Mechanisms of Chaos: Stable Instability

Reading for this lecture:

NDAC, Sec. I2.0-I 2.3, 9.3, and I0.5.

Mechanisms of Chaos ...

Unpredictability:

Orbit complicated: difficult to follow Repeatedly convergent and divergent
Net amplification of small variations
What geometry produces this?
Stretch and fold:
Flow stretches state space
But to be stable (i.e., have an attractor):
Must be done in a compact region
So flow must fold back into region

Mechanisms of Chaos ...

Baker's transformation: kneading state space

Repeat

Lecture 6: Nonlinear Physics, Physics I50/250 (Spring 2010); jim Crutchfield

Mechanisms of Chaos ...

Baker's transformation ... kneading state space

Mechanisms of Chaos ...

Baker's transformation ...

2D Baker's Map:

$$
\begin{aligned}
\left(x_{n}, y_{n}\right) & \in[0,1] \times[0,1] \\
x_{n+1} & =2 x_{n}(\bmod 1) \\
y_{n+1} & =\left\{\begin{array}{cc}
\frac{1}{2} y_{n}, & x_{n} \leq \frac{1}{2} \\
\frac{1}{2}+\frac{1}{2} y_{n}, & x_{n}>\frac{1}{2}
\end{array}\right.
\end{aligned}
$$

Mechanisms of Chaos ...

Baker's transformation ...
Stability? $\quad A=\left(\begin{array}{cc}2 & 0 \\ 0 & \frac{1}{2}\end{array}\right)$
Calculate:
$\lambda_{1}=2 \quad$ Stretch $\quad \vec{v}_{1}=(1,0)$ Only horizontal
$\lambda_{2}=1 / 2$ Shrink $\quad \vec{v}_{2}=(0,1)$ Only vertical
$\operatorname{Det}(A)=1 \quad$ Area preserving:
No attractor per se But confined to compact region
Independent of \vec{x}

Mechanisms of Chaos ...

Dissipative Baker's Map:

Mechanisms of Chaos ...

Dissipative Baker's Map ... again!

Mechanisms of Chaos ...
 Dissipative Baker's Map ...

$$
\begin{aligned}
& x_{n+1}=2 x_{n}(\bmod 1) \\
& y_{n+1}=\left\{\begin{array}{cl}
a y_{n}, & x_{n} \leq \frac{1}{2} \\
\frac{1}{2}+a y_{n}, & x_{n}>\frac{1}{2}
\end{array}\right. \\
& \quad a \in\left[0, \frac{1}{2}\right]
\end{aligned}
$$

Mechanisms of Chaos ...

Dissipative Baker's Map ...

Stability? $\quad A=\left(\begin{array}{ll}2 & 0 \\ 0 & a\end{array}\right)$

Calculate:

$$
\begin{array}{ll}
\lambda_{1}=2 & \vec{v}_{1}=(1,0) \\
\lambda_{2}=a & \vec{v}_{2}=(0,1)
\end{array}
$$

$$
\text { Independent of } \vec{x}
$$

$\operatorname{Det}(A)=2 a \quad$ Dissipative: $a<1 / 2$
Volume contraction
Attractor!

Mechanisms of Chaos ...

Dissipative Baker's Map Simulation: $a=0.3$

Lecture 6: Nonlinear Physics, Physics I50/250 (Spring 2010); Jim Crutchfield

Mechanisms of Chaos ...

Dissipative Baker's Map ...

Stability? (x, y) versus $(x+\epsilon, y+\delta)$

$$
\begin{aligned}
& \Delta x_{1}=2\left(x_{0}+\epsilon\right)-2 x_{0}=2 \epsilon \\
& \Delta y_{1}=a\left(y_{0}+\delta\right)-a y_{0}=a \delta
\end{aligned}
$$

$\Delta x_{n}=2^{n} \epsilon \quad$ Exponential Growth of Errors
$\Delta y_{n}=a^{n} \delta \quad$ Exponential Stability

Mechanisms of Chaos ...
Dimension of a Set:
Number of boxes to cover set at measurement resolution ϵ :

$$
\epsilon=\frac{1}{2} \quad N=4 \quad \epsilon=\frac{1}{4} \quad N=16 \quad \epsilon=\frac{1}{8} \quad N=64
$$

$$
N\left(\epsilon=\frac{1}{2^{n}}\right)=\left(\frac{1}{2^{n}}\right)^{-2}=2^{2 n}
$$

$$
N(\epsilon) \propto \epsilon^{-2}
$$

Generalizing

$$
N(\epsilon) \propto \epsilon^{-d}
$$

Or (Definition) dimension: $d=\lim _{\epsilon \rightarrow 0}-\frac{\log N(\epsilon)}{\log \epsilon}$

Mechanisms of Chaos ...

Dimension of Dissipative Baker's Attractor ...

At iteration n :
2^{n} strips of thickness a^{n}
How many boxes $N(\epsilon)$ to cover attractor at resolution ϵ ?

