Mechanisms of Chaos: Stable Instability

Reading for this lecture:

NDAC, Sec. 12.0-12.3, 9.3, and 10.5.

Unpredictability:

Orbit complicated: difficult to follow Repeatedly convergent and divergent Net amplification of small variations

What geometry produces this?

Stretch and fold:

Flow stretches state space But to be stable (i.e., have an attractor): Must be done in a compact region So flow must fold back into region

Baker's transformation: kneading state space

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Baker's transformation ... kneading state space

Lecture 6: Natural Computation & Self-Organization, Physics 250 (Winter 2008); Jim Crutchfield

Baker's transformation ...

2D Baker's Map:

$$(x_n, y_n) \in [0, 1] \times [0, 1]$$

$$x_{n+1} = 2x_n \pmod{1}$$

$$y_{n+1} = \begin{cases} \frac{1}{2}y_n, & x_n \leq \frac{1}{2} \\ \frac{1}{2} + \frac{1}{2}y_n, & x_n > \frac{1}{2} \end{cases}$$

Baker's transformation ...

Stability?
$$A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

Calculate:

- $\lambda_1 = 2$ Stretch $\vec{v}_1 = (1,0)$ Only horizontal
- $\lambda_2 = 1/2$ Shrink $\vec{v}_2 = (0,1)$ Only vertical

Det(A) = 1Area preserving: No attractor per se But confined to compact region Independent of \vec{x}

Dissipative Baker's Map:

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Dissipative Baker's Map ... again!

Lecture 6: Natural Computation & Self-Organization, Physics 250 (Winter 2008); Jim Crutchfield

Dissipative Baker's Map ...

$$\begin{aligned}
x_{n+1} &= 2x_n \pmod{1} \\
y_{n+1} &= \begin{cases} ay_n, & x_n \leq \frac{1}{2} \\ \frac{1}{2} + ay_n, & x_n > \frac{1}{2} \end{cases}
\end{aligned}$$

$$a \in \left[0, \frac{1}{2}\right]$$

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Dissipative Baker's Map ...

Stability?
$$A = \begin{pmatrix} 2 & 0 \\ 0 & a \end{pmatrix}$$

Calculate:

$$\begin{aligned} \lambda_1 &= 2 & \vec{v}_1 &= (1,0) \\ \lambda_2 &= a & \vec{v}_2 &= (0,1) \end{aligned} \ \ \text{Independent of } \vec{x} \end{aligned}$$

$$Det(A) = 2a$$
 Dissipative: $a < 1/2$
Volume contraction

Attractor!

Dissipative Baker's Map Simulation: a = 0.3

Dissipative Baker's Map ...

Stability? (x, y) versus $(x + \epsilon, y + \delta)$

$$\Delta x_1 = 2(x_0 + \epsilon) - 2x_0 = 2\epsilon$$
$$\Delta y_1 = a(y_0 + \delta) - ay_0 = a\delta$$

 $\Delta x_n = 2^n \epsilon$ Exponential Growth of Errors $\Delta y_n = a^n \delta$ Exponential Stability

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Dimension of a Set:

Number of boxes to cover set at measurement resolution ϵ :

$$\epsilon = \frac{1}{2} \quad N = 4 \qquad \epsilon = \frac{1}{4} \quad N = 16 \qquad \epsilon = \frac{1}{8} \quad N = 64$$

$$n = 1 \qquad n = 2 \qquad n = 3$$

$$N(\epsilon = \frac{1}{2^n}) = \left(\frac{1}{2^n}\right)^{-2} = 2^{2n}$$
$$N(\epsilon) \propto \epsilon^{-2}$$

$$N(\epsilon) \propto \epsilon^{-d}$$

Or (Definition) dimension: $d = \lim_{\epsilon \to 0} -\frac{\log N(\epsilon)}{\log \epsilon}$

Dimension of Dissipative Baker's Attractor ...

At iteration n:

 2^n strips of thickness a^n

How many boxes $N(\epsilon)$ to cover attractor at resolution ϵ ?

Take: $\epsilon = a^n$

Number of boxes for each strip: a^{-n}

$$N(\epsilon) = a^{-n} \times 2^n = \left(\frac{a}{2}\right)^{-n}$$

Dimension of Dissipative Baker's Attractor ...

Dimension:

 $a = 0.3 \Rightarrow d = 1.576 \dots < 2 !$

Area preserving: as $a \to \frac{1}{2}, d \to 2$

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Cat map (aka Toral automorphism): $(x,y) \in \mathbf{T}^2$ Intrinsic stretch/shrink directions

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \pmod{1}$$

Fixed point: $\vec{x}^* = (0, 0)$

Cat map (aka Toral automorphism) ...

$$\begin{pmatrix} x_{n+1} \\ y_{n+1} \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_n \\ y_n \end{pmatrix} \pmod{1}$$

Poincare stretch demo:

~/Dynamical Systems/Dynamics Demos/

Stretch and fold depend on location

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Henon map ...

Stretch & fold depend on location:

Jacobian:

$$A = \begin{pmatrix} -2ax_n & 1\\ b & 0 \end{pmatrix}$$

Dissipative when |b| < 1 (and orientation reversing):

Det(A) = -b

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Henon Attractor:

Mechanisms of Chaos ... Henon Attractor ...

Self-similar:

Self-similar attractor = Dissipation + Instability

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Chaotic Mechanisms in ODEs:

- I. Rössler attractor
- 2. Lorenz attractor
- 3. How to quantify chaos & stability?

