

Rock-Paper-Scissors:
An Example of a Multi-agent Dynamical System

Kristin Lui

Department of Mathematics

Kristin.lui@gmail.com

Abstract: In order to study and understand multi-agent systems, I create simulations of
agents playing the game Rock-Paper-Scissors for one and two agents cases. Using the
differential equations from "Stability and Diversity in Collective Adaptation" explore
how rewards from the environment and agents' memory loss affect the probability
distribution of choosing a new action for each agent.

Introduction

I wanted to study a multi-agent system because of the complex dynamical
behavior that arose from the seemly simple two agent system. Computers today not only
compute for a person thousands of iterations of a system in a few seconds but also allow
interaction between a system and a person in a way that paper and pencil could not
accomplish. My ambitious goal was to observe the dynamical behavior of two agents in
four-dimensions and I saw visual python as a perfect tool to complete such a task. Not
only would the computer create and graph trajectories in a four-dimensional space for me
but the computer would also allow me to test different initial conditions instantly for
comparison.

Working from the paper “Stability and Diversity in a Collaborative Dynamic
System”, I created simulations that involved a single agent and two agents playing a
game of Rock-Paper-Scissors. The simulations allowed one to change the value of
parameters and also examine various initial conditions. The single agent case behaved as
expected by converging to one of three possible fixed points depending on the
parameters. On the other hand, the simulation involving two agents was extremely
sensitive to initial conditions and changes in parameters. Graphing the trajectories in four
dimensions was abandoned in favor of exploring the different limit cycles and general
behavior of the two agent system.

Background

Multi-agent systems are systems in which there are several independent agents
working collaboratively or against each other in order to satisfy a goal. Real world
examples of multi-agent systems include flocks of birds and insect swarms. The agents
in my simulations are defined as autonomous agents. These agents modify their behavior
based on information they gather from the environment and from other agents. In this
way, agents are not explicitly aware of the environment they are in and must learn about
the environment through rewards the agents receive from interactions. Agents playing
Rock-Paper-Scissors fit the conditions of a multi-agent system since the agents play
independent of each other and modify their actions (playing either rock, paper, or scissors
as a move) based on the rewards they receive from the environment and interactions with
other agents. While each action of the individual agent is interesting, viewing the group
of agents as a whole allows one to see other complex behavior and patterns. This is
interesting because the agents aren’t working in unison but rather are modifying their
behaviors independently based on local interactions with each other.

Dynamical System

The two systems I investigated were the single agent and two agents systems of
agents playing the game Rock-Paper-Scissors. The reason for studying the single agent
case is to gain a better understanding of how an agent is affected by different parameters
without the added complication of another agent. For an agent, I looked at the change in
the agent's probability distribution with respect to time. To do this I treated each

probability distribution as a vector with three components since in the game there are
three possible actions. The sum of an agent's probability distribution must equal one. As
a result, the trajectory of the agent's probability distribution as it changes remains within
a two-dimensional triangle called a simplex (Figure 1). The rewards an agent receives is
also a vector (, 1,1)R ε= − where the rewards are ε for ties, -1 for loses, and 1 for wins.

The equation for a single agent is:

() ()i
i i

i

x R R H H
x

β α= − + −

iR is the reward given for the particular action ()1...i N∈ and
1

N

n n
n

R x R
=

=∑ which is the

net reinforcement averaged over the agent's possible actions. The difference between the
rewards tells the agent how the reward for the current action i compares to the average of
the other rewards. log()i iH x= − is the self-information or degree of surprise when

action i is taken and
1

N

n n
n

H x H
=

= ∑ , the Shannon entropy. The difference serves to make

the probability distribution uniform. The two parameters β and α control the two
differences for the rewards and the self-information of each action. The adaptation rate is
controlled by [)0,β ∈ ∞ . If 0β > , the agent will increase the probability of choosing the
action that led to the highest reward. In the special case of 0β = , the agent's choice
distribution is unaffected by current reinforcements and chooses actions randomly. The
agent's memory loss rate is controlled by [)0,1α ∈ . When 0α > , memory has less of an
effect on the agent's behavior by giving past reinforcements less effect than current
reinforcements. In general, the probability distribution becomes more uniform. In the
special case of 1α = , there is total memory loss and the probability distribution is
uniform and converges to the Nash equilibrium of 1 1 1

, ,
3 3 3

⎛ ⎞⎜ ⎟
⎝ ⎠

. The Nash equilibrium

represents the point at which the agent chooses actions that yield the highest rewards for
all parties which are the single agent and the environment. In the second special case of

0α = , the agent has perfect memory and the agent's behavior will be governed by
()iR Rβ − .

 The equations for the two agent case are:

[] []X X X Xi
X i X i

i

x R R H H
x

β α= − + −

[] []j Y Y Y Y
Y j Y j

j

y
R R H H

y
β α= − + −

Figure 1: The triangular
simplex for an agent with three
components (actions).

Here the equations are the same as the single agent case. One difference is the
rewards scheme for two agents. There are two matrices, one for each agent, which

describe the rewards based on the agents' interaction with each other. 1 1
1 1
1 1

X

X

X

A
ε

ε
ε

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 and

1 1
1 1
1 1

Y

Y

Y

B
ε

ε
ε

−⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

 where Xε and Yε are ties for Agent 1 and Agent 2 respectively.

Additionally, another difference is how the R's and H's are calculated and those equations
can be found in the Sato paper (equations ….). For two agents, the main dynamical
behavior occurs in four-dimensional space since the state space for the two agents is two-
dimensional; the product of the state spaces gives four dimensions.

