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Recently, it has been shown that the correlation function (gotten from the power spectrum by way of 
the Wiener-Kninchin theorem) can be used to reconstruct epsilon-machines. We demonstrate the 
reconstruction process with four processes – the fair coin, the period one, the period two, and the 
golden mean – and from them obtain probability plots similar to ones obtained directly from a data 
sequence.  
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Introduction 
A discrete sequence of data is an ideal data set. The period one process, which will be explained later, is 

a sequence of 1’s. At any point, one knows the future and the past. A period two process, an alternating 

sequence of 1’s and 0’s, shares the same characteristic. One could have a slightly more complicated 

sequence of data, the golden mean, for example, but that too can be reduced into repeating patterns. 

Even seemingly random processes can be represented as finite state diagrams.  

Can the same thing be said about the spectrum of a signal? Logically, if a signal contains useful 

information, so should transformations and/or manipulations of that signal. Unless the information is 

lost, or buried under noise, representing a signal as one would represent a discrete data sequence 

should be possible. We explore that notion using the ε-Machine Spectral Representation (εMSR) 

procedure (1). By examining the power spectrums with varying degrees of complexity, we ultimately and 

successfully reconstruct the probability information of the underlying process. 

Background 
To understand εMSR, a concise understanding of ε-Machines will be given: 

Given a stream of data, it is desirable to make future predictions. Assuming that the stream is not wholly 

random, this could be done by utilizing useful information from the past, hopefully with as little as 

needed.  The intention is to find “causal states” – histories which share similar futures (2). An ε-Machine 

is essentially a probability model of a particular process. They are unique, deterministic, and minimal 

representations. Furthermore, they are Markovian – the conditional probability of being in a state from 

its entire history is equal to the conditional probability of being in that state from its immediate past 

state. The process of ε-Machine reconstruction will not be covered; all that is necessary to know is that 

it reproduces the word distribution of the process. 

The Wiener-Kninchin theorem shows that the autocorrelation function of a sequence is related to its 

power spectrum through a Fourier transformation.  

Processes 
The following stochastic processes were chosen for examination: period one, period two, unbiased 

(“fair”) coin, and the golden mean process. For each process (except for the fair coin), an example 

sequence will be offered. The alphabet for each process is defined as 𝐴 =  0,1  . 

Period One 
The period one process contains no zeroes anywhere:  . .1111111. .   

Period Two 
The period two process alternates ones and zeroes:  . .1010101. .   

Golden Mean 
The golden mean process contains no consecutive zeroes:  . .101101011101. .   
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Fair Coin 
The fair coin is a uniform process where each equal-length word shares the same probability.  

Methods 
For each process listed in the prior section, the correlation function must be obtained. The Wiesner-

Kninchin theorem states that the correlation function for a sequence of data is the Fourier 

transformation of the power spectrum. The power spectrum is defined as: 

𝑃 𝑓 =  𝑆 𝑓  2  

Where 𝑆 𝑓  is the Discrete Fourier Transformation of the sequence 𝑆𝑁 = 𝑠0 , 𝑠1 , … , 𝑠𝑛 , … , 𝑠𝑁−1: 

𝑆 𝑓 =
1

 𝑁
 𝑒−2𝜋𝑖𝑚𝑓

𝑁−1

𝑚=0

 

Without any loss of generality, any 0 in a data set has been replaced with a -1. Doing Fourier analysis of 

the power spectrum results in the correlation function 𝐶 𝑛 : 

𝐶 𝑛 =  𝑃 𝑓 
1

0

cos 2𝜋𝑛𝑓 𝑑𝑓 

The correlation function is the probability that two members of a sequence of distance 𝑛 are identical. 