Lyapunov characteristic exponents

Mechanisms of Chaos ... Chaotic Mechanisms in ODEs: Rössler Chaotic Attractor:

Mechanisms of Chaos ... Chaotic Mechanisms in ODEs ...

Rössler Chaotic Attractor ...


```
Mechanisms of Chaos ...
Chaotic Mechanisms in ODEs ...
Rössler stability + instability:
Dot spreading demo (ds)
```

```
Integration step = 0.02
IC = (0,-6,0)
Remembered trajectory = 6000
Orient
5000 e
nEns = 10K
IC = (0,-6,0)
radius = .1
I, I, I
```

Mechanisms of Chaos ... Chaotic Mechanisms in ODEs ... Lorenz stability + instability: Dot spreading demo (ds)

> Remembered trajectory = 6000Orient 1000 enEns = 50KIC = (5,5,5)radius = .05 I, I, I

Quantifying instability: Lyapunov Characteristic Exponent (LCE): $||\delta(t)|| \sim ||\delta(0)|| e^{\lambda t}$ $\delta(t)$

 $\lambda \sim t^{-1} \ln \frac{||\delta(t)||}{||\delta(0)||}$

$$\lambda = \lim_{||\delta(0)|| \to 0} \lim_{t \to \infty} \frac{1}{t} \log_2 \frac{||\delta(t)||}{||\delta(0)||}$$

Exponential rate of growth of errors.

Note: $\delta(t)$ aligns with most unstable direction!

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Tuesday, May 11, 2010

x(t)

Measurement Resolution: ϵ

Number of scale factors to locate initial state: $I_0 = -\log_2 \epsilon$

Prediction horizon: $t_{\text{unpredict}} \sim \frac{I_0}{\lambda}$

Resolution loss rate (bits per second): λ

Error doubles each second $\Rightarrow \lambda = 1$ bit/second

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Prediction horizon ... Examples: Loss rate = Factor of 2 each second: $\lambda = 1$ bit/second

I. Measurement resolution: $\epsilon = 10^{-3}$

 $I_0 = 10$ bits

 $t_{\text{unpredict}} = 10 \text{ seconds}$

2. Thousand times higher resolution: $\epsilon = 10^{-6}$

 $I_0 = 20$ bits

 $t_{\text{unpredict}} = 20 \text{ seconds}$

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Quantifying instability and stability ... Lyapunov Characteristic Exponent Spectrum:

$$\chi = \{\lambda_1, \lambda_2, \dots, \lambda_n\}, \ \lambda_i \ge \lambda_{i+1}$$

$$\lambda_i = \lim_{||\delta(0)|| \to 0} \lim_{t \to \infty} \frac{1}{t} \log_2 \frac{||\delta \vec{x}_i(t)||}{||\delta \vec{x}_i(0)||}$$

Quantifying instability and stability ... LCE Spectrum and Submanifolds:

> $\lambda_i < 0 \iff \text{stable manifold}$ $\lambda_i > 0 \iff \text{unstable manifold}$

LCE Spectrum: Key to characterizing attractors

Divergence of vector field: Local volume change.

$$\nabla \cdot \vec{F}(\vec{x}) = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i} \bigg|_{\vec{x}} = \operatorname{Tr}(A(\vec{x}))$$

Dissipation rate:

$$\mathcal{D} = \lim_{T \to \infty} \frac{1}{T} \int_0^T dt \, \nabla \cdot \vec{F}(\vec{x}(t))$$

Theorem:
$$\mathcal{D} = \sum_{i=1}^n \lambda_i$$

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

LCE Spectrum Attractor Classification:

Attractor: $\mathcal{D} < 0$

Need net volume contraction for global stability

Fractal dimension of attractor:

$$d = j + \frac{\sum_{i=1}^{j} \lambda_i}{|\lambda_{j+1}|}$$

j largest integer such that $\sum_{i=1}^{j} \lambda_i \ge 0$

(Conjectured)

Lecture 6: Nonlinear Physics, Physics 150/250 (Spring 2010); Jim Crutchfield

Metric entropy of attractor:

$$h_{\mu}(\Lambda) = \sum_{\lambda_i > 0} \lambda_i$$

Total information production rate: [bits per second]

LCE Spectrum Attractor Classification ...

Dimension	LCE Spectrum	Attractor
Ι	(-)	Fixed Point
2	(-,-)	Fixed Point
2	(0,-)	Limit Cycle
3	(-,-,-)	Fixed Point
3	(0,-,-)	Limit Cycle
3	(0,0,-)	Torus
3	(+,0,-)	Chaotic
4	(0,0,0,-)	3-Torus
4	(+,0,0,-)	Chaotic 2-Torus
4	(+,+,0,-)	Hyperchaos

Definition of chaotic attractor: (1) Attractor: $\Lambda \subset \mathcal{X}$ (a) Invariant set: $\Lambda = \phi_T(\Lambda)$ (b) Attracts an open set $U \subset \mathcal{X}$: $\Lambda \subset U \ \& \ \Lambda \subset_{T \to \infty} \phi_T(U)$ (c) Minimal: no proper subset is also (a) & (b)

(2) Aperiodic long-term behavior of a deterministic system with exponential amplification

(2') Positive maximum LCE: $\lambda_{\max}(\Lambda) > 0$

(2") Positive metric entropy: $h_{\mu}(\Lambda) > 0$

Reading for next lecture:

NDAC, Sections 10.5-10.7.