The Big, Big Picture (Bifurcations II)

Reading for this lecture:
NDAC, Chapter 8 and Sec. I0.0-10.4.

The Big, Big Picture (Bifurcations II) ...

Beyond fixed points:

Bifurcation: Qualitative change in behavior as a control parameter is (slowly) varied.

Today: Bifurcations between time-dependent behaviors

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps:

Logistic map: $x_{n+1}=r x_{n}\left(1-x_{n}\right)$
State space: $x_{n} \in[0,1]$
Parameter (height): $r \in[0,4]$

Maximum: $x=\frac{1}{2}$
Fixed points x^{*} such that:

$$
x^{*}=f\left(x^{*}\right)
$$

Logistic map:

$$
x^{*}=0, \forall r
$$

Stable for $0 \leq r<1$:

$$
\left|f^{\prime}\left(x^{*}\right)\right|<1
$$

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps ...

Logistic map ...
But the fixed point at $x^{*}=0$ goes unstable:

$$
\begin{aligned}
f^{\prime}(x) & =r-2 r x \\
x^{*} & =0 \Rightarrow f^{\prime}\left(x^{*}\right)=r
\end{aligned}
$$

Bifurcation diagram view:

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps ...

Logistic map ...
However, for $r>1$ there is another fixed point: $x^{*}=1-r^{-1}$
At what parameter value? Where the other loses stability

$$
\left|f^{\prime}\left(x^{*}\right)\right|=1
$$

$$
f^{\prime}(x)=r-2 r x
$$

$$
x^{*}=0 \Rightarrow f^{\prime}\left(x^{*}\right)=r
$$

x^{*} is unstable when $r \geq 1$

The Big, Big Picture (Bifurcations II) ... Bifurcation Theory of ID Maps ... Logistic map ... The other fixed point: $x^{*}=1-r^{-1}$ Bifurcation diagram view:

$$
\left|f^{\prime}\left(x^{*}\right)\right|<1,1<r<?
$$

The Big, Big Picture (Bifurcations II) ...
Bifurcation Theory of ID Maps ...
Logistic map ...
Fixed point (period-I) to period-2 limit cycle

Did period-I fixed point disappear?
Lecture 5: Nonlinear Physics, Physics I50/250 (Spring 2010); Jim Crutchfield

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps ...

Logistic map ...
At what bifurcation parameter value is P-2 orbit stable?
P-2 orbit: $\left\{x_{1}^{*}, x_{2}^{*}\right\}$

$$
x_{1}^{*}=f\left(x_{2}^{*}\right)=f \circ f\left(x_{1}^{*}\right)
$$

Fixed point: $x_{1}^{*}=f^{2}\left(x_{1}^{*}\right)$
Calculate: $x^{*}=r f\left(x^{*}\right)\left(1-f\left(x^{*}\right)\right)$

$$
x^{*}=r^{2} x^{*}\left(1-x^{*}\right)\left(1-r x^{*}\left(1-x^{*}\right)\right)
$$

Find parameter such that this quartic equation has solutions!

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps ...

Logistic map ... Simpler:When does nontrivial P-I go unstable?

P-I: $x^{*}=1-r^{-1}$
Slope: $f^{\prime}(x)=r(1-2 x)$
Slope at fixed point: $f^{\prime}\left(x^{*}\right)=2-r$
Marginally stable: $\left|f^{\prime}\left(x^{*}\right)\right|=1$

$$
|2-r|=1
$$

Two solutions:
First, P-I to P-I bifurcation: $r=1$
What we're asking about: P-I to P-2 bifurcation: $r=3$

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps ...
 Logistic map ... Let's review:

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps ...
 Logistic map ... Review ...

The Big, Big Picture (Bifurcations II) ...
Bifurcation Theory of ID Maps ...
Logistic map ...
I. P-I to P-I: origin goes unstable
2. P-I to P-2: nontrivial fixed point goes unstable 3. ...

What's next as we increase r ?

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps ...

Logistic map ...
Limit cycle to limit cycle: Period-2 to Period-4

The Big, Big Picture (Bifurcations II) ... Bifurcation Theory of ID Maps ...

Logistic map ...
What parameter value?
Way too messy ... solve numerically:
Period-p limit cycle: $x_{1} \rightarrow x_{2} \rightarrow \cdots x_{p} \rightarrow x_{1}$
Criteria:
Fixed points of p-iterate: $x_{i}=f^{p}\left(x_{i}\right), i=1, \ldots, p$
Onset of instability: $\left|\frac{d}{d x} f^{p}(x)\right|=1$
Stability along the orbit:

$$
\left|\frac{d f^{p}\left(x_{1}\right)}{d x}\right|=\left|f^{\prime}\left(x_{p}\right) \frac{d f^{p-1}\left(x_{1}\right)}{d x}\right|=\left|f^{\prime}\left(x_{1}\right) f^{\prime}\left(x_{2}\right) \ldots f^{\prime}\left(x_{p}\right)\right|
$$

Numerically: Search in r to match this $=I$.

