

Nonlinear Physics— Modeling Chaos & Complexity

Prof. Jim Crutchfield

Physics Department &
Complexity Sciences Center
University of California, Davis
cse.ucdavis.edu/~chaos

Mechanism Revived

- ◆ Deterministic chaos
 - ◆ Nature actively produces unpredictability
- ◆ What is randomness?
- ◆ Where does it come from?
- ◆ Specific mechanisms:
 - ◆ Exponential divergence of states
 - ◆ Sensitive dependence on parameters
 - ◆ Sensitive dependence on initial state
 - ◆ ...

Brief History of Chaos

- ◆ Discovery of Chaos:
 - ◆ 1890s, Henri Poincaré
 - ◆ Invents Qualitative Dynamics
- ◆ Dynamics in 20th Century
 - ◆ Develops in Mathematics (Russia & Europe)
 - ◆ Exiled from Physics
- ◆ Re-enters Science in 1970s
 - ◆ Experimental tests
 - ◆ Simulation
- ◆ Flourishes in Mathematics:
 - ◆ Ergodic theory & foundations of Statistical Mechanics
 - ◆ Topological dynamics
 - ◆ Catastrophe/Singularity theory
 - ◆ Pattern formation/center manifold theory
 - ◆ ...

Discovering Order in Chaos

- ◆ Problem:
 - ◆ No “closed-form” analytical solution for predicting future of nonlinear, chaotic systems
 - ◆ One can prove this!
- ◆ Consequence:
 - ◆ Each nonlinear system requires its own representation
- ◆ Pattern recognition: Detecting what we know
- ◆ Ultimate goal: Causal explanation
 - ◆ What are the hidden mechanisms?
- ◆ Pattern discovery: Finding what’s truly new

Major Roadblock to the Scientific Algorithm

- ◆ No “closed-form” analytical solutions
- ◆ Baconian cycle of successively refining models broken
- ◆ Solution:
 - ◆ Qualitative dynamics: “Shape” of chaos
 - ◆ Computing

Logic of the Course

- ◆ Two parallel themes
- ◆ Conceptual:
 - ◆ Deterministic Chaos: Emergence of randomness
 - ◆ Self-organization: Emergence of order
 - ◆ Complex systems: Balance of order & chaos
- ◆ Tools:
 - ◆ Building: Programming
 - ◆ Uses: Exploration & analysis

How to do this?

- ◆ Mathematics of dynamical systems
- ◆ Computing methods:
 - ◆ Numerical simulation
 - ◆ Interactive visualization

Goals

- ◆ Comfortable with state space
- ◆ Understand geometric mechanisms of unpredictability
- ◆ Measure the degree of chaos and order
- ◆ Build your own exploration tools

Demos?

- ◆ Lorenz chaotic attractor
- ◆ Map lattice
- ◆ Spin system

The Holodeck is Here!

KeckCAVES

- ◆ Sensory Immersive Environment
- ◆ 10' x 10' x 8' Room
- ◆ Three Walls + Floor:
Each a stereoscopic
projection screen

KeckCAVES ...

- ◆ User View:

- ◆ LCD Shutter Glasses
- ◆ One user's head is tracked

- ◆ Users Interaction:

- ◆ Wand
- ◆ Position & Orientation
- ◆ Buttons

KeckCAVES ...

- ◆ Movie: User Manipulates Protein
- ◆ <http://keckcaves.org/>

Applications (a few) (Projects?)

- ◆ Physics:
 - ◆ Solid state: Bose-Einstein condensates, Charge-density waves, ...
 - ◆ Astronomy
 - ◆ Cosmology
- ◆ Chemistry:
 - ◆ Molecular dynamics
 - ◆ Reaction kinetics
 - ◆ Chemical oscillators
- ◆ Biology:
 - ◆ Population dynamics
 - ◆ Ecology
 - ◆ Evolution
 - ◆ Neurodynamics
- ◆ Social sciences:
 - ◆ Market dynamics
 - ◆ Game interactions
- ◆ Engineering:
 - ◆ Mechanical systems
 - ◆ Electrical circuits
 - ◆ Fluid turbulence
 - ◆ Oscillations in Internet traffic through-put
- ◆ Health:
 - ◆ Epidemics
- ◆ ...

Prerequisites

- ◆ Interest in modeling some dynamical phenomenon
- ◆ Mathematics:
 - ◆ Vector calculus
 - ◆ Linear algebra
 - ◆ Lower division Math, Physics, or CS courses
- ◆ Programming:
 - ◆ Experience with C/C++, Java, or ...
 - ◆ We will use Python
- ◆ Preferred environment:
 - ◆ Laptop with Python v. 2.6 running

Why Python?

- ◆ Open source & free!
- ◆ Hierarchy of programming structures:
 - ◆ Procedural (like C/Fortran)
 - ◆ Object oriented (like C++/Java)
 - ◆ Functional programming (like Haskell/Lisp)
- ◆ Interpreted, not compiled:
 - ◆ Easy to test code, interactive
 - ◆ Scriptable (like Perl)
 - ◆ Can be slow!
- ◆ Excellent libraries: OS, numerical, www, parallel, ...
- ◆ Wide range of tools available:
 - ◆ Development: e.g., Eclipse IDE
 - ◆ WWW

Organization: Two tracks

- ◆ Parallel Theme I:
Forms of Randomness, Order, & Intrinsic Instability
 - ◆ Qualitative Dynamics
 - ◆ Continuous-time ODEs and discrete-time maps
 - ◆ Bifurcations
 - ◆ Stability, Instability, and Chaos
 - ◆ Quantifying (In)Stability

Organization: Two tracks ...

