
2D Ising Model Simulation

Jim Ma

Department of Physics

jma@physics.ucdavis.edu

Abstract: In order to simulate the behavior of a ferromagnet, I used a
simplified 2D Ising model. This model is based on the key features of
a ferromagnet and the Metropolis algorithm. The whole model is
implemented in Python. We can examine how the temperature affects
the phase transition of ferromagnet generated by executing this
simulation.

Introduction
 In order to simulate the behavior of a ferromagnet, we examine the
features of a ferromagnet first. Since there are billions of atomic
dipoles in an ordinary size of a ferromagnet, even the best computer is
impossible to take it. We use Monte Carlo summation, which generates
a random sampling, and Metropolis algorithm, which low-energy states
occur more often than high-energy state, to build the Ising model and

mailto:jma@physics.ucdavis.edu

implement this model in Python.

Features of a Ferromagnet
 In a ferromagnet, there are an enormous number of small patches
called domains in which the atomic dipoles are aligned. Since the
domains are randomly oriented, there is no large scale magnetization.
Accordingly, raising the temperature will increase the random
fluctuations and destroy the alignment of the atomic dipoles. To every
ferromagnet, at certain temperature, called Curie temperature, the
magnetization becomes zero. A ferromagnet will become a paramagnet
as the temperature is above the Curie temperature.

Ising Model
 To simply our model, we assume:
1. There are N atomic dipoles located on the N sites of a ferromagnet.
2. Each atomic dipole can be in one of the two possible states, called

spin (S), S = ±1 (spin up: 1, spin down: -1).
3. The total energy of a ferromagnet is E = -J∑SiSj , J is a constant and

the sum is over all pairs of adjacent spins
From assumption 3, the energy of two neighboring pairs is -E if they
are parallel and +E if they are antiparallel.

 The key point of the Metropolis algorithm is to use the Boltzmann
factors as a guide to generate the random sampling of states. It starts
with any state randomly. Calculate the energy of the state, ΔU. If ΔU
≤0, the system's energy will decrease or remain unchanged after the
state flipped, then go and change the state. If ΔU >0, compare the
probability, exp(- ΔU/kT), of the flip to the probability generated at
random. If there is no flip of the state, then there is no change of the
system. This process is repeated over and over again until every state
has chances to flipped.

Implementation
 The software code is implemented in Python and listed at the end of
this report. The program defines a size of nxn domain and a two-
dimensional array state(i,j) for the spin orientations. The size of the
domain, temperature, size of the cell for dipole, and the number of

time steps can be changed for different run. The program uses
subroutine, Initialize, to define the state of the system randomly.
 The heart of the program is the “Main loop,” which executes the
Metropolis algorithm. Within the loop, we first choose a state randomly
by using the random(1), which returns a value between 0 and 1. Then,
use the subroutine, dU, to calculate the ΔU. In the subroutine, dU, we
implement the Mean Field Approximation method:
 E = -JnŜ , n : number of nearest neighbors (n=4 in 2_D)
 Ŝ : average alignment of neighbors
and periodic boundary conditions, which we wrap around the states at
the boundary (edge). So that the right edge is immediately left of the
left edge and the bottom edge is immediately above the top edge.
 At the end of the loop, we color the cell whose spin has flipped by
using the subroutine, ColorCell.

Conclusion
 If you like to find the Curie temperature of a ferromagnet, you have
to set different T (temperature) values for different runs and compare
their results. If the T we set is below the actual Curie temperature,
you'll get the final picture is either totally red or totally blue. Then, you
can try a higher T for the next run. Repeat this process until you get
the best Curie temperature.
 How many iterations are enough to get the right result? This
depends on the domain size you define at the beginning of the run.
Since the Ising model is based on random sampling, I set a infinite loop
for iteration. Leave the user to decide when to stop execution!

Bibliography
Daniel V. Schroeder, “An Introduction to Thermal Physics,” by
Addison Wesley Longman.

