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Reading:
   NDAC Secs. 2.8 and 6.1
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Numerical Integration ...

Dynamical System:

State Space:
State: 

Dynamic:
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{X , T }
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x ∈ X

X

x

x

X X

x
′

2



Numerical Integration ...

Dynamical System ...
    For example, continuous time ...

Ordinary differential equation:

     State:

     Initial condition:

     Dynamic:

     Dimension:
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!̇x = !F (!x)

!x(t) ∈ R
n

!F : R
n
→ R

n

!x(0)

( ˙ =
d

dt
)

!x = (x1, x2, . . . , xn)

!F = (f1, f2, . . . , fn)

n
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Numerical Integration ...

Geometric view of an ODE:

Each state    has a vector attached

    that says to what next state to go:                              .
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X = R
2

!x
∆x1 = f1(!x)

∆x2 = f2(!x)

!x
′ = !x + ∆t !F (!x)

!x !F (!x)

!x′ = !x + ∆t · !F (!x)

d!x

dt
= !F (!x)

d!x

dt
≈ ∆!x

∆t
=

!x′ − !x

∆t

!x = (x1, x2)
!F = (f1(!x), f2(!x))
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Numerical Integration ...

Vector field for an ODE  (aka Phase Portrait)
   A set of rules:
     Each state has a
          vector attached
      That says to what
        next state to go
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X = R
2
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Numerical Integration ...

Time-T Flow:

     The solution of the ODE, starting from some IC
     Simply follow the arrows
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Point: ODE is only instantaneous,
                        flow gives state for any time t.

!x(0)

!x(T )

φT

!x(T ) = φT (!x(0)) =
∫ T

0
dt !̇x =

∫ T

0
dt !F (!x(t))
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Numerical Integration ...

Euler Method in 1D:
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ẋ = f(x)

x(t0 + ∆t) ≈ x1 = x0 + f(x0)∆t

xn+1 = xn + f(xn)∆t

dx

dt
≈ ∆x

∆t
=

xn+1 − xn

∆t

A discrete-time map!
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Numerical Integration ...

Improved Euler Method in 1D:
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ẋ = f(x)

A trial (Euler) step:

The resulting better estimate (averaged at     and        ):

xn+1 = xn + 1
2 [f(xn) + f(x̂n)]∆t

tn tn+1

x̂n = xn + f(xn)∆t
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Numerical Integration ...

Fourth-order Runge-Kutta Method in 1D:
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k1 = f(xn)∆t

k2 = f(xn + 1
2k1)∆t

k3 = f(xn + 1
2k2)∆t

k4 = f(xn + k3)∆t

xn+1 = xn + 1
6 [k1 + 2k2 + 2k3 + k4]

Intermediate estimates:

Final estimate:

Good trade-off between accuracy and time-step size.
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Numerical Integration ...

Runge-Kutta in nD:
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!k1 = !f(!xn)∆t

!k2 = !f(!xn + 1
2
!k1)∆t

!k3 = !f(!xn + 1
2
!k2)∆t

!k4 = !f(!xn + !k3)∆t

!xn+1 = !xn + 1
6

[
!k1 + 2!k2 + 2!k3 + !k4

]

Intermediate estimates:

Final estimate:

!̇x = !f(!x), x ∈ Rn !f : Rn → Rn
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