- ◆ Parallel Theme II:
Tools for Exploring Chaos and Complexity
 - ◆ Modeling methods
 - ◆ Programming
 - ◆ Simulation
 - ◆ Graphics
 - ◆ Interaction

Organization: Two tracks ...

- ◆ Each week:
 - ◆ Theory first (Tuesday)
 - ◆ Then Lab: Code up ideas (Thursday)
- ◆ Field trip (May/June)
 - ◆ Sensory Immersive Environments
 - ◆ KeckCAVES tour

Who are we?

- ◆ Me: JPC
- ◆ Assistant: Benny Brown
- ◆ You: (Please fill out questionnaire.)
 - ◆ Interests
 - ◆ Background
 - ◆ Abilities

Course logistics

- ◆ Course Website:

cse.ucdavis.edu/~chaos/courses/nlp/

- ◆ Readings: Assignments on website

- ◆ Homework: Assignments on website

- Assigned first 2/3s of quarter

- ◆ Project:

- Remaining 1/3, presentation, written report, working code

- ◆ Grading:

- ◆ 30% homework + 30% lab + 40% project

Staying in touch

- ◆ Course Website:

cse.ucdavis.edu/~chaos/courses/nlp/

- ◆ Email

chaos@cse.ucdavis.edu & brown@cse.ucdavis.edu

- ◆ Office hours

JPC: Wednesday 3-4 PM

BB: TBD

Materials

- ◆ Books

[NDAC] Nonlinear Dynamics and Chaos: with applications to physics, biology, chemistry, and engineering, S. H. Strogatz, Addison-Wesley, Reading, Massachusetts (2001). **2001 Printing is Important!**

[Python] Learning Python, M. Lutz, Fourth Edition, O'Reilly & Associates (2009).

- ◆ [NLP] Nonlinear Dynamics Reader

cse.ucdavis.edu/~chaos/courses/nlp/Reader.html

- ◆ Lecture Notes online

Software

- ◆ Goal: Learn via Analytical, Numerical, Coding
- ◆ Previous programming?
- ◆ Python Tools & Development:
 - ◆ Python v. 2.6
 - ◆ Suggested packages:
 - ◆ Numerical: NumPy, SciPy, & ScientificPython
 - ◆ Graphics: matplotlib & MayaVi & PyGlet
 - ◆ Images: PIL & ImageMagick
 - ◆ Development: iPython and others
 - ◆ See course web pages for configuration help:
cse.ucdavis.edu/~chaos/courses/nlp/Software/
Enthought Python Distribution 6.1: Windows, Linuses, & Mac

who has what?

- ◆ Fill out questionnaire
- ◆ Laptop?
- ◆ OS:
 - ◆ Windows?
 - ◆ OS X?
 - ◆ Linux?

Nonlinear Physics:
Modeling Chaos and Complexity

Jim Crutchfield
chaos@cse.ucdavis.edu; <http://cse.ucdavis.edu/~chaos>

Spring 2008
WWW: <http://cse.ucdavis.edu/~chaos/courses/nlp/>

Questionnaire

1. Name: _____
2. Graduate or Undergraduate (circle one)
17 **6**
3. Email address: _____
4. Major/Field: _____
5. What programming language(s) have you used?
(circle all appropriate)
C or C++ or Java or Fortran or Python or Perl or Other
17 **21** **7** **4** **10** **5** _____
6. What level of programming experience do you have?
(circle one)
Little or Moderate or Extensive
5 **11** **10**
7. Are you familiar with Unix? Yes or No (circle one)
19 **6**
8. Do you have a laptop? Yes or No (circle one)
21 **3**
9. Which OS(es) does it run?
(circle all appropriate)
Windows or OS X or Linux
15 **7** **5**
10. Do you have a desktop machine? Yes or No (circle one)
16 **9**
11. Which OS(es) does it run?
(circle all appropriate)
Windows or OS X or Linux
12 **2** **6**

PHY	10
APM	7
CS	2
MAT	1
ApSci	1
MAE	1
Civil	1
Econ	1
?	1
Matlab	5
Lisp	3
LabView	2
Haskell	2
C#	2
ASM	2
Basic	2
SQL	1
Lua	1
Ruby	1
Pascal	1
IDL	1

Tasks: Done by Thursday

- ◆ Get your machine(s) running Python 2.6
- ◆ Computer lab:
 - ◆ 2118 Math Sciences Bldg
 - ◆ Currently testing installation
- ◆ Get your computing lab account:
Instructions on course website.
- ◆ Familiarize yourself with Linux/Unix:

See tutorials on course website.

Reading To Do

- ◆ NLP articles:
 - ◆ Lem "Odds"
 - ◆ "Chaos", Scientific American
- ◆ NDAC:
 - ◆ Chapters 1 & 2

Homework 0

- ◆ Find three (3) examples of unpredictability that you encounter directly over the weekend.
- ◆ For each, be prepared to discuss:
 - Where did you encounter it?
 - What was your interaction?
 - Why do you consider it unpredictable?
 - What effect did its unpredictability have on you?
 - What aspects would you expect to be able to predict?
 - How would you model it?
- ◆ For each example write paragraph summarizing answers.

Math computer lab: 2118 MSB

Thursdays we meet there, not in 185 Physics.

OS is Linux: Who needs help with Unix/Linux?

Create your account, go to

<http://www.math.ucdavis.edu/comp/class-accts>

Use virtual course number MAT 998Z.