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Abstract: 

 The dynamic system to be studied is a simple chaotic toy consisting of two 
rotors, each with three arms with a magnet at the end of each arm. The two rotors are 
let to spin with low friction about their center of mass while being close enough for the 
magnets from each rotor to influence each other. The magnetic forces cause chaotic 
motion in the dynamic system. The motion of the arms is simulated and visualized 
before being analyzed. The dynamic system is analyzed with and without friction 
showing that the stable points found on the physical model are only obtainable with the 
use of friction. Study of the Lyapunov exponents illustrate the chaos in the system. 
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Introduction: 
 
The chaotic toy is superficially simple. With only two moving parts and a base, it 
appears to be a straightforward mechanics problem where one should be able to 
calculate quite easily the future path of the rotors. What we find is that the simple toy 
exhibits extremely complex motion. One goal is to investigate the erratic movement to 
determine whether the system is in fact chaotic and whether it can be successfully 
modeled.  
 
The original viewing of the toy offers only a glimpse of the behaviors possible. There are 
very apparent fixed points that occur when friction has diminished the kinetic energy. 
This exhibits itself as a near motionless bond between arms near the origin. The simple 
nature of the toy begs a simulation engine to represent it and to be able to model the 
fixed points accurately. The fact that the toy is such a tangible object is intriguing. An 
engine should very accurately describe the toy if it so simple. 
 
 
 
 
Background: 
 
Very little background information is needed to understand the project. One point worth 
discussing is the formulation of our potential calculations. The Lagrangian method is 
used which should be discussed in a slight amount of depth. Firstly, our potential energy 
and kinetic energy are given as follows: 
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The Lagrangian equations (one for each independent variable ���and ��	) are then 
formulated as follows using � � � � : 
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Solving this system returns the equations used for calculating the behavior of the rotors. 
The use of a generic ����, �	� function allows for switching potentials very easily. Both 
magnetic monopole and dipole potentials were used. 
 
  



 |Page3 | 

 

 
 
Dynamical System: 
 
Again, the system chosen to study is a simple magnetic toy. Two rotors exist on a 
wooden base. At the end of each arm is a small magnet. Each of the three magnets of 
one motor will interact with the three magnets on the other and vice versa. The 
placement of the rotors allows for very close proximity of one arm to another when the 
distance is minimized. This minimized distance is thus the region of largest interaction 
and strongest forces. 
 
The system does not have any motion until 
set into motion by hand. One or both rotors 
are to be given an original angular velocity. 
As soon as motion begins, the behavior to 
be studied occurs. The magnets interact 
and their angular velocities are constantly 
altered (hence, dynamic). This leads to the 
erratic behavior of the rotors that is the 
concentration of this study. 
 
The first equation of motion is based off of the kinetic energy 
 

� � ������	 
 ��		� 
 
that describes the combined kinetic energy of our two rotors. The ��  term is an easy 
way to control all of the coefficient terms that occur in the kinetic energy term (like 
rotational inertia).The potential energy used was originally a magnetic monopole (or 
electric monopole) because it was much easier to program, was less CPU intensive, 
and was able to be solved explicitly so as to check the RK4 process we used. The 
magnetic dipole form was of the form 
 

 �
��

��  

 
The value for ��  is, like above, the single coefficient we use so allow easier alterations 
to the strength of the potential. 
 
Using these two potentials, the appropriate accelerations are calculable and can be 
used with a given interval of time to calculate the new positions of the arms on the 
rotors as well as their angular velocity. 
  

Figure 1. Diagram of a Simple Chaotic Toy. Magnet 

at each lever arm and freedom to rotate. 
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Methods: 
 
The project began with the assembly of our simulation engine in Python. The magnetic 
monopole potential was used to simplify computation and to lessen the wait of trials. 
The engine itself was fairly easy to construct after the vector analysis of the distances 
between the magnets on each arm was built. 
 
