From Determinism to Stochasticity

Reading for this lecture:
(These) Lecture Notes.

Cave:

Sensory Immersive Visualization

 A video or two:- Cave Dynamics
- Protein Manipulation

Tour:
This Thursday (27 May)
Two Sessions: 4:00-5:00 PM \& 5:00-6:00 PM Where:
Rm. 3255 Earth \& Physical Sciences Bldg Top floor, northwest corner.

Cave Tour Sign-Up
 Thursday 27 May

\downarrow Balanced Numbers \downarrow

Session One: 4:00-5:00 PM
I.
2.
3.
4. \qquad

Session Two: 5:00-6:00 PM
1.
2.
3.
4. \qquad

One-D Map Tool

Example Code
Now on course website See Homework Page

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems:

The Big Deal:
Deterministic systems can be:
"Unpredictable"
"Noisy"
"Random"
"Chaotic"
What is the role of probability?

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems:
Probability Theory Review:
Continuous Random Variable: X
Takes values over continuous space: \mathcal{X}
Cumulative distribution function: $P(x)=\operatorname{Pr}(X \leq x)$
If continuous, then random variable is.
Probability density function: $p(x)=P^{\prime}(x)$
Normalized: $\int_{-\infty}^{\infty} d x p(x)=1 \quad$ or $\quad \operatorname{Pr}(X<\infty)=1$
Support of distribution: $\operatorname{supp} X=\{x: p(x)>0\}$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems:
Probability Theory Review ...
Continuous random variable X :
Uniform distribution on interval: $\mathcal{X}=\mathbf{R}$
Density: $\quad p(x)= \begin{cases}1, & 0 \leq x \leq 1 \\ 0, & \text { otherwise }\end{cases}$
Distribution: $\operatorname{Pr}(x)= \begin{cases}0 & x<0 \\ x & 0 \leq x \leq 1 \\ 1 & x>1\end{cases}$
Support: supp $X=[0,1]$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems:

Probability Theory Review ...

Continuous random variable X :
Gaussian: $\mathcal{X}=\mathbf{R}$

Density: $p(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}$
Distribution: $P(x)=\int_{-\infty}^{x} d y p(y) \equiv \operatorname{Erf}(x)$
Support: $\operatorname{supp} X=\mathbb{R}$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...
Dynamical Evolution of Distributions:
Dynamical system: $\{\mathcal{X}, \mathcal{T}\}$

State density: $p(x) \quad x \in \mathcal{X}$

Can evolve individual states and sets: $\mathcal{T}: x_{0} \rightarrow x_{1}$

Initial density: $p_{0}(x) \quad$ Model of measuring a system
Evolve a density? $p_{0}(x) \rightarrow_{\mathcal{T}} p_{1}(x)$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Dynamical Evolution of Distributions ...
Conservation of probability:

$$
p_{1}(y) d y=p_{0}(x) d x
$$

Perron-Frobenius Operator:
Locally: $y=\mathcal{T}(x)$

$$
p_{n+1}(y)=\frac{p_{n}(x)}{\left|\mathcal{T}^{\prime}(x)\right|}
$$

Globally:

$$
p_{n+1}(y)=\sum_{x \in \mathcal{T}^{-1}(y)} \frac{p_{n}(x)}{\left|\mathcal{T}^{\prime}(x)\right|}
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Dynamical Evolution of Distributions ...
Frobenius-Perron Equation:

$$
p_{n+1}(y)=\int d x p_{n}(x) \delta(y-\mathcal{T}(x))
$$

Dirac delta-function:

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Dynamical Evolution of Distributions ...
Example: Delta function initial distribution
Map: $x_{n+1}=f\left(x_{n}\right)$
Initial condition: $x_{0} \in \mathbf{R}$
Initial distribution: $p_{0}(x)=\delta\left(x-x_{0}\right)$

$$
\begin{aligned}
p_{1}(y) & =\int d x p_{0}(x) \delta(y-f(x)) \\
& =\int d x \delta\left(x-x_{0}\right) \delta(y-f(x)) \\
& =\delta\left(y-f\left(x_{0}\right)\right) \\
& =\delta\left(y-x_{1}\right)
\end{aligned}
$$

$$
p_{n}(y)=\delta\left(y-x_{n}\right)
$$

... reduces to an orbit

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Dynamical Evolution of Distributions ...