Methods

 I used visual python to simulate the change in probability distribution for an agent
(single-agent case) or agents (two-agent case). For all simulations, I used the fourth order
Runge-Kutta integration method to solve the differential equations. In the single-agent
case, I allowed the user to vary the alpha and beta values during the simulation. I believe
the instant feedback aids in the user's understanding of how those parameters affect
where the distributions converge. The simulation for two-agents also allows the user to
vary the alpha and beta parameters for Agent 1 and Agent 2. Even though the epsilons
cannot be varied, additional sliders can be added to the simulation. A clear button is
available so that the transient trajectories can be cleared from the screen. Transient
trajectories are included in the display because the initial behavior of the agents is also
interesting to watch. Since there are so many parameter values to choose from, I decided
to use specific parameters from the paper Sato, et al. so that the system observed would
be chaotic. These parameters are 0.0198Xα = , 1.0Xβ = , 0.5Xε = , 0.01Yα = , 1.0Yβ = ,
and 0.3Yε = − . With these values, the simulation's main function was to show the
trajectories of the two agents with varying initial conditions.

Results

There were three main outcomes from the single agent case which were
convergence at the vertex, inner simplex, and center of the simplex. The trajectory
converged to a vertex of the simplex when 0α = and β > 0. The vertices of the triangle
are points at which the agent is playing only one action 100% of the time. Converging to
one of these vertices means that the agent is sensitive to the current rewards it receives
and modifies the probability distribution to maximize the current rewards (Figure 2).
When the trajectory converged to a point inside the simplex, the agent had some memory
loss since 0α > (Figure 3). This means that the agent's probability distribution was
becoming uniform but rewards from the environment prevented the trajectory from
converging to the Nash equilibrium. Finally, there was total memory loss when 1α =
and the trajectories became uniform and converged to the center of the simplex (Figure
4). In addition to setting the parameter values before running the simulation, the user can

change the values during the run also. The result is a funny looking curve (Figure 5) but
while changing the parameters the user can see and understand how convergence is
affected by β and α .

In the two agents simulation, convergence was in the form of limit cycles for both
agents. Limit cycles were usually in the form of a triangle that was within the simplex
while other cycles were trefoil patterns or almost circular orbits that occurred in the
middle of the simplex. The transient phase of the trajectories would sometimes look
random but after using the "clear" button in the simulation, the true behavior would be
revealed. Trajectories were found to end in a limit cycle of either a triangle or an
irregular "spirographic" shape that creates an interior space (Figures 6 and 7). It is not
known what other limit cycle shapes there are if any others exist.

Other conditions start with on the limit cycles such as the irregular "spirographic"
shape (Figure 8), the triangular orbit (Figure 9) and an almost circular orbit (Figure 10).
The irregular "spirographic" shape repeats indefinitely in the interior of the simplex, is
not perfectly circular, and has a triangular interior space. The triangular orbit seems to
develop from initial conditions that lie near the edges of the simplex. Finally the almost
circular orbit appears when the initial conditions are near the center of the simplex and
are exactly the same in value for both agents. I found that when the agents had the same

Figure 2: Convergence at
the simplex's vertex shows
the agent reacting strongly
to current rewards and
going towards a probability
distribution of playing one
action 100% of the time.

Figure 3:
Convergence inside
the simplex indicates
some memory loss
(0α >)

Figure 4: The agent
converges to the center
of the simplex due to
complete memory loss.

Figure 6: An initial
condition that started
chaotic (left) and ended in
a triangular limit cycle
(right).

Figure 7: A different initial
condition with random
behavior (left) but the
trajectory settles down into
a "spirographic" cycle
(right)

Figure 5: The
trajectory can be
manipulated during the
simulation by
changing the
parameter values.

value for their initial conditions, the trajectories would slowly spiral to the almost circular
orbit inside the simplex.

Another set of interesting initial conditions are those that started on one of the

simplex's edges (Figure 11). In this case, the trajectories stay mostly on the edges of the
simplex showing that the agents are playing a sub-game by using only two of the three
actions. However, after a transient period, the trajectories settle into a triangular limit
cycle within the simplex.

Conclusion

 Although simple, the simulation for the single agent case allowed one to explore
how the parameters β and α affect the dynamical behavior of an agent enabling the user
to understand how memory loss and rewards affect convergence. For the two agents
case, even though the parameters weren't varied, as in the one agent case, partial
understanding of the complicated system was achieved by observing different initial
conditions. By changing the initial conditions, several different limit cycles were found.
Also the use of the "clear" button allowed one to look beyond the interesting transient
state to the actual limit cycles. The end limit cycles of the agents show that with some
memory loss, the agents settle into a pattern of switching between the three actions which
results in the triangular shapes of the cycles. A more systematic and mathematical
approach could be used to classify and predict the limit cycles and exploration of how
varying the parameters while the simulation is running would yield more information
about how agents adapt to one another.

Figure 8: Trajectories that started in the
irregular "spirograph" (left). An interior
triangular space can be seen in the close-up
of one of the trajectories (right).

Figure 9:
A
triangular
orbit.

Figure 10: An
almost circular
orbit inside the
simplex.

Figure 11: Initial conditions on an edge of the simplexes. The trajectories travel from one edge
to another (left), then the trajectories become random (middle), and finally the trajectories settle
into a triangular orbit (right).

Bibliography

Y. Sato, E. Akiyama, and J. P. Crutchfield, "Stability and Diversity in Collective
Adaptation," Journal of Theoretical Biology (2004) submitted.

