

Variations on Genetic Cellular Automata

Alice Durand
David Olson

Physics Department

amdurand@ucdavis.edu
daolson@ucdavis.edu

Abstract:

We investigated the properties of cellular automata
with three or more possible states, represented by

colors. For the simulation, the Pygame tool was used.
Our hypothesis was that the system would be overall
chaotic, with periods of stability, but we found that

the system instead converges to a stable period-2 limit
cycle, indicated by a checkerboard pattern in the simul-
ation. Mutation can have significant effects on the trai-

ts that emerge dominant.

Introduction

 Our project focuses on a variation of the cellular automaton, using
three or more states instead of the regular two. Each of the states is
represented by a “gene pair” with any combination of a red cell, a green cell,
or a blue cell, and obeys a simple set of rules for producing the next
“generation” of cells. Our motivation for this project is that it is relatively
simple to simulate, but still opens up numerous possibilities for chaotic
behavior. Even modeling a few short iterations by hand (i.e. a random
arrangement of six colored cells) gives some very intriguing results – we were
interested to see how the system would behave with many cells!

This project could also provide insight on how genes are expressed in
animals or humans – for example, eye color (blue, green, and brown), or hair
color (blonde, black, and red). We decided to use pairs of genes, as that is
how the pairs of chromosomes exchange information in cellular reproduction.
Naturally, a truly accurate simulation for such things would be exceedingly
complex, and our project can only hope to scratch the surface of long-term
gene expression.
 Our model for the many-state cellular automaton consists entirely of
Python code and uses the tool Pygame for the visual simulations. The
interface and code are very straightforward – the user gives an initial amount
of cells to start with and the amount of generations to produce (the “step”
size), while the program puts in a random combination of color pairs for the
initial condition. We then use an algorithm that implements the
reproduction rules and proceeds to display the next generation of colored
cells. The simulation can continue on for quite a while, allowing the viewer
to see if any patterns or colors dominate over others.

When writing the simulation for our project, we decided to expand on
the original three colors, and introduced a “blending” algorithm that uses
the hexadecimal codes of the colors (red, green, and blue having the simplest
number representation) to “blend” together our initial set of colors. Besides
creating an attractive, computer-background worthy visual, this gave us some
unexpected results – namely that the colors often converge to one of the
primary red, green, or blue colors after a relatively short time! We later on
realized that this particular result was erroneous, and upon fixing the code
found that the population would instead converge to a stable period-2 limit
cycle (barring any random mutations). Another modification we introduced
was the potential for cell “mutation” – that is, one cell randomly becoming a
different color in a random number of generations. This is closely related to
the gene mutations we see in DNA.

 We found that through the simulation, the population eventually
stabilizes to a period-2 limit cycle (indicated by a checkerboard pattern with
two colors), and that mutation can strongly affect the outcome.

Background and Short History

The basic rules governing most cellular automata are such: a cell may
only interact with its nearest neighbors (the ones on the left and right for a
1-D automaton, and those on the left, right, top, and bottom for a 3-D
automaton), each iteration is discrete – for each “tick of the clock,” a new
generation is produced, and the particular reproduction rules for each
automaton do not change over the course of one simulation. Many of the
cellular automata studied so far involve only two possible states for a cell
(likely related to the fact that most computers use binary), and simulations
produce patterns that are largely chaotic, but do exhibit temporary
stabilities. For example,

Here, the cellular automata starts from one cell and grows geometrically
according to a particular rule.

The concept of cellular automata has been around since the 1950’s,

when several scientists began to study them for various applications in real
life. Stanislaw Ulam was interested in cellular automatons because they
were related to his current research on crystal growth in lattice networks.
Indeed, the Ising model (which uses a two-dimensional square lattice) is
connected to cellular automata, the main difference being that the rules
governing the former are inherently random. Nonetheless, Ulam eventually
met up with John von Neumann, who was working on a simulation for
biological self-reproduction. In the words of another cellular automaton
scientist (who apparently also collaborated with the great Professor
Crutchfield on a paper!):

“CA were not invented, however, to be realistic models of Nature. They started with John von

Neumann, who wanted to study self-reproduction, and decided that the first thing to do was

ignore everything biologists had learned about the way actually existing organisms reproduce
themselves. This is known as hubris, and is especially galling when it works.” – Cosma Shalizi

Despite John von Neumann’s apparent ignorance of all things biological, at
Ulam’s prompting he nevertheless came up with a rather complicated version
of a self-reproducing mathematical/biological system involving 29 different
possible colors for a 200,000 cell lattice; this was the first cellular
automaton. John Conway expanded on the idea in the 1970’s with his famous
“Game of Life,” a 2-D computer simulation in which a cell lives or dies
depending on the states of its four neighbors – today, this type of simulation
is often used as a practice program in beginning programming classes. Later
on, in the 1980’s, Stephen Wolfram wrote numerous papers on “elementary
cellular automata,” a very simple, yet surprisingly complicated family of
cellular automata. The graphic above is an example of one of the resulting
systems.

Dynamical System

 The particular system we have selected involves six possible states, or
combinations of red, green and blue (a far cry from von Neumann’s 29!). For
the sake of simplicity, we have distinguished them with the colors red,
green, and blue; these colors are randomly arranged in a finite line of cells.
The main rule governing the new generation (before the blending algorithm)
is perhaps best explained by a picture:

We have a simple, 3-cell initial condition with some random colors. In each
iteration, a cell randomly takes one of the colors from each of its neighbors –
the color from the left parent cell goes into the first spot of the new cell,
and the one from the right parent cell goes into the second spot. Naturally,
this system wraps around (old-school video game style).
 Upon inputting the blending algorithm, in which the different-colored
neighbors would blend to make a new color, we see that the system is at
least somewhat biologically realistic. As with flower color, for example, two
plants with the same color flowers will produce an offspring of that color,

whereas two different-colored plants will produce a plant with a blend of the
two hues. Of course, we are not taking into account dominant and recessive
traits (a feat for a more sophisticated algorithm).

