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Abstract: 
 

We investigated the properties of cellular automata 
with three or more possible states, represented by 

colors.  For the simulation, the Pygame tool was used. 
Our hypothesis was that the system would be overall 
chaotic, with periods of stability, but we found that  

the system instead converges to a stable period-2 limit 
cycle, indicated by a checkerboard pattern in the simul- 
ation.  Mutation can have significant effects on the trai- 

ts that emerge dominant. 
 

 
 
 
 
 
 
 
 



 
 
 
 

Introduction 
 

 Our project focuses on a variation of the cellular automaton, using 
three or more states instead of the regular two.  Each of the states is 
represented by a “gene pair” with any combination of a red cell, a green cell, 
or a blue cell, and obeys a simple set of rules for producing the next 
“generation” of cells.  Our motivation for this project is that it is relatively 
simple to simulate, but still opens up numerous possibilities for chaotic 
behavior.  Even modeling a few short iterations by hand (i.e. a random 
arrangement of six colored cells) gives some very intriguing results – we were 
interested to see how the system would behave with many cells!   

This project could also provide insight on how genes are expressed in 
animals or humans – for example, eye color (blue, green, and brown), or hair 
color (blonde, black, and red).  We decided to use pairs of genes, as that is 
how the pairs of chromosomes exchange information in cellular reproduction. 
Naturally, a truly accurate simulation for such things would be exceedingly 
complex, and our project can only hope to scratch the surface of long-term 
gene expression.   
 Our model for the many-state cellular automaton consists entirely of 
Python code and uses the tool Pygame for the visual simulations.  The 
interface and code are very straightforward – the user gives an initial amount 
of cells to start with and the amount of generations to produce (the “step” 
size), while the program puts in a random combination of color pairs for the 
initial condition.  We then use an algorithm that implements the 
reproduction rules and proceeds to display the next generation of colored 
cells.  The simulation can continue on for quite a while, allowing the viewer 
to see if any patterns or colors dominate over others.   

When writing the simulation for our project, we decided to expand on 
the original three colors, and introduced a “blending” algorithm that uses 
the hexadecimal codes of the colors (red, green, and blue having the simplest 
number representation) to “blend” together our initial set of colors.  Besides 
creating an attractive, computer-background worthy visual, this gave us some 
unexpected results – namely that the colors often converge to one of the 
primary red, green, or blue colors after a relatively short time!  We later on 
realized that this particular result was erroneous, and upon fixing the code 
found that the population would instead converge to a stable period-2 limit 
cycle (barring any random mutations).  Another modification we introduced 
was the potential for cell “mutation” – that is, one cell randomly becoming a 
different color in a random number of generations.  This is closely related to 
the gene mutations we see in DNA. 



 We found that through the simulation, the population eventually 
stabilizes to a period-2 limit cycle (indicated by a checkerboard pattern with 
two colors), and that mutation can strongly affect the outcome. 

 
 

Background and Short History 
 

The basic rules governing most cellular automata are such: a cell may 
only interact with its nearest neighbors (the ones on the left and right for a 
1-D automaton, and those on the left, right, top, and bottom for a 3-D 
automaton), each iteration is discrete – for each “tick of the clock,” a new 
generation is produced, and the particular reproduction rules for each 
automaton do not change over the course of one simulation.  Many of the 
cellular automata studied so far involve only two possible states for a cell 
(likely related to the fact that most computers use binary), and simulations 
produce patterns that are largely chaotic, but do exhibit temporary 
stabilities.  For example,  

 
Here, the cellular automata starts from one cell and grows geometrically 
according to a particular rule.   