Delta function IC:The easy case and expected result.

What happens when the IC has finite support?

$$
p_{0}(x)= \begin{cases}20, & |x-1 / 3| \leq 0.025 \\ 0, & \text { otherwise }\end{cases}
$$

Consider a set of increasingly more complicated systems and how they evolve distributions ...

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Dynamical Evolution of Distributions ...

Example:

Linear circle map
$x_{n+1}=0.1+x_{n}(\bmod 1)$

$$
f^{\prime}(x)=1
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Dynamical
of Distribu
Example:
Shift map

Spreading: $f^{\prime}(x)=2$

From Determinism to Stochasticity ...
Probability Theory of Dynamical Systems ...
Dynamical Evolution of Distributions ...

Example:
Tent map a $=2.0$

From Determinism to Stochasticity ... Probability Theory of Dynamical Systems ...
Dynamical Evolution of Distributions ...

$-\log \mathrm{P}(\mathrm{x})$	$t=0$

Logistic map r $=4$

$$
f^{\prime}(x)=4(1-2 x)
$$

Spreading: $x<3 / 8$ or $x>5 / 8$
Contraction: $3 / 8<x<5 / 8$

From Determinism to Stochasticity ... Probability Theory of Dynamical Systems ... Dynamical Evolution
of Distributions ...

Example:

Logistic map r = 3.7

$t=1$

x_{n}
Peaks in distribution
are images of maximum

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Time-asymptotic distribution: What we observe

How to characterize?

Invariant measure:
A distribution that maps "onto" itself Analog of invariant sets

Stable invariant measures:
Stable in what sense?
Robust to noise or parameters or ???

From Determinism to Stochasticity ...
Probability Theory of Dynamical Systems ...
Invariant measures for ID Maps:
Probability distribution (density $p^{*}(x)$) that is invariant:
I. Distribution's support must be an invariant set:

$$
\Lambda=f(\Lambda), \quad \Lambda=\operatorname{supp} p^{*}(x)=\left\{x: p^{*}(x)>0\right\}
$$

II. Probabilities "invariant":

Distribution a fixed point of Frobenius-Perron Equation

$$
p^{*}(y)=\int d x p^{*}(x) \delta(y-f(x))
$$

Functional equation: Find $p^{*}(\cdot)$ that satisfies this.

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Example: Periodic-k orbit $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ has density
Is it invariant?

$$
\begin{aligned}
p_{1}(y) & =\int d x p(x) \delta(y-f(x)) \\
& =\int d x \delta\left(\prod_{i=1}^{k}\left(x-x_{i}\right)\right) \delta(y-f(x)) \\
& =\delta\left(\prod_{i=1}^{k}\left(y-f\left(x_{i}\right)\right)\right) \\
& =\delta\left(\prod_{i=1}^{k}\left(y-x_{(i+1) \bmod k)}\right)\right. \\
& =\delta\left(\prod_{i=1}^{k}\left(y-x_{i}\right)\right) \quad \text { Yes! }
\end{aligned}
$$

$$
p(x)=\delta\left(\prod_{i=1}^{k}\left(x-x_{i}\right)\right)
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Example: Shift map invariant distribution
Uniform distribution: $p(x)=1, x \in[0,1]$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Example: Shift map invariant distribution
Uniform distribution: $p(x)=1, x \in[0,1]$

Via Frobenius-Perron Equation: Two cases

$$
\begin{array}{rlrl}
\mathrm{A}: 0 \leq x \leq 1 / 2 & \mathrm{~B}: 1 / 2 & <x \leq 1 \\
\begin{array}{rlrl}
p_{1}^{\prime}(y)= & \int_{0}^{\frac{1}{2}} d x p_{0}(x) \delta(y-f(x)) & p_{1}^{\prime \prime}(y) & =\int_{\frac{1}{2}}^{1} d x p_{0}(x) \delta(y-f(x)) \\
= & & =\int_{0}^{\frac{1}{2}} d x \delta(y-2 x) \\
= & & =\frac{1}{2} \\
& & \frac{1}{2} d x \delta(y-2 x) &
\end{array} \\
& & p_{1}(y)=p_{1}^{\prime}(y)+p_{1}^{\prime \prime}(y) & \\
& =p_{0}(x) \quad(y \Rightarrow x)
\end{array}
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Example: Tent map $\quad x_{n+1}= \begin{cases}a x_{n}, & 0 \leq x_{n} \leq \frac{1}{2} \\ a\left(1-x_{n}\right), & \frac{1}{2}<x_{n} \leq 0\end{cases}$
Fully two-onto-one: $a=2$
Uniform distribution is invariant: $p(x)=1, x \in[0,1]$