 The equations of motion for this system are relatively simple. For a
system St

i of n cells, we have the initial condition:

St

i = [X0, Y0]t
 , …, [X i-2, Y i-2]t

 , [X i-1, Y i-1]t
 , [X i, Y i]t

 , [X i+1, Y i+1]t
 ,

 [X i+2 ,Y i+2]t
 , … , [Xn, Yn]t

After one time step, we get:

St+1

i = [Gn, G1]t+1
 , …, [Gi-3, Gi-1]t+1

 , [Gi-2, Gi]t+1
 , [Gi-1, Gi+1]t+1

 , [Gi, Gi+2]t+1

,
 [Gi+1, Gi+3]t+1

 , … , [Gn-1, G0]t+1

Here we are using Gs to denote a random choosing of X or Y from the left and
right parent cells. In technical terms:

[Gn, G1]t+1

 = any of four combinations of Xs and Ys from the cells [X1, Y1]t
and

[Xn, Yn]t

In particular, for the blending algorithm, we obtain the next time step by
performing an averaging operation with the hexadecimal digits:

(Gi-1 + Gi+1)t+1 /2

Methods

Our program takes in a population size, a step size, a seed number

(usually set to 0), and a mutation coefficient from the user. The result is a
map of however many iterations the user wanted – from this we can see
patterns and chaotic behavior. The program has two parts: one is the class
file which details an object that holds the states for every cell in the
population, iterates the initial condition, and blends the genes together; the
other is the program file, which calls the class file, and updates the screen,
but consists mainly of the user interface code (using Tk).

The program file passes in a “gene map,” which is a dictionary file
where ‘r’, ‘g’, ‘b’, and so on (other colors such as cyan, magenta, and yellow
may be used) are the keys passed in. Each color has an associated array with
its hex values (e.g. 'r' is connected to the array “array([256,0,0])”). The
algorithm itself uses only the keys ‘r’, ‘g’, and ‘b’ in the iterations, and the
values are only converted into hex when displaying the resulting generation.
The population is generated randomly via either user input (using the input
seed), or a random seed as determined by the computer’s clock. A basic

chain of events following user commands would look like this: the program
looks at the initial state  iterates the state  converts the results into
hexadecimal color values  stores the information in a “state matrix” that
holds all of the information to pass to the screen. The user can also input a
mutation coefficient from 0 to 1. This represents the probability of a
mutation happening in one of the genes and is usually on the order of 10-4 to
10-6 for an actual eukaryotic cell. Note that here, we are mutating entire gene
pairs, as opposed to single genes.

Results

Our first coding attempt for this program had a bug in it that caused

the iteration to proceed site by site, rather than generation by generation.
The first generation would iterate as normal - in the following iterations,
however, the first gene would get the information from its parents, then
REPLACE the other first gene, so the second gene would use the already
changed first gene (instead of its true parent) to determine it’s color. This
problem is not without its merits, however. In this case, the program is
simply modeling more continuous results, with children becoming parents
within the iteration. The results we got from this initial program were a
rapid converging of traits – as in the graphic below, one color would begin to
dominate after 1000 iterations or less. Mutations in this program would
cause slower divergence, as one strategically placed mutated cell could throw
off the entire outcome. Biologically, this could represent “inbreeding” of
sorts – the traits converge very quickly, characteristic of inbreeding in
animals or plants. Overall, much genetic diversity is lost in a relatively short
amount of time.

Graphic (with the old program):
Population: 100, Steps: 100, Seed: 1, Mutation: 0.0001

After some coding adjustments, we came up with the correct program.

This modified code gives a population that remains diverse for a lot longer –
even when it does converge, it almost always converges to two traits (given
no mutation). Here, the checkerboard pattern is much more prevalent, much
unlike the solid colors we were seeing in the previous program. This makes
sense, as one would expect a child cell with two green parents to be green
itself. As time goes on, the population usually converges to a period-2 limit
cycle of two colors in a checkerboard pattern – it is possible there is a case
which converges to one trait, but these cases are few and difficult to find
(100 Steps, 100 Population, 0165421 seed, 0.00001 Mutation Coefficient is an
example of such a case, and even then it is only after a great many
generations). Mutation has more of an effect when the code is correct; for
example, if a pure blue or green cell randomly appears in a pattern of
blue/green checkers, the pure color can blow up rather quickly. Even with
one part in 10-4, the mutation can cause some impressive trait dominance –
the color patterns can switch completely

 Graphic (with the new program):
 Population: 100, Steps: 100, Seed: 1, Mutation: 0.0001

Conclusion

In the first program, we notice an exponential drop-off in trait
diversity, though this is less noticeable in the second program. The second
program eventually converges to two alternating traits – in the real world,
this is a bit unrealistic, as many traits do have some form of dominance or
recessiveness. For example, if we had a population of equally blue-eyed
humans and brown-eyed humans, the brown-eyed trait would eventually win
out due to dominance (though the blue-eyed trait would probably not
disappear completely). Overall, this program is a primitive model of
biological genetic evolution that can nonetheless provide some interesting
insights into the effects of inbreeding and mutations on genetic traits.

We had predicted that the cellular automaton simulation would give a
mostly chaotic, periodically stable population, much like the binary cellular
automatons. Instead, we got an initially chaotic, but eventually stable
period-2 attractor. Mutation can occasionally skew the results into becoming
a different period-2 attractor (for example, a red and green checkerboard
pattern instead of a blue and green one).