An initial visualization system was 
used from the beginning to gauge the 
accuracy of the simulation. Using Tk, a 
very crude live simulation was 
produced that allowed the initial 
critique of the system. 
 
Once the engine was up and working 
with the monopole simulation, the 
dipole potential was used. This led to a 
greater number of calculations and 
slowed down the simulation so much 
that new implementations for 
calculation and display were 
developed because real time generation of data was not possible. The simulation code 
was rewritten in C so to implement available optimization that reduced the time needed 
to calculate thirty seconds of data from 15 minutes down to 36 seconds. 
 
Since a data file can be read into a visualization system quickly when it is not calculated 
on the go, a new display system was created from Visual Python. This added three 
dimensions with easy implementation for creating multiple rotor systems to study phase 
deconstruction or 
destabilization. 
 
The most difficult part of the 
programming to this point was 
obtaining a conservation of 
energy. When the rotors met 
near their minimum distance, 
there was a net decrease in 
energy due to the extreme 
increase in their accelerations. 
Increasing the accuracy of 
certain variables (double to long 
double) and decreasing the time 
step helped while using the optimized calls of trigonometric functions from the Math 
library (versus the slower Numeric functions) to keep data generation at a moderate 
pace. 
  

Figure 2. Early Tk representation of 

visualizing the simulation engine. 
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Figure 4. Plot of Time (sec) versus ��of the right rotor. After 15 seconds, each diverges 

suggesting that even writing one function inline can alter the final state of the system. 

Results: 
 
The first result we found was the difference in several (near identical) versions of our 
code. Below is a graph showing the exact same code implementation for four slight 
variants. We switch between two C compilations, one with double and one with long 
double, and two Python versions, one with a main function call inline versus explicit. For 

the first 15 seconds of simulation, they match perfectly with no deviation. However, the 
error in the data is exponentially magnified until they split off into their own chaotic 
behavior. The difference between to two C codes is understandable given the numerical 
accuracy change leading to the exponentially increasing difference, but the Python 
version represents two runs that have the exact same code implementation, just written 
in a difference place. 
 
To confirm the chaotic behavior of the system, a plot of the Lyapunov exponent was 
created as shown below using the equation 
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The state of the system, after a brief period where � is negative indicating non-chaotic 
behavior quickly turns positive and chaotic. The dips that go to zero represent when the 
rotors momentarily pass by the same theta displacement. We see that the system never 
returns to a period of non-chaos. When this was repeated after including a velocity-

dependent friction term, the Lyapunov exponent tends toward zero. The time factor in 
the Lyapunov equation above tends toward zero as time increases and the two rotors 
settle into an oscillatory state near the origin. Thus we find that the exponent gets 

smaller and smaller as 
|,!�$�|

|,!-|
 stops changing while the 1/� factor goes to zero. In this 

case, the system is always chaotic except in the limit of � " ∞.  
 
The following graph illustrates the chaotic differences between several runs in a system 
with friction. The initial angular velocity of one of the rotors is altered by the values 
shown in the key. Each one differs by one in one-hundred thousandth from the one 
before it. The time series begins after thirty seconds of non-divergence due to fast 
moving rotors. 
 

Figure 5. Lyapunov Exponent.  The positive value for � indicates an 

always constant chaotic behavior for a frictionless system. 



 |Page7 | 

 

Time versus �� for Different Initial Conditions 

Figure 6. Time versus angular displacement for varying initial conditions (on the order of 

1/100,000 in angular velocity) in a system with dissipative friction. Neighboring initial 

conditions do not necessarily end in neighboring fixed points.  

It is clearly visible that once the chaotic movement sets in that the trials separate and 
end in a certain fixed points. There seem to be five such points but these each correlate 

to only one of three different fixed points where two arms hover near each other 
oscillating slightly. If the displacement were subject to modulus three, we would see 
these three fixed points explicitly: one for theta equals  0, 22/3 and , 42/3. 
 