Take: $\epsilon=a^{n}$
Number of boxes for each strip: a^{-n}

$$
N(\epsilon)=a^{-n} \times 2^{n}=\left(\frac{a}{2}\right)^{-n}
$$

Mechanisms of Chaos ...

Dimension of Dissipative Baker's Attractor ...

Dimension:

$$
\begin{aligned}
& \qquad \begin{aligned}
d & =\lim _{\epsilon \rightarrow 0}-\frac{\log N(\epsilon)}{\log \epsilon} \\
& =\lim _{n \rightarrow \infty}-\frac{\log (a / 2)^{-n}}{\log a^{n}} \\
& =1+\frac{\log \frac{1}{2}}{\log a}
\end{aligned} \\
& \begin{array}{l}
a=0
\end{array} \\
& \text { Area preserving: as } a \rightarrow \frac{1}{2}, d \rightarrow 2
\end{aligned}
$$

Lecture 6: Nonlinear Physics, Physics I50/250 (Spring 2010); Jim Crutchfield

Mechanisms of Chaos ...

Cat map (aka Toral automorphism): $(x, y) \in \mathbf{T}^{2}$

 Intrinsic stretch/shrink directions
$\binom{x_{n+1}}{y_{n+1}}=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\binom{x_{n}}{y_{n}}(\bmod 1)$
Fixed point: $\vec{x}^{*}=(0,0)$

Mechanisms of Chaos ...

Cat map (aka Toral automorphism) ...

$$
\binom{x_{n+1}}{y_{n+1}}=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right)\binom{x_{n}}{y_{n}}(\bmod 1)
$$

Calculate: $\quad \lambda_{1}=\frac{3+\sqrt{5}}{2}>1$ stretch $\quad \vec{v}_{1}=\left(\frac{1+\sqrt{5}}{2}, 1\right)$

$$
\lambda_{2}=\frac{3-\sqrt{5}}{2}<1 \text { shrink }
$$

$$
\vec{v}_{2}=\left(\frac{1-\sqrt{5}}{2}, 1\right)
$$

$\operatorname{Det}(A)=1 \quad$ area preserving

Independent of \vec{x}

Mechanisms of Chaos ...

Poincare stretch demo:
 ~/Dynamical Systems/Dynamics Demos/

Mechanisms of Chaos ...

Hénon map: $(x, y) \in \mathbf{R}^{2}$

$$
\begin{aligned}
x_{n+1} & =y_{n}+1-a x_{n}^{2} \\
y_{n+1} & =b x_{n}
\end{aligned}
$$

Stretch and fold depend on location

Lecture 6: Nonlinear Physics, Physics I50/250 (Spring 2010); Jim Crutchfield

Mechanisms of Chaos ...

Henon map ...

Stretch \& fold depend on location:

Jacobian:

$$
A=\left(\begin{array}{cc}
-2 a x_{n} & 1 \\
b & 0
\end{array}\right)
$$

Dissipative when $|b|<1$ (and orientation reversing):

$$
\operatorname{Det}(A)=-b
$$

Mechanisms of Chaos ...

Henon Attractor:

Control parameters: $(a, b)=(1.4,0.3)$

Lecture 6: Nonlinear Physics, Physics I50/250 (Spring 2010); Jim Crutchfield

Mechanisms of Chaos ...

Henon Attractor ...

Self-similar:

Self-similar attractor $=$ Dissipation + Instability

Lecture 6: Nonlinear Physics, Physics I50/250 (Spring 2010); Jim Crutchfield

Mechanisms of Chaos ... Chaotic Mechanisms in ODEs:

I. Rössler attractor
2. Lorenz attractor
3. How to quantify chaos \& stability?

Lyapunov characteristic exponents

Mechanisms of Chaos ...
Chaotic Mechanisms in ODEs:
Rössler Chaotic Attractor:

Branched manifold:

Mechanisms of Chaos ...

Chaotic Mechanisms in ODEs ...
Rössler Chaotic Attractor ...

Mechanisms of Chaos ...

Chaotic Mechanisms in ODEs ...
Rössler stability + instability: Dot spreading demo (ds)

```
Integration step = 0.02
IC = (0,-6,0)
Remembered trajectory = 6000
Orient
5000 e
nEns=10K
IC = (0,-6,0)
radius = .l
I, I, I
```


Mechanisms of Chaos ...

Chaotic Mechanisms in ODEs ...

Lorenz stability + instability:
 Dot spreading demo (ds)

```
Remembered trajectory = 6000
Orient
1000 e
nEns=50K
IC = (5,5,5)
radius = .05
I, I, I
```


Mechanisms of Chaos ...

Quantifying instability:
Lyapunov Characteristic Exponent (LCE):
$\|\delta(t)\| \sim\|\delta(0)\| e^{\lambda t}$
$\lambda \sim t^{-1} \ln \frac{\|\delta(t)\|}{\|\delta(0)\|}$

$\lambda=\lim _{\|\delta(0)\| \rightarrow 0} \lim _{t \rightarrow \infty} \frac{1}{t} \log _{2} \frac{\|\delta(t)\|}{\|\delta(0)\|}$
Exponential rate of growth of errors.
Note: $\delta(t)$ aligns with most unstable direction!