The Big, Big Picture (Bifurcations II) ... Bifurcation Theory of ID Maps ...
 Logistic map ...

Can find all periodic orbits with $p=2^{n}$ starting from $r=0$.
What else is there?

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps ...

Logistic map ...
Route to chaos via period-doubling cascade

The Big, Big Picture (Bifurcations II) ... Bifurcation Theory of ID Maps ... Logistic map ... Band-merging (mirror of period-doubling): E.g., 2 bands merge to I band

Lecture 5: Nonlinear Physics, Physics I50/250 (Spring 2010); Jim Crutchfield

The Big, Big Picture (Bifurcations II) ...
Bifurcation Theory of ID Maps ...
Logistic map ...
What parameter values for band-merging?
Veils: Iterates $f^{n}\left(x_{c}\right)$ of map maximum $x_{c}=1 / 2$
Upper bound on attractor: $f\left(x_{c}\right)$
Lower bound on attractor: $f^{2}\left(x_{c}\right)$
Two bands merge to one band: $f^{k}\left(x_{c}\right)$ becomes P-I
Specifically: $f^{3}\left(x_{c}\right)=f^{4}\left(x_{c}\right)$
Solve numerically: $r_{2 B \rightarrow 1 B}=3.678 \ldots$
Generally: 2^{n} bands merge to 2^{n-1} bands: $f^{k}\left(x_{c}\right)$ is period 2^{n-1}

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps ...
 Logistic map ... Periodic windows

Entire period-doubling cascade inside window: $P=3 \times 2^{n}$
Lecture 5: Nonlinear Physics, Physics I50/250 (Spring 2010); Jim Crutchfield

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps ...

Logistic map ... Periodic windows ... How to locate:

Superstable periodic orbits: $x_{i}=x_{c}=\frac{1}{2}$
Why? $f^{\prime}\left(x_{c}\right)=0$
Period-3: $f^{3}\left(x_{c}\right)=x_{c}$
Solve numerically: $r_{P-3}=3.83 \ldots$

The Big, Big Picture (Bifurcations II) ...

Bifurcation Theory of ID Maps ...

Logistic map ... Simulation demos:
Animation as a function of parameter (ds)
B: nSteps $=10 ; r$ in [2.5,3.55]: nSteps $=10000 ; n$ Trans $=800 ;$ nlts $=500$
B: nSteps $=10 ; r$ in $[3.4,4]: n$ nteps $=10000 ; n$ Trans $=10000 ;$ nlts $=1000 ;$ color $=0$

Bifurcation diagrams (bifn Id)

See usage

The Big, Big Picture (Bifurcations II) ...

Bifurcations of 3D Flows:
 Simulation demos of Rössler: (ds) Hopf bifurcation:
 Fixed point to limit cycle: $c \in[0.1,2.0]$
 Period-doubling route: $c \in[1.0,6.0]$

(2D Projection; \#B; nSteps $=1 ; c$ is parameter 2; nSteps $=400 ; n$ Trans $=60000 ;$ nlts $=4000)$

The Big, Big Picture (Bifurcations II) ...

Bifurcations of 3D Flows:
 Simulation demo of driven van der Pol: (ds)

$$
\ddot{x}+\mu\left(x^{2}-1\right) \dot{x}+x=A \sin (\omega t)
$$

Limit cycle to torus
Limit cycle to chaos
Torus to chaos
Chaos to chaos

All of these in one sequence:

```
A = 3.0,w = I.5,mu=2.0:
    2D proj; B; nSteps = I ; vary parameter I (A) in [0.I,5]; nSteps = 800; nTrans=40000; nlts = 3000
```


The Big, Big Picture (Bifurcations II) ...

Next:
Chaotic mechanisms
Quantify the degree of chaos and unpredictability
Now:
A preview: Sounds of chaos
Rössler and Lorenz chaotic attractors
~/Programming/Audio/SoC

The Big, Big Picture (Bifurcations II) ...

Rössler chaotic attractor ...

$$
\begin{aligned}
\dot{x} & =-y-z \\
\dot{y} & =x+a y \\
\dot{z} & =b+z(x-c) \\
& (a, b, c)=(0.2,0.2,5.7)
\end{aligned}
$$

The Big, Big Picture (Bifurcations II) ...

Lorenz chaotic attractor ...

$$
\begin{aligned}
& \dot{x}=\sigma(y-x) \\
& \dot{y}=r x-y-x z \\
& \dot{z}=x y-b z \\
& \quad(\sigma, r, b)=(10,8 / 3,28)
\end{aligned}
$$

The Big, Big Picture (Bifurcations II) ...
Reading for next lecture:

NDAC, Sec. I2.0-I2.3, 9.3, and I0.5.