 
The concept of cellular automata has been around since the 1950’s, 

when several scientists began to study them for various applications in real 
life.  Stanislaw Ulam was interested in cellular automatons because they 
were related to his current research on crystal growth in lattice networks.  
Indeed, the Ising model (which uses a two-dimensional square lattice) is 
connected to cellular automata, the main difference being that the rules 
governing the former are inherently random.  Nonetheless, Ulam eventually 
met up with John von Neumann, who was working on a simulation for 
biological self-reproduction.  In the words of another cellular automaton 
scientist (who apparently also collaborated with the great Professor 
Crutchfield on a paper!):  

 
“CA were not invented, however, to be realistic models of Nature. They started with John von 

Neumann, who wanted to study self-reproduction, and decided that the first thing to do was 



ignore everything biologists had learned about the way actually existing organisms reproduce 
themselves. This is known as hubris, and is especially galling when it works.” – Cosma Shalizi 

 
Despite John von Neumann’s apparent ignorance of all things biological, at 
Ulam’s prompting he nevertheless came up with a rather complicated version 
of a self-reproducing mathematical/biological system involving 29 different 
possible colors for a 200,000 cell lattice; this was the first cellular 
automaton.  John Conway expanded on the idea in the 1970’s with his famous 
“Game of Life,” a 2-D computer simulation in which a cell lives or dies 
depending on the states of its four neighbors – today, this type of simulation 
is often used as a practice program in beginning programming classes.  Later 
on, in the 1980’s, Stephen Wolfram wrote numerous papers on “elementary 
cellular automata,” a very simple, yet surprisingly complicated family of 
cellular automata.  The graphic above is an example of one of the resulting 
systems. 

 
 

Dynamical System 
 
 The particular system we have selected involves six possible states, or 
combinations of red, green and blue (a far cry from von Neumann’s 29!).  For 
the sake of simplicity, we have distinguished them with the colors red, 
green, and blue; these colors are randomly arranged in a finite line of cells.  
The main rule governing the new generation (before the blending algorithm) 
is perhaps best explained by a picture:   

 
 
We have a simple, 3-cell initial condition with some random colors. In each 
iteration, a cell randomly takes one of the colors from each of its neighbors – 
the color from the left parent cell goes into the first spot of the new cell, 
and the one from the right parent cell goes into the second spot. Naturally, 
this system wraps around (old-school video game style).   
 Upon inputting the blending algorithm, in which the different-colored 
neighbors would blend to make a new color, we see that the system is at 
least somewhat biologically realistic.  As with flower color, for example, two 
plants with the same color flowers will produce an offspring of that color, 



whereas two different-colored plants will produce a plant with a blend of the 
two hues. Of course, we are not taking into account dominant and recessive 
traits (a feat for a more sophisticated algorithm).   
  
 The equations of motion for this system are relatively simple.  For a 
system St

i  of n cells, we have the initial condition: 
    
St

i  =  [X0, Y0]t
 , …,  [X i-2, Y i-2]t

 , [X i-1, Y i-1]t
 , [X i, Y i]t

 , [X i+1, Y i+1]t
 ,  

      [X i+2 ,Y i+2  ]t
  , … , [Xn, Yn]t  

 
After one time step, we get: 
 
 
St+1

i  =  [Gn, G1]t+1
 , …,  [Gi-3, Gi-1]t+1

 , [Gi-2, Gi]t+1
 , [Gi-1, Gi+1]t+1

 , [Gi, Gi+2]t+1
 

,  
     [Gi+1, Gi+3]t+1

 , … , [Gn-1, G0]t+1 
 
Here we are using Gs to denote a random choosing of X or Y from the left and 
right parent cells.  In technical terms: 
 
[Gn, G1]t+1

 = any of four combinations of Xs and Ys from the cells [X1, Y1]t  
and         

[Xn, Yn]t 
 
In particular, for the blending algorithm, we obtain the next time step by 
performing an averaging operation with the hexadecimal digits: 
 
(Gi-1 + Gi+1)t+1 /2  

Methods 
 
Our program takes in a population size, a step size, a seed number 

(usually set to 0), and a mutation coefficient from the user.  The result is a 
map of however many iterations the user wanted – from this we can see 
patterns and chaotic behavior. The program has two parts: one is the class 
file which details an object that holds the states for every cell in the 
population, iterates the initial condition, and blends the genes together; the 
other is the program file, which calls the class file, and updates the screen, 
but consists mainly of the user interface code (using Tk). 

The program file passes in a “gene map,” which is a dictionary file 
where ‘r’, ‘g’, ‘b’, and so on (other colors such as cyan, magenta, and yellow 
may be used) are the keys passed in.  Each color has an associated array with 
its hex values (e.g. 'r' is connected to the array “array([256,0,0])”).  The 
algorithm itself uses only the keys ‘r’, ‘g’, and ‘b’ in the iterations, and the 
values are only converted into hex when displaying the resulting generation.  
The population is generated randomly via either user input (using the input 
seed), or a random seed as determined by the computer’s clock.  A basic 



chain of events following user commands would look like this: the program 
looks at the initial state  iterates the state  converts the results into 
hexadecimal color values  stores the information in a “state matrix” that 
holds all of the information to pass to the screen.  The user can also input a 
mutation coefficient from 0 to 1.  This represents the probability of a 
mutation happening in one of the genes and is usually on the order of 10-4 to 
10-6 for an actual eukaryotic cell. Note that here, we are mutating entire gene 
pairs, as opposed to single genes. 

 
Results 

 
Our first coding attempt for this program had a bug in it that caused 

the iteration to proceed site by site, rather than generation by generation.  
The first generation would iterate as normal - in the following iterations, 
however, the first gene would get the information from its parents, then 
REPLACE the other first gene, so the second gene would use the already 
changed first gene (instead of its true parent) to determine it’s color.  This 
problem is not without its merits, however. In this case, the program is 
simply modeling more continuous results, with children becoming parents 
within the iteration.  The results we got from this initial program were a 
rapid converging of traits – as in the graphic below, one color would begin to 
dominate after 1000 iterations or less.  Mutations in this program would 
cause slower divergence, as one strategically placed mutated cell could throw 
off the entire outcome.  Biologically, this could represent “inbreeding” of 
sorts – the traits converge very quickly, characteristic of inbreeding in 
animals or plants.  Overall, much genetic diversity is lost in a relatively short 
amount of time.  

 
Graphic (with the old program):   
Population:  100, Steps: 100, Seed: 1, Mutation: 0.0001 



 
 
 
After some coding adjustments, we came up with the correct program.  

This modified code gives a population that remains diverse for a lot longer – 
even when it does converge, it almost always converges to two traits (given 
no mutation).  Here, the checkerboard pattern is much more prevalent, much 
unlike the solid colors we were seeing in the previous program. This makes 
sense, as one would expect a child cell with two green parents to be green 
itself.  As time goes on, the population usually converges to a period-2 limit 
cycle of two colors in a checkerboard pattern – it is possible there is a case 
which converges to one trait, but these cases are few and difficult to find 
(100 Steps, 100 Population, 0165421 seed, 0.00001 Mutation Coefficient is an 
example of such a case, and even then it is only after a great many 
generations).  Mutation has more of an effect when the code is correct; for 
example, if a pure blue or green cell randomly appears in a pattern of 
blue/green checkers, the pure color can blow up rather quickly.  Even with 
one part in 10-4, the mutation can cause some impressive trait dominance – 
the color patterns can switch completely  
 
                  Graphic (with the new program): 
                  Population:  100, Steps: 100, Seed: 1, Mutation: 0.0001 

 



 
 

 

 

 

Conclusion 
 

In the first program, we notice an exponential drop-off in trait 
diversity, though this is less noticeable in the second program.  The second 
program eventually converges to two alternating traits – in the real world, 
this is a bit unrealistic, as many traits do have some form of dominance or 
recessiveness.  For example, if we had a population of equally blue-eyed 
humans and brown-eyed humans, the brown-eyed trait would eventually win 
out due to dominance (though the blue-eyed trait would probably not 
disappear completely).  Overall, this program is a primitive model of 
biological genetic evolution that can nonetheless provide some interesting 
insights into the effects of inbreeding and mutations on genetic traits.   

We had predicted that the cellular automaton simulation would give a 
mostly chaotic, periodically stable population, much like the binary cellular 
automatons.  Instead, we got an initially chaotic, but eventually stable 
period-2 attractor.  Mutation can occasionally skew the results into becoming 
a different period-2 attractor (for example, a red and green checkerboard 
pattern instead of a blue and green one).   