Neighboring initial conditions do not have a correlation to their final state. The lowest 
final state correlates to trial 00.0000 and the others show no pattern for filling the varied 
fixed points. The fixed points do not even occur in the frictionless system. Without 
dissipation, the system has an energy which is much too high and overcomes the 
bounding energy between these stable states. This pattern of the spreading of initial 
conditions occurs no matter what the initial distance between conditions is. A trial where 
initial conditions were separated by one-ten-millionth exhibited identical patterns of 
congruity, chaos, and independent final states. 
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Conclusion: 
 
The Simple Chaotic Toy illustrated a “simple” chaotic system containing several chaotic 
behaviors illustrating interesting points in its chaotic study and the computation of the 
data from the simulation engine. Only the model that included friction could be 
considered to accurately describe the system. The original goal of the simulation was to 
create an engine that properly illustrated the given fixed points the physical model 
exhibits. In the system without friction, there are no fixed points. Even the case were 
�� 9 �	and the slow moving rotor oscillates slightly about the origin was not possible 
without friction. The dissipative model could accurately model all physical fixed points 
and is thus deemed a good physical model. The Lyapunov exponent of the frictionless 
model illustrates clearly the chaotic nature of the toy, confirming the visual inclination 
one has about the behavior, but in order to determine the level of chaos for the model 
with friction we examine that system’s � plot. Due to the friction, the mathematical term 
1/� causes the exponent to tend toward zero but since it is only a limit it can be said that 
it will always be chaotic. This again suggests congruence to the observation of the real 
world system. 
 
The computational differences in variances of code suggest that the accuracy of any 
method of any simulation will be scrutinized for accuracy after only a short amount of 
time (thirty seconds at most for moderate time steps). Using certain Python packages 
that offer the ability to control the size of the time step where accuracy is much more 
important – like when the rotors are interacting the strongest – would help to increase 
accuracy by decreasing step size while not slowing the simulation to a halt. This could 
be used in the future for longer term data runs. 
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Code: 

 The code in the on the following pages represents the following 

1) Simulation engine that produces the data used. 
This is written in C so take appropriate actions. Page 10 

2) The visualization engine that is used to view the data. Page 13 
3) A Lyapunov exponent program used in iPython to plot �. 

See notes in code for directions. Page 15 

If any information is missing or desired (e.g. a sample data run) please contact the 
authors. 
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# This is the MEAT of the program. This portion is the data 
# creation or the simulation engine.  
 
#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
 
#define FPRIME_H (1.0e-7) 
#define Q 0.08 
//#define Q 0.15 
#define L 0.04 
#define D 0.085 
#define KT (0.025*L) 
#define KU (1.e-7) 
#define A 2.0943951023931954923084289221863 
#define CA -0.5 
#define SA 0.86602540378443864676372317075294 
#define PKU (KU*Q*Q) //(Cruft below) 
//double PKU; //  = KU*Q*Q; 
 
#define KF 0.03125 
 
double theta1, theta2, omega1, omega2, t=0.0, dt=0.001; 
 
typedef struct { 
 double a, b; 
} ddouble; 
 
inline double fprime(double (*f)(double), double x){ 
 return (f(x + FPRIME_H) - f(x - FPRIME_H)) / (2.*FPRIME_H); 
} 
 
inline double fpartial1(double (*f)(double, double), double x, double y){ 
 return (f(x + FPRIME_H, y) - f(x - FPRIME_H, y)) / (2.*FPRIME_H); 
} 
 
inline double fpartial2(double (*f)(double, double), double x, double y){ 
 return (f(x, y + FPRIME_H) - f(x, y - FPRIME_H)) / (2.*FPRIME_H); 
} 
 
double rk4(double (*f)(double, double), double x, double y, double h) 
{ 
 double k1, k2, k3, k4; 
 k1 = f(x,y); 
 k2 = f(x + 0.5*h, y + 0.5*h*k1); 
 k3 = f(x + 0.5*h, y + 0.5*h*k2); 
 k4 = f(x + h, y + h*k3); 
 return y + (1./6.)*h*(k1 + 2*k2 + 2*k3 + k4); 
} 
 
