Roadmap     Research Articles     CMPy Server

Physics 28 A & B
   (Physics 256 Winter & Spring Quarters 2017)

Natural Computation and Self-Organization:
     The Physics of Information Processing in Complex Systems

Announcements and Important Links:

Instructor: Professor Jim Crutchfield (Physics and Complexity Sciences Center)
   Jeff Emenheiser (TA) (Physics and Complexity Sciences Center)
   Xincheng Li (TA) (Physics and Complexity Sciences Center)
   Ryan James (Sage/CMPy) (Physics and Complexity Sciences Center)
   John Mahoney (Quantum) (Physics and Complexity Sciences Center)


Catalog numbers:
Winter 2017: Physics 256 Section 1 (CRN 37206)
Spring 2017: Physics 250 Section 2 (CRN 85229)

Level: Graduate
Units: 3

Online “flipped” course format:

UC Davis Office Hours:
Crutchfield: W 0300-0400 PM, 197 Physics
Emenheiser & Li: Times M 0200-0300 PM, 195 Physics

Poster: [jpg]

The course explores how nature's structure reflects how nature computes. It introduces intrinsic unpredictability (deterministic chaos) and the emergence of structure (self-organization) in natural complex systems. Using statistical mechanics, information theory, and computation theory, the course develops a systematic framework for analyzing processes in terms of their causal architecture. This is determined by answering three questions: (i) How much historical information does a process store? (ii) How is that information stored? And (iii) how is the stored information used to produce future behavior? The answers to these questions tell one how a system intrinsically computes.

The course introduces tools to describe and quantify randomness and structure. It shows how they are necessarily complementary and how they are intimately related to concepts from the theory of computation. A number of example complex systems—taken from physics, chemistry, and biology—are used to illustrate the phenomena and methods. The course also takes time to reflect on the intellectual history of these topics, which is quite rich and touches on many basic questions in fundamental physics and the sciences and technology generally. New topics this year include complex materials and computation in quantum systems. The course will bring students to the research frontier in nonlinear physics and complex systems.

This year the course is offered in a “flipped” format. Students watch lectures and work through interactive labs and homeworks online. Scheduled course time is allocated to hands-on problem solving, discussions on lectures, and introduction to online labs with the instructor.

PHY 256 (Winter) (aka 256A): (Course Syllabus [PDF] [HTML])

PHY 250 (Spring) (aka 256B): (Course Syllabus [PDF] [HTML])

Complex systems to be analyzed:

Audience: Graduate students in physics, mathematics, computer science, engineering, mathematical biology, and theoretical neuroscience. Others also welcome.

Prerequisites: Advanced undergraduate or introductory graduate differential equations, applied linear algebra, and probability theory. For example, at UC Davis these are covered in Mathematics 119A/B or 207A, 167 or 226A, and 135A/B or 235A, respectively; or in Physics 104A/B/C or 204A/B.

Reference materials:

  1. Lecture notes.
  2. Books:
  3. Computational Mechanics Reader.
  4. Supplemental Readings for historical background, projects, programming, and amusement.
  5. Software tools.

Course Work:

  1. Assigned Readings.
  2. Weekly Problem Sets (Both Winter and Spring, 40%).
  3. Mid-term Exam (PHY 256 Winter, 30%): Take home.
  4. Final Exam (PHY 256 Winter, 30%): Take home.
  5. Research Project (PHY 250 Spring, 60%):
    • Project report:
      • Orally presented as final exam during last class meetings.
      • Written report: Due electronically 11 June, end of day.
    • Project Presentation Schedule.
    • Report Organization.
    • Example projects can be found here.