Proof from FP Equation:Two cases

First case: exactly that of shift map
Second case: |slope| is all that's important

$$
\begin{aligned}
1 / 2<x \leq 1 \quad p_{1}^{\prime \prime}(y) & =\int_{\frac{1}{2}}^{1} d x p_{0}(x) \delta(y-f(x)) \\
& =\int_{\frac{1}{2}}^{1} d x \delta(y-(2-2 x))=\frac{1}{2}
\end{aligned}
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Example: Tent map where two bands merge to one: $a=\sqrt{2}$ Invariant distribution:

$$
p(x)= \begin{cases}p_{0}, & x_{\min } \leq x \leq x^{*} \\ p_{1}, & x^{*}<x \leq x_{\max } \\ 0, & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
x_{\max } & =a / 2 \\
x_{\min } & =a(1-a / 2) \\
x^{*} & =a /(1+a)
\end{aligned}
$$

Equal areas: $p_{0}\left(x^{*}-x_{\text {min }}\right)=p_{1}\left(x_{\max }-x^{*}\right)$

Normalization: $p_{0}\left(x^{*}-x_{\text {min }}\right)+p_{1}\left(x_{\text {max }}-x^{*}\right)=1$

$$
p_{0}=\frac{1}{2\left(x^{*}-x_{\min }\right)} \quad p_{1}=\frac{1}{2\left(x_{\max }-x^{*}\right)}
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Example: Logistic map $x_{n+1}=r x_{n}\left(1-x_{n}\right)$
Fully two-onto-one: $r=4$
Invariant distribution? $p(x)=\frac{1}{\pi \sqrt{x(1-x)}}$

Exercise.
Hint: Coordinate transform to tent map.

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...
Numerical Example: Tent map

Typical chaotic parameter:

$$
a=1.75
$$

Two bands merge to one:

$$
a=\sqrt{2}
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Numerical Example: Tent map

Typical chaotic parameter:

$$
a=1.75
$$

Two bands merge to one:

$$
a=\sqrt{2}
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Numerical Example: Tent map

Typical chaotic parameter:

$$
a=1.75
$$

Two bands merge to one:

$$
a=\sqrt{2}
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Numerical Example: Logistic map $x_{n+1}=r x_{n}\left(1-x_{n}\right)$

Typical chaotic parameter:

$$
r=3.7
$$

Two bands merge to one:

$$
r=3.6785735104283219
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Numerical Example: Logistic map $x_{n+1}=r x_{n}\left(1-x_{n}\right)$

Typical chaotic parameter:

$$
r=3.7
$$

Two bands merge to one:

$$
r=3.6785735104283219
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Numerical Example: Logistic map $x_{n+1}=r x_{n}\left(1-x_{n}\right)$

Typical chaotic parameter:

$$
r=3.7
$$

Two bands merge to one:

$$
r=3.6785735104283219
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Numerical Example: Cusp map $x_{n+1}=a\left(1-\left|1-2 x_{n}\right|^{b}\right)$

$$
(a, b)=(1,1 / 2)
$$

From Determinism to Stochasticity ...

Probability Theory of Dynamical Systems ...

Numerical Example: Cusp map $x_{n+1}=a\left(1-\left|1-2 x_{n}\right|^{b}\right)$

$$
(a, b)=(1,1 / 2)
$$

From Determinism to Stochasticity ...
Probability Theory of Dynamical Systems ...

Issue: Many invariant measures in chaos:
An infinite number of unstable periodic orbits: Each has one. But none of these are what one sees, one sees the aperiodic orbits.

How to exclude periodic orbit measures?
Add noise and take noise level to zero; which measures are left?
Robust invariant measures.

From Determinism to Stochasticity ...

Reading for next lecture:

Lecture Notes.