Therefore, for short-range correlations, the correlation function can be related to word probabilities – 

and likewise causal states. For reasons of convenience, we will make the following transformation to the 

correlation function: 

𝑞 𝑛 =
1

2
 𝐶 𝑛 + 1  

It was shown that sequence probabilities return several useful constraints: 

𝑃𝑟 𝑢 = 𝑃𝑟 0𝑢 + 𝑃𝑟 1𝑢 = 𝑃𝑟 𝑢0 + 𝑃𝑟 𝑢1  

 𝑃𝑟 𝜔 = 1

𝜔∈𝒜𝑟+1

 

And that the sequence probabilities are related to the correlation function through 

𝑞 𝑛 =   Pr 𝑠𝜔𝑟𝑠 

𝜔𝑟𝑠=0,1

 

For long-range 𝑛, the asymptotical value of the correlation function can be related to 𝑃𝑟 1  and 𝑃𝑟 0  

as: 

𝑞∞ =   𝑃𝑟 0  
2

+  𝑃𝑟 1  
2   
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By utilizing constraints amongst the probabilities, spectral equations for word various word lengths can 

be defined. For 𝑟 = 1, there are 4  equations with 4 unknowns: 

𝑃𝑟 0 = 𝑃𝑟 00 + 𝑃𝑟 10 = 𝑃𝑟 01 + 𝑃𝑟 00  

𝑃𝑟 11 + 𝑃𝑟 10 + 𝑃𝑟 01 + 𝑃𝑟 00 = 1 

𝑞 1 =  𝑃𝑟 11  +  𝑃𝑟 00   

𝑞∞ =   𝑃𝑟 00  
2

+  𝑃𝑟 01  
2

+  𝑃𝑟 10  
2

+  𝑃𝑟 11  
2   

For 𝑟 = 2, there are 7 equations with 8 unknowns: 

𝑃𝑟 001 − 𝑃𝑟 100 = 0 

𝑃𝑟 011 − 𝑃𝑟 110 = 0 

𝑃𝑟 001 + 𝑃𝑟 101 − 𝑃𝑟 011 − 𝑃𝑟 010 = 0 

𝑃𝑟 111 + 𝑃𝑟 101 + 𝑃𝑟 011 + 𝑃𝑟 001 + 𝑃𝑟 110 + 𝑃𝑟 100 + 𝑃𝑟 010 + 𝑃𝑟 000 = 1 

𝑞 1 =  𝑃𝑟 111  +  𝑃𝑟 110 + 𝑃𝑟 000 + 𝑃𝑟(001)   

𝑞 2 =  𝑃𝑟 111  +  𝑃𝑟 101 + 𝑃𝑟 000 + 𝑃𝑟(010)   

𝑞∞ =   𝑃𝑟 000  +  𝑃𝑟 001  +  𝑃𝑟 010  +  𝑃𝑟 011  
2  

+   𝑃𝑟 100  +  𝑃𝑟 101  +  𝑃𝑟 110  +  𝑃𝑟 111  
2   

This cannot be solved without an 8th equation, which can be inferred by the following relation between 

4th: 

𝑃𝑟 𝑠0𝑠1𝑠2𝑠3 = 𝑃𝑟 𝑠0𝑠1𝑠2 𝑃𝑟 𝑠3|𝑠0𝑠1𝑠2 ≈ 𝑃𝑟 𝑠0𝑠1𝑠2 𝑃𝑟 𝑠3|𝑠1𝑠2 =
𝑃𝑟 𝑠0𝑠1𝑠2 𝑃𝑟 𝑠1𝑠2𝑠3 

𝑃𝑟 𝑠1𝑠20 + 𝑃𝑟 𝑠1𝑠21 
 

Combining this relation with the correlation function, the 8th equation is obtained: 

