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Abstract

A stochastic cellular automata (CA) model is proposed to simulate susceptible-
infected-removed populations over space and time. Three initial grid configura-
tions are used to compare and contrast the spatiotemporal dynamics of this system;
random, center, and patchy. The simulations show that random configurations in-
fect more of the population, but quickly dissipating through the space. The center
case slowly propagates through space and infects less of the population, while the
patchy configuration shows to be a middle case between random and center.
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1 Introduction
Landscape epidemiology studies the disease patterns across the landscape that arise
from abiotic and/or biotic conditions that support a particular pathogen [1]. In addi-
tion, the proximity to susceptible individuals directly influences disease transmission,
making the process inherently spatial. The objective of this project is to simulate the
spatiotemporal dynamics of an infectious disease propagation on various landscapes
using a stochastic cellular automata (CA) susceptible-infected-removed (SIR) model.

2 Background
CA applied to grid-based modeling is a means to model disease propagation over time
and space [2-7]. CA models provide rules that are biologically motivated and easily
programmable. In this approach, a gridded array of cells represents a landscape. Each
cell contains an embedded mini-model composed of state variables describing its con-
dition, a means of communicating with surrounding cells (neighborhood), and rules
dictating the cell’s response to its own state and communications from its neighbors
through a series of time-steps. The imposition of relatively simple rules can generate
complex emergent behaviors as the landscape evolves through time.

3 Dynamical System
The CA rules can be extracted from the ideas behind the classical SIR models based on
differential equations (e.g. [8]). The set of ordinary differential equations correspond-
ing to the CA model is:

dS
dt

=−aSI, (1)

dI
dt

= aSI−bI, (2)

dR
dt

= bI, (3)

where a is the infection rate, and b the recovering rate. The system is then divided into
three groups, where each cell represents an individual that can be in one of three states:
S, when the individual is susceptible to infection by neighbors; I, when the individual
is infected and can transmit the disease for neighboring susceptible cells; and R, when
the individual is recovered. Figure 1 shows the ODE system plotted against time.

4 Methods
Scientific python was used to visualize the CA model depiction of the spatial disease
propagation. The disease will propagate through the landscape based on a set of proba-
bilities of state transitions. At each time step, there is a probability of a S cell becoming
infected according to Pi(ν) = 1−e−Kν, where ν is the number of neighbor cells infected
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and K is a measure of how infectious the disease is. Likewise, each I-cell can become
recovered based on probability Pc or parameter b from the previous ODE model. The
spatial and temporal dynamics were examined with simulations of various initial land-
scape population configurations, i.e., random, center, and patchy. The grid size used
was 128x128 with 1% of the cells initially infected, K = 0.17, and b = 0.3. Figures 3-5
show an example of each of the initial grid configurations.

5 Results
Each initial case (random, center, and patchy) were initiated and simulated over 100
time steps and averaged over 30 runs. Figures 6-8 show an example snapshot of each
case after 10 time steps. Here, it is clear that the random case infects the population
more quickly than the center or patchy cases. Table 1 shows the averaged maximum
infected populations and time steps with their corresponding standard deviations. In
combination with Figures 9-11, which show the example runs S, I, and R populations
plotted against time, we see that the center case takes the longest time to propagate
through the population while infecting the least amount of individuals. The random
case infects the most individuals, but relatively quickly. And finally, the patchy case
fits somewhere in between the random and center cases.

Table 1: Each initial case with its average maximum infected cells and corresponding
time step over 30 simulations ± standard deviations.

Initial Case Maximum Infected (cells/16348) Time Step Maximum Infected
Random (3886±198.5) (9.6±0.61)
Center (1201.5±85.39) (56.85±4.470)
Patchy (1588.4±233.41) (29±4.0)

This model can be extended by including environmental layers, thus incorporating
actual landscape barriers into the rules. It can also be improved to consider long-range
interactions between CA cells that would incorporate metapopulation dynamics.
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7 Figures

Figure 1: Normalized concentrations of S, I and R-individuals obtained by numerically
integrating the ODE model using Runge-Kutta Order 4 (dt = 0.01). Parameter values:
a = 0.5, b = 0.3. Initial conditions: S(0) = 99.0%, I(0) = 1.0%, and R(0) = 0.0%.
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Figure 2: 128x128 grid with 1% of the cells initially infected and spaced randomly.
Parameter values: K = 0.17, b = 0.3 (S-Red cells, I-Blue cells, and R-Green cells).

Figure 3: 128x128 grid with 1% of the cells initially infected and spaced in the center.
Parameter values: K = 0.17, b = 0.3 (S-Red cells, I-Blue cells, and R-Green cells).
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Figure 4: 128x128 grid with 1% of the cells initially infected and spaced in 5 randomly
placed patches. Parameter values: K = 0.17, b = 0.3 (S-Red cells, I-Blue cells, and
R-Green cells).

Figure 5: Randomly placed initial configuration after 10 time steps (S-Red cells, I-Blue
cells, and R-Green cells).
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Figure 6: Center placed initial configuration after 10 time steps (S-Red cells, I-Blue
cells, and R-Green cells).

Figure 7: Patchy placed initial configuration after 10 time steps (S-Red cells, I-Blue
cells, and R-Green cells).
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Figure 8: Normalized concentrations of S, I and R-individuals by simulating the CA
model for the random initial configuration. Parameter values: K = 0.5, b = 0.3. Initial
conditions: S(0) = 99.0%, I(0) = 1.0%, and R(0) = 0.0%.
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Figure 9: Normalized concentrations of S, I and R-individuals by simulating the CA
model for the center initial configuration. Parameter values: K = 0.5, b = 0.3. Initial
conditions: S(0) = 99.0%, I(0) = 1.0%, and R(0) = 0.0%.
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Figure 10: Normalized concentrations of S, I and R-individuals by simulating the CA
model for the patchy initial configuration. Parameter values: K = 0.5, b = 0.3. Initial
conditions: S(0) = 99.0%, I(0) = 1.0%, and R(0) = 0.0%.


