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Abstract. We explore a single morphogenetic algorithm to model neu-
ral plasticity in small-scale networks. Using randomly-generated McCulloch-
Pitts networks and the simulation outlined by Dammasch et al (1986),
we attempt to simulate the effects of a compensation algorithm on long-
term network behavior and morphogenetic changes. The results ob-
tained indicate further development is required to properly analyze these
effects.
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1. INTRODUCTION

One of the most fascinating aspects of biological nervous systems is the
capacity to simultaneously learn new information while remembering exist-
ing information over time. This capacity entails two opposed processes: the
ability for a nervous system to change in response to novel stimuli and the
capacity to maintain existing structures. In other words, the nervous system
maintains a level of ‘neuronal homeostasis’ as it acquires knowledge. [2]

This simulation attempts to model this process by using a simple com-
pensatory rule for modulating the connection strength between neurons in
a small network based on past activity. The anticipated goal of this project
was to develop a mechanism for stabilizing the connectivity of randomly-
generated networks which could then be coupled to other morphogenetic
algorithms which encode the associative learning mastered by biological ner-
vous systems. While the results indicate we have not yet met that goal, the
simulation developed should a provide a flexible framework for future study.

2. BACKGROUND

An understanding of the biology of impulse transmission across synapses
as well as the specific mechanisms of synaptogenesis are not critical to this
project; a basic neurobiology text was used for reference [7]. The critical
features of the neural system are summarized here:

(1) A neural network is composed of individual neurons which interact
with each other electrically across synapses. Information flows in
one direction on each neuron; that is, it has specific ‘postsynaptic’
elements to receive inputs (dendrites) from other cells and specific
‘presynaptic’ elements which send outputs (axonal elements) to other
cells.

(2) Each neuron encodes a certain spatial and temporal integration pro-
cess which maps a large set of inputs into a single binary output.
In particular, the inputs a neuron receives changes its membrane
potential and that neuron fires an ‘action potential,’ a single output
event if and only if the inputs exceed some threshold potential.

(3) Some neurons cause the membrane potential of their output tar-
gets to increase closer to threshold (‘excitatory’ neurons) and others
cause the membrane potential to decrease away from threshold (‘in-
hibitory’ neurons).

(4) Following an action potential, a neuron is relatively insensitive to
inputs during a short time period, the ‘refractory period.’

(5) The time scale for synaptic transmission, integration, and firing is on
the order of msec, while the gradual changes in connectivity occur on
the order of hours or days, thus these processes may be considered
independently for the purpose of simulation.

(6) The morphogenetic changes a neuron experiences, including synaptic
growth and degradation as well as cell proliferation and death, are
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correlated with its electrical activity. Other factors including hor-
mones and other chemicals also play a role in morphogenesis, but
these will not be considered here.

3. DYNAMICAL SYSTEM

We use the classical McCulloch-Pitts network model to simulate small
neural networks and their subsequent evolution over time according to a
morphogenetic rule (limited in the scope of this project to a simple com-
pensation type rule) [5]. In this formulation there are a number of key
parameters and relevant state variables:

3.1. State Variables.

zt: Activity vector indicating which of the N neurons are active at time
t.

C: Connectivity matrix (N by N) where cij encodes the strength of
the input from neuron j on neuron i.

pspt: Vector of the current postsynaptic potential (PSP) for the N
neurons

3.2. Parameters. The following summarizes the key parameter space with
default values tuned to within the range where most randomly generated
connectivity matrices and random initial activities reach a self-sustaining
limit cycle.

Parameter Definition Default Value
N Number of Neurons 30

NE Number of Excitatory Neurons 27
NI = N −NE Number of Inhibitory Neurons 3

θ Threshold 1.0
φ Weight of Inhibitory Connections 2.0
K Percent Initial Network Connectivity 60%
Ξ Distribution of Initial Connection Strength N(.5, .1)
I Percent Neurons Active at Time t = 0 10%

To clarify, at time t = 0, the number of nonzero entries in each row of C
equals (N ·K), and the value cij is generated using the distribution Ξ. Also,
the initial activity vector z0 is generated by uniformly distributing (N · I) 1
entries across an otherwise 0-valued N -tuple.

Additionally, we impose several physiologically-based constraints on the
system: first, after a neuron fires (i.e. zt

i = 1), it undergoes a transient
‘refractory’ period when it is insensitive to input as a consequence of hyper-
polarization of the neural membrane following depolarization. Throughout
this simulation, we have assumed that the length of this refractory period is
1 time step, so zt+1

i = 0 necessarily, but zt+2
i may be 1 or 0. Consequently,

neurons cannot self-stimulate and we do not allow cii > 0.
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3.3. Equations of State. At each time step, the current state of activity of
the network is given by the N -tuple zt where for each neuron k, 1 ≤ k ≤ N ,
the k-th entry zt

k is calculated by:

pspt
k =

NE∑
j=1

ckj · zt−1
j −

N∑
j=NE+1

φ · ckj · zt−1
j

zt
k =

{
1 if pspt

k ≥ θ and k-th neuron is not refracting
0 otherwise

In other words, if the weighted sum of synaptic inputs to any (nonre-
fracting) neuron at time t− 1 exceeds the threshold θ, assumed equal for all
neurons in the network, that neuron is activated at time t, i.e. zt

k = 1.