𝑞 3 = 𝑃𝑟 1111 + 𝑃𝑟 1101 + 𝑃𝑟 1011 + 𝑃𝑟 1001 + 𝑃𝑟 0110 + 𝑃𝑟 0010 + 𝑃𝑟 0100 

+ 𝑃𝑟 0000  

𝑞 3 =
𝑃𝑟 111 2

𝑃𝑟 110 + 𝑃𝑟 111 
+

𝑃𝑟 110 𝑃𝑟 101 

𝑃𝑟 100 + 𝑃𝑟 101 
+

𝑃𝑟 101 𝑃𝑟 011 

𝑃𝑟 010 + 𝑃𝑟 011 
+ 

𝑃𝑟 100 𝑃𝑟 001 

𝑃𝑟 000 + 𝑃𝑟 001 
+

𝑃𝑟 000 2

𝑃𝑟 000 + 𝑃𝑟 011 
+

𝑃𝑟 001 𝑃𝑟 010 

𝑃𝑟 010 + 𝑃𝑟 011 
+ 

𝑃𝑟 010 𝑃𝑟 100 

𝑃𝑟 100 + 𝑃𝑟 101 
+

𝑃𝑟 010 𝑃𝑟 100 

𝑃𝑟 110 + 𝑃𝑟 111 
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This is referred to as the memory length reduction approximation (2). With these spectral equations, we 

can determine the probabilities of different word lengths from the correlation function.  

Results – Correlation Functions and 

Power Spectrums 

Period One 
Each term in a period one process is identical to every 

other term, hence the constant correlation (figure 1a). 

The εMSR probability distribution plots (figure 1b) 

confirm the existence of forbidden words; any word 

containing a zero. 

Period Two 
The correlation function of the period two process 

(figure 1b) reveals a saw tooth structure, where 𝑠𝑛  is 

identical to 𝑠𝑛+2 with probability 1. The asymptotic 

value of 𝑞 𝑛  is taken to be 0.5. 

Unbiased Coin 
εMSR reveals in the correlation function of the 

unbiased coin (figure 1c) that the probability between 

any two “flips” is 0.5.  

Golden Mean 
For a more complicated process, the correlation 

function shows stronger fluctuations at short range 

distances with the spectral density increasing with 

frequency. 

Results – Probability Distributions 
Taking the spectral equations defined in the previous 

section, the probability distributions are shown in Table 

1. As an effective measure of accuracy for the εMSR 

process, they exhibit known characteristics of each 

function. The period one (figures 2a through 2c) forbid 

any words containing a zero. The period two process 

(figures 2d through 2f) forbids all words at any length 

which does not contain alternating 1’s and 0’s. For the 
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golden mean process, the L=1 plot (figure 2j) shows more probability for 1’s and 0’s, which is expected 

as the process limits the number of 0’s. The L=2 plot (figure 2k) displays the first known forbidden word 

of the golden mean process, 𝜔 = 00. The L=3 plot (figure 2l) forbids any work with sequential 0’s, as 

well as shows more probability 𝜔 = 101. The fair coin plots (figures 2g through 2i) are, essentially, a 

straight line, decreasing in likelihood as L increases. 

 
Figure 2a: Period 1, L=1 

 
Figure 2b: Period 1, L=2 

 
Figure 1c: Period 1, L=3 

 
Figure 2d: Period 2, L=1 

 
Figure 2e: Period 2, L=2 

 
Figure 2f: Period 2, L=3 

 
Figure 2g: Fair Coin, L=1 

 
Figure 2h: Fair Coin, L=2 

 
Figure 2i: Fair Coin, L=3 

 
Figure 2j: Fair Coin, L=1 

 
Figure 2k: Fair Coin, L=2 

 
Figure 2l: Fair Coin, L=3 

 

Table 1: Probability distributions of the period one, period two, fair coin, and golden mean process (from top row to bottom 
row, respectively) at word lengths 1 through 3 (from left column to right column). The x-axis is word ω ,the y-axis is 

𝒍𝒐𝒈 𝑷𝒓 𝝎  . 



  
Page 7 

 
  

Conclusion 
The εMSR procedure has been demonstrated to successfully result in probability distributions for 

stochastic processes up through 𝐿 = 3. The distributions, based upon the power spectrum of the 

process, show accurate statistics indicate the presence of forbidden words. The correlation function still 

maintains the causal state information of the ε-Machine, and εMSR can be used to produce them. For 

more complicated processes, it is possible that higher-order correlations may be needed. The number of 

equations increases to 32 for length 4 words, and 64 for length 5 words, showing that solutions to 

higher-order spectral equations must be determined by computers. Furthermore, this procedure has 

shown promising results with zinc sulphide (3) and in the field of close-packed structures (4).  
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