ddouble rk42(double (*f)(double, double, double), \ 
  double (*g)(double, double, double), \ 
  double x, double y1, double y2, double h) 
{ 
 double k11, k12, k21, k22, k31, k32, k41, k42; 
 ddouble r; 
  
 k11 = f(x, y1, y2); 
 k12 = g(x, y1, y2); 
  
 k21 = f(x + 0.5*h, y1 + 0.5*h*k11, y2 + 0.5*h*k12); 
 k22 = g(x + 0.5*h, y1 + 0.5*h*k11, y2 + 0.5*h*k12); 
  
 k31 = f(x + 0.5*h, y1 + 0.5*h*k21, y2 + 0.5*h*k22); 
 k32 = g(x + 0.5*h, y1 + 0.5*h*k21, y2 + 0.5*h*k22); 
  
 k41 = f(x + h, y1 + h*k31, y2 + h*k32); 
 k42 = g(x + h, y1 + h*k31, y2 + h*k32); 
  
 r.a = y1 + (1./6.)*h*(k11 + 2.*k21 + 2.*k31 + k41); 
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 r.b = y2 + (1./6.)*h*(k12 + 2.*k22 + 2.*k32 + k42); 
 return r; 
} 
 
double Utotdip(double t1, double t2) 
{ 
 double i, j, Utot=0., ct1, st1, ct2, st2, rx, ry, ri; 
 for(i=0.; i<(3.*A); i+=A) 
 { 
  ct1 = cos(t1+i); 
  st1 = sin(t1+i); 
  for(j=0.; j<(3.*A); j+=A) 
  { 
   ct2 = cos(t2+j); 
   st2 = sin(t2+j); 
   rx = D - L*(ct1 + ct2); 
   ry = L*(st2 - st1); 
   ri = 1.0 / sqrt(rx*rx + ry*ry); 
   Utot += ((st1*st2-ct1*ct2) - \ 
    3.*ri*(ct1*rx+st1*ry)*(st2*ry-ct2*rx))*ri*ri*ri; 
  } 
 } 
 return PKU*Utot; 
} 
 
double Ttot() { 
 return KT*(omega1*omega1 + omega2*omega2); 
} 
 
double Utot() { 
 return Utotdip(theta1, theta2); 
} 
 
double Etot() { 
 return Utot() + Ttot(); 
} 
 
double g1(double t, double w1, double w2) { 
 double t1, t2; 
 t1 = theta1 + w1*t; 
 t2 = theta2 + w2*t; 
 return (-0.25/(KT*FPRIME_H)) * \ 
  (Utotdip(t1 + FPRIME_H, t2) - Utotdip(t1 - FPRIME_H, t2)) \ 
  - KF*w1; 
} 
 
double g2(double t, double w1, double w2) { 
 double t1, t2; 
 t1 = theta1 + w1*t; 
 t2 = theta2 + w2*t; 
 return (-0.25/(KT*FPRIME_H)) * \ 
  (Utotdip(t1, t2 + FPRIME_H) - Utotdip(t1, t2 - FPRIME_H)) \ 
  - KF*w2; 
} 
 
void step(void) 
{ 
 ddouble w; 
 double wo1, wo2; 
 wo1 = omega1; 
 wo2 = omega2; 
 w = rk42(g1, g2, 0.0, omega1, omega2, dt); 
 omega1 = w.a; 
 omega2 = w.b; 
 w.a = wo1 + 0.5*dt*g1(0.0, wo1, wo2); 
 w.b = wo2 + 0.5*dt*g2(0.0, wo1, wo2); 
 theta1 += dt*w.a; 
 theta2 += dt*w.b; 
 t += dt; 
} 
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void stepn(int n) 
{ 
 int i; 
 ddouble w; 
 double wo1, wo2; 
 for(i=0; i<n; i++) 
 { 
  wo1 = omega1; 
  wo2 = omega2; 
  w = rk42(g1, g2, 0.0, omega1, omega2, dt); 
  omega1 = w.a; 
  omega2 = w.b; 
  w.a = wo1 + 0.5*dt*g1(0.0, wo1, wo2); 
  w.b = wo2 + 0.5*dt*g2(0.0, wo1, wo2); 
  theta1 += dt*w.a; 
  theta2 += dt*w.b; 
  t += dt; 
 } 
} 
 