Program: 2D Ising Model Simulation
#Phy250 Project: Ising Model Simulator by Jim Ma
#
TwoDIsing.py: Two-dimensional Ising Model simulator
Using PyGame/SDL graphics
#
"""
 Options:
 -t # Temperature
 -n # Size of lattice
 -c # Size of cell
 -s # Number of time steps
"""

from numpy import *
from numpy.random import *
import getopt,sys
import time
from random import randint
try:

import Numeric as N
import pygame
import pygame.surfarray as surfarray

except ImportError:
raise ImportError, "Numeric and PyGame required."

#
Ising Model routines
#
Initialize crystal lattice, load in initial configuration
def Initialize(nSites):

state = N.zeros((nSites,nSites))
for i in range(nSites):
 for j in range(nSites):
 if randint(0,1) > 0.5: # dipole spin up
 state[i][j] = 1
 else : state[i][j] = -1 # dipole spin down

return state

Use Mean Field approximation and periodic BC to compute
dU for decision to flip a dipole

def dU(i, j, nSites, state):
 m = nSites - 1
 if i == 0 : # state[0,j]
 top = state[m,j]
 else :
 top = state[i-1,j]

 if i == m : # state[m,j]
 bottom = state[0,j]
 else :
 bottom = state[i+1,j]

 if j == 0 : # state[i,0]
 left = state[i,m]
 else :
 left = state[i,j-1]

 if j == m : # state[i,m]
 right = state[i,0]
 else :
 right = state[i,j+1]

 return 2.*state[i,j]*(top+bottom+left+right)

Color the cell based on dipole direction:
Dipole spin is up : color cell red

Dipole spin is down : color cell blue

def ColorCell(state,i,j):
 if state[i][j] > 0: # dipole spin is up

 screen.fill(UpColor,[i*CellSize,j*CellSize,CellSize,CellSize])
 else :
screen.fill(DownColor,[i*CellSize,j*CellSize,CellSize,CellSize])

Set defaults
T = 2 # Temperature
nSites = 30 #30
CellSize = 24 #16
nSteps = 1000

Get command line arguments, if any
opts,args = getopt.getopt(sys.argv[1:],'t:n:c:s:')
for key,val in opts:

if key == '-t': T = int(val)
if key == '-n': nSites = int(val)
if key == '-c': CellSize = int(val)
if key == '-s': nSteps = int(val)

print 'T = ', T
print 'nSites = ', nSites
print 'CellSize = ', CellSize
print 'nSteps = ',nSteps

size = (CellSize*nSites,CellSize*nSites)
Set initial configuration

state = Initialize(nSites)

pygame.init()
UpColor = 255, 0, 0 # red
DownColor = 0, 0, 255 # blue

Get display surface
screen = pygame.display.set_mode(size)
pygame.display.set_caption('2D Ising Model Simulator')

Clear display
screen.fill(UpColor)
pygame.display.flip()

Create RGB array whose elements refer to screen pixels
sptmdiag = surfarray.pixels3d(screen)

 # display initial dipole configuration
for i in range(nSites):
 for j in range(nSites):
 if state[i][j] < 0:

screen.fill(DownColor,[i*CellSize,j*CellSize,CellSize,CellSize])

t = 0
t0 = time.clock()
 # total execution time
t_total = time.clock()

Main loop
flag = 1
while flag > 0:

for event in pygame.event.get():
 # Quit running simulation

if event.type == pygame.QUIT: sys.exit()
randomly select cell

 i = int(random(1)*nSites)
 j = int(random(1)*nSites)
 # Any system energy change if flip dipol
 dE = dU(i,j,nSites,state)
 # flip if system will have lower energy
 if dE <= 0. :
 state[i][j] = -state[i][j]
 ColorCell(state, i, j)
 # otherwise do random decision
 elif random(1) < exp(-dE/T) :
 state[i][j] = -state[i][j]
 ColorCell(state, i, j)

pygame.display.flip()
t += 1
if (t % nSteps) == 0:

t1 = time.clock()
if (t1-t0) > 0.001 :
 print 't1 = ', t1
 print "Iterations per second: ", float(nSteps) / (t1 - t0)
t0 = t1

calculate execution time
dt = time.clock()-t_total
if dt > 200.0 : flag = -1

#matshow(state)
print "Total simulation time is %g seconds of temperature %g K" %
(dt,T)