3.4. Equations of ‘Motion’: Compensatory Morphogenesis Rule.
After an initial transient period (typically 10 steps is sufficient since most
randomly-connected networks stabilize to a limit cycle within 5 iterations),
we begin to impose a morphogenesis rule which changes the connectivity
matrix C based on prior activity (the algorithm is described below). Physi-
ologically, synaptic transmission and neural integration occur on a time scale
of msec, whereas synaptogenesis and cell proliferation occur on a time scale
of hours or days [3]. Despite this fact, we used a slow time scale equivalent
to 10 times the fast time scale for computing efficiency since a longer slow
time scale does not seem to effect the dynamics (the network restabilizes
within 10 ‘fast’ time steps).

The specific compensation rule used in the simulation is a variation on
that outlined in Dammasch et. al. 1986 and was originally intended only
as a first step to generating ‘physiologically stable’ networks from initially
random connected matrices; see below for further discussion of the somewhat
surprising results that curtailed this plan.

This compensation algorithm is based on the assumption that a highly
plastic neuron has some ideal window of average postsynaptic potentials
near its threshold value; otherwise, excessively stimulated neurons (where a
PSP which generated an action potential is significantly higher than thresh-
old) or understimulated neurons (which rarely receive sufficient inputs to
fire) are not sensitive to small changes in input strengths and hence remain
unresponsive to small perturbations in the network. On the other hand,
this assumption is not expected to hold for mature, stable neural structures
which have already been tuned to respond to certain activities.

The compensation algorithm is as follows: first, the current PSP for each
neuron is compared to upper and lower bounds for deviations from the
threshold θ:

If pspt
k − θ > θ · σ/2 Then compensate down

If θ − pspt
k < θ · σ/2 Then compensate up

Otherwise No morphogenesis
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Here the deviation from the threshold is encoded as σ and set at 0.3
throughout this simulation. If the PSP of a neuron meets these criteria,
the connectivity matrix entries for the row corresponding to that neuron
are modulated in proportion to that entry’s fraction of the row sum. If the
k-th neuron needs to be compensated down, we decrease all of the nonzero
incoming excitatory entries ckj by the following algorithm:

δ = kH
epo ·

ckj(t)2∑NE
j=1 ·ckj(t)

ckj(t + 1) =
{

ckj(t)− δ if ckj(t)− δ > 0
0 otherwise

If the k-th neuron needs to be compensated up, we decrease all of the
nonzero incoming inhibitory entries ckj by the following algorithm:

δ = kL
ipo ·

ckj(t)2∑N
j=NI ·ckj(t)

ckj(t + 1) =
{

ckj(t)− δ if ckj(t)− δ > 0
0 otherwise

Additionally, we decrease all of the nonzero output entries ckj (in this
case we adjust the entries on the k− th column in proportion to the column
sum):

δ = kL
pr ·

ckj(t)2∑N
j=1 ·cjk(t)

cjk(t + 1) =
{

cjk(t)− δ if cjk(t)− δ > 0
0 otherwise

The constants kH
epo, k

L
ipo, k

L
pr encode the degree of morphogenesis at each

step; throughout this project we set all of these to 0.1.

3.5. State Space. The state space of the system is the set of connectivity
matrices

{[cij ] : 1 ≤ i ≤ N, 1 ≤ j ≤ N, cij ∈ [0, 1]}
Individual trajectories C(t) correspond to morphogenetic evolutions of

the network’s connectivity.

4. METHODS

Following the simulation outlined in Dammasch et al [3], we created a
network simulator in Python. The simulator outputs data log files containing
the network’s connectivity matrix at the beginning and end of the simulation
as well as individual time logs of the network activity vector at each time
step of the simulation. Several tools were written to analyze these data
statistically as well as graphically; some of these results are included below.
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For each simulation, a randomly connected N x N matrix is generated.
Static and plastic modes are run over this same network using a set of
randomly generated initial activities (the simulation is run in static and
plastic mode over the same set of initial conditions). During the plastic
mode, the connectivities of the network are updated synchronously.

5. RESULTS

First, the simulation of this compensation algorithm led to some unantic-
ipated results that require further analysis. The results obtained up to this
point are summarized below:

(1) Regardless of the parameter settings, the activity vectors of the static
simulations quickly settle into the single fixed point v = (0, 0, . . . , 0,
corresponding to no activity or a limit cycle where activity oscillates
among specific subpopulations of neurons. These limit cycles seem to
be exclusively period 2, indicating further tuning of the parameters
could be illustrative since nothing in the algorithm necessitates this.
Fortunately, these results reproduce those from Dammasch et al 1986
[3].

(2) Several parameters have a large impact on the proportion of matrices
and initial conditions which reach a limit cycle rather than the zero
vector fixed point, namely the connectivity strength Ξ and the weight
of inhibitory connections φ. In either case, increasing the parameter
tends to result in more ‘inactive’ networks.

(3) The compensation algorithm yielded surprising results. From plots
of average activity of the networks over time (see figs 1-4 below in
appendix), the compensation algorithm actually tended to destabi-
lize the activity of the network in an unpredictable fashion. Periods
of relative stability are interrupted by brief periods of aperiodic ac-
tivity and eventually the activity of all the tested networks ended at
the zero fixed point.

6. CONCLUSION

While these results show that further work is needed to develop the com-
pensation algorithm to effectively stabilize randomly-generated McCulloch-
Pitts networks, we have developed a framework to test the effects of various
morphogenetic algorithms on small-scale neural networks. Next steps on
this project include the following: reevaluation of the parameter space, in
particular nondimensionalization, in order to better model the physiological
range, and testing of other morphogenetic rules, such as Hebbian learning
algorithms.
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7. APPENDIX: Figures

Figure 1. Example of stable behavior interrupted by tran-
sient deviations
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Figure 2. Example of stable behavior interrupted by tran-
sient deviations

Figure 3. Example of maintained stable behavior with
small deviations
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Figure 4. Example of stable behavior with sudden termination