int main(int argc, char **argv) 
{ 
 int i; 
 
 if(argc != 5) 
 { 
  printf("Err1\n"); 
  exit(-1); // Err! 
 } 
 
 /* 
 theta1 = 1.0; 
 theta2 = 0.0; 
 omega1 = 1.0; 
 omega2 = -1.1; 
 */ 
 dt = 50e-6; 
 
 theta1 = atof(argv[1]); 
 theta2 = atof(argv[2]); 
 omega1 = atof(argv[3]); 
 omega2 = atof(argv[4]); 
 
 for(i=0; i<30000; i++) 
 { 
  stepn(20); 
  printf("%.6e %.11e %.11e %.11e %.11e\n", \ 
   t, theta1, theta2, omega1, omega2); 
 } 
  
  
 //printf("%f, %f\n", Utot(), Ttot()); 
 return 0; 
}  
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# This replay file will replay data from TWO files 
# to illustrate the phasing seen between initial 
# conditions that vary slightly from eachother. 
 
#from numpy import * 
from visual import * 
import fileinput 
import magtoy 
 
#import psyco 
#psyco.full() 
 
 
# begin _other_ graphics cruft 
 
scene.autocenter = true 
 
a = 2.*pi/3. 
l = 0.04 
D = 0.085 
kT = 0.025*l 
kU = 1.e-7 
q = 0.15 
kUqq = kU*q*q 
 
# ===========FIRST TWO ROTORS=========== 
f1 = frame(pos=(0,0,0)) 
f1c1 = cylinder(frame=f1, axis=(-l,0,0), pos=(l,0,0), radius=0.08*l) 
f1c2 = cylinder(frame=f1, axis=(-l*cos(a),-l*sin(a),0), pos=(l*cos(a),l*sin(a),0), radius=0.08*l) 
f1c3 = cylinder(frame=f1, axis=(-l*cos(a+a),-l*sin(a+a),0), pos=(l*cos(a+a),l*sin(a+a),0), radius=0.08*l) 
 
f2 = frame(pos=(D,0,0)) 
f2c1 = cylinder(frame=f2, pos=(l,0,0), axis=(-l,0,0), radius=0.08*l) 
f2c2 = cylinder(frame=f2, pos=(l*cos(a),l*sin(a),0), axis=(-l*cos(a),-l*sin(a),0), radius=0.08*l) 
f2c3 = cylinder(frame=f2, pos=(l*cos(a+a),l*sin(a+a),0), axis=(-l*cos(a+a),-l*sin(a+a),0), radius=0.08*l) 
 
f1.axis = (-1,0,0) 
f2.axis = (1,0,0) 
 
# ===========SECOND TWO ROTORS=========== 
f3 = frame(pos=(0,0,0)) 
f3c1 = cylinder(frame=f3, axis=(-l,0,0), pos=(l,0,0), radius=0.08*l) 
f3c2 = cylinder(frame=f3, axis=(-l*cos(a),-l*sin(a),0), pos=(l*cos(a),l*sin(a),0), radius=0.08*l) 
f3c3 = cylinder(frame=f3, axis=(-l*cos(a+a),-l*sin(a+a),0), pos=(l*cos(a+a),l*sin(a+a),0), radius=0.08*l) 
# f3c1.color,f3c2.color,f3c3.color = color.red,color.red,color.red 
 
f4 = frame(pos=(D,0,0)) 
f4c1 = cylinder(frame=f4, pos=(l,0,0), axis=(-l,0,0), radius=0.08*l) 
f4c2 = cylinder(frame=f4, pos=(l*cos(a),l*sin(a),0), axis=(-l*cos(a),-l*sin(a),0), radius=0.08*l) 
f4c3 = cylinder(frame=f4, pos=(l*cos(a+a),l*sin(a+a),0), axis=(-l*cos(a+a),-l*sin(a+a),0), radius=0.08*l) 
# f4c1.color,f4c2.color,f4c3.color = color.red,color.red,color.red 
 
f3.axis = (-1,0,0) 
f4.axis = (1,0,0) 
 
scene.autocenter = false 
scene.autoscale = false 
 
 
from itertools import izip 
 
i = 0 
U1, T1, E1 = [], [], [] 
U2, T2, E2 = [], [], [] 
 
# ========== NAME THE DATA FILES HERE ============ 
file1 = fileinput.input("thirtyseconds09dip") 
file2 = fileinput.input("thirtyseconds08dip") 
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for (il1,il2) in izip(file1,file2): 
 sl1 = il1.split() 
 sl2 = il2.split() 
  
 if sl1[0] == '#': 
  continue 
 if sl2[0] == '#': 
  continue 
 t1 = float(sl1[1]) 
 t2 = float(sl1[2]) 
 t3 = float(sl2[1]) 
 t4 = float(sl2[2]) 
 #w1 = float(sl[3]) 
 #w2 = float(sl[4]) 
 #E1.append(float(sl1[5]) + float(sl1[6])) 
 #E2.append(float(sl2[5]) + float(sl2[6])) 
 #print max(E1) - min(E1),  '\t\t'  , max(E2) - min(E2) 
 rate(1000) 
 f1.axis = (l*math.cos(t1), l*math.sin(t1), 0.) 
 f2.axis = (-l*math.cos(t2), l*math.sin(t2), 0.) 
 f3.axis = (l*math.cos(t3), l*math.sin(t3), 0.) 
 f4.axis = (-l*math.cos(t4), l*math.sin(t4), 0.) 
 #cwin.interact() 
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# This program is designed to produce a graph of 
# the Lyapunov exponent of our Simple Chaotic Toy 
# in ipython. It is not set up to create the graph 
# automatically. In ipython, plot(x,y) is needed to 
# generate the graph, as possibly well adding one more 
# item to y to make len(x) = len(y) due to erroring on 
# a divide by zero. 
 
from itertools import izip 
from math import * 
from pylab import * 
 
x = [] 
y = [] 
 
 
#file1 = open('lypnvw2-1.1000000000001') 
#file1 = open('lypnvw2-1.10001') 
#file2 = open('lypnvw2-1.1') 
file1 = open('thirtyseconds08dip') 
file2 = open('thirtyseconds09dip') 
 
#for line1,line2 in izip(file1,file2): 
# line1 = line1.split() 
# line2 = line2.split() 
# if line1[0] == '#': 
#  continue 
# print line1 
# delta_x0 = abs(abs(float(line1[3])) - abs(float(line2[3]))) 
# print delta_x0 
# print line1 
# break 
  
 
for line1,line2 in izip(file1,file2): 
 line1 = line1.split() 
 line2 = line2.split() 
 #print line1, '\n' 
  
 if line1[0] == '#' or float(line1[0]) == 0: 
  continue 
   
 if len(x) == 0: 
  delta_x0 = abs(abs(float(line1[4])) - abs(float(line2[4]))) 
   
 x.append(float(line1[0])) 
 y.append( (1 / float(line1[0])) * log( abs(float(line1[4]) - float(line2[4])) / abs(delta_x0)) / log(2)) 
 
 # t theta1 theta2 omega1 omega2 U T 
#0.0 1.0 0.0 1.0 1.1 -2.34122905708e-005 0.00221 
 
#lambda = (1 / TOTAL_TIME) * log(||delta_x(t)|| / ||delta_x(0)||)    /   log(2) 