Mechanisms of Chaos ...

Measurement Resolution: ϵ
Number of scale factors to locate initial state: $I_{0}=-\log _{2} \epsilon$
Prediction horizon: $t_{\text {unpredict }} \sim \frac{I_{0}}{\lambda}$

Resolution loss rate (bits per second): λ

Error doubles each second $\Rightarrow \lambda=1$ bit/second

Mechanisms of Chaos ...

Prediction horizon ...
Examples:
Loss rate $=$ Factor of 2 each second: $\lambda=1$ bit/second
I. Measurement resolution: $\epsilon=10^{-3}$

$$
\begin{aligned}
& I_{0}=10 \text { bits } \\
& t_{\text {unpredict }}=10 \text { seconds }
\end{aligned}
$$

2.Thousand times higher resolution: $\epsilon=10^{-6}$

$$
\begin{aligned}
& I_{0}=20 \text { bits } \\
& t_{\text {unpredict }}=20 \text { seconds }
\end{aligned}
$$

Mechanisms of Chaos ...

Quantifying instability and stability ...

Lyapunov Characteristic Exponent Spectrum:

$$
\begin{aligned}
& \chi=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}, \lambda_{i} \geq \lambda_{i+1} \\
& \lambda_{i}=\lim _{\|\delta(0)\| \rightarrow 0} \lim _{t \rightarrow \infty} \frac{1}{t} \log _{2} \frac{\left\|\delta \vec{x}_{i}(t)\right\|}{\left\|\delta \vec{x}_{i}(0)\right\|} \\
& \quad\left\{\delta \vec{x}_{1}, \delta \vec{x}_{2}, \ldots, \delta \vec{x}_{n}\right\}, \delta \vec{x}_{i} \cdot \delta \vec{x}_{j}=0, i \neq j
\end{aligned}
$$

Mechanisms of Chaos ...

Quantifying instability and stability ...

LCE Spectrum and Submanifolds:

$$
\begin{aligned}
& \lambda_{i}<0 \Longleftrightarrow \text { stable manifold } \\
& \lambda_{i}>0 \Longleftrightarrow \text { unstable manifold }
\end{aligned}
$$

LCE Spectrum: Key to characterizing attractors

Mechanisms of Chaos ...

Divergence of vector field: Local volume change.

$$
\nabla \cdot \vec{F}(\vec{x})=\left.\sum_{i=1}^{n} \frac{\partial f_{i}}{\partial x_{i}}\right|_{\vec{x}}=\operatorname{Tr}(A(\vec{x}))
$$

Dissipation rate:

$$
\mathcal{D}=\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} d t \nabla \cdot \vec{F}(\vec{x}(t))
$$

Theorem: $\mathcal{D}=\sum_{i=1}^{n} \lambda_{i}$

Mechanisms of Chaos ...

LCE Spectrum Attractor Classification:

Attractor: $\mathcal{D}<0$
Need net volume contraction for global stability

Mechanisms of Chaos ...

Fractal dimension of attractor:

$$
\begin{aligned}
d= & j+\frac{\sum_{i=1}^{j} \lambda_{i}}{\left|\lambda_{j+1}\right|} \\
& j \text { largest integer such that } \sum_{i=1}^{j} \lambda_{i} \geq 0
\end{aligned}
$$

(Conjectured)

Mechanisms of Chaos ...

Metric entropy of attractor:

$$
h_{\mu}(\Lambda)=\sum_{\lambda_{i}>0} \lambda_{i}
$$

Total information production rate: [bits per second]

Mechanisms of Chaos ...

LCE Spectrum Attractor Classification ...

Dimension	LCE Spectrum	Attractor
l	$(-)$	Fixed Point
2	$(-,-)$	Fixed Point
2	$(0,-)$	Limit Cycle
3	$(-,-,-)$	Fixed Point
3	$(0,-,-)$	Limit Cycle
3	$(0,0,-)$	Torus
3	$(+, 0,-)$	Chaotic
4	$(0,0,0,-)$	$3-T o r u s$
4	$(+, 0,0,-)$	Chaotic 2-Torus
4	$(+,+, 0,-)$	Hyperchaos

Mechanisms of Chaos ...

Definition of chaotic attractor:
(I) Attractor: $\Lambda \subset \mathcal{X}$
(a) Invariant set:

$$
\Lambda=\phi_{T}(\Lambda)
$$

(b) Attracts an open set $U \subset \mathcal{X}$:

$$
\Lambda \subset U \& \Lambda \subset_{T \rightarrow \infty} \phi_{T}(U)
$$

(c) Minimal: no proper subset is also (a) \& (b)
(2) Aperiodic long-term behavior of a deterministic system with exponential amplification
(2') Positive maximum LCE: $\lambda_{\max }(\Lambda)>0$
(2") Positive metric entropy: $h_{\mu}(\Lambda)>0$

Mechanisms of Chaos ...

Reading for next lecture:

NDAC, Sections I0.5-10.7.

