nSites) 
       j = int(random(1)*nSites)  
       # Any system energy change if flip dipol
    dE = dU(i,j,nSites,state)
    # flip if system will have lower energy
    if dE <= 0. :
           state[i][j] = -state[i][j]
           ColorCell(state, i, j)
        # otherwise do random decision     
        elif random(1) < exp(-dE/T) :
             state[i][j] = -state[i][j]
             ColorCell(state, i, j)
    



pygame.display.flip()
t += 1
if (t % nSteps) == 0:

t1 = time.clock()
if (t1-t0) > 0.001 :
   print 't1 = ', t1
   print "Iterations per second: ", float(nSteps) / (t1 - t0)
t0 = t1

# calculate execution time
dt = time.clock()-t_total
if dt > 200.0 : flag = -1

#matshow(state)
print "Total simulation time is %g seconds of temperature %g K" % 
(dt,T)
     


