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Two Lectures
First Lecture

Why Must We Model?

Randomness & Beyond: Information Theory

Second Lecture

Structure: Computational Mechanics

Learning: Rate Distortion Theory

The Future: Interactive Learning
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Complex Systems Topics Covered

Randomness & Its Origins

Kinds of Information

Representing Structure: Automata

Intrinsic Computation

Causal Inference
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Main References
[RURO]:
J. P. Crutchfield & D. P. Feldman
Regularities Unseen, Randomness Observed: Levels of Entropy Convergence
http://cse.ucdavis.edu/~cmg/compmech/pubs/ruro.htm

[CMPPSS]:
C. R. Shalizi & J. P. Crutchfield
Computational Mechanics: Pattern and Prediction, Structure and Simplicity
http://cse.ucdavis.edu/~cmg/compmech/pubs/cmppss.htm

[NCASO] Course on Natural Computation:
http://cse.ucdavis.edu/~cmg/courses/ncaso/
 Lectures 11 - 16.
These notes @ http://cse.ucdavis.edu/~chaos/chaos/talks.htm
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Why Must We Model?

Three reasons!
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Why We Must Model I

Nature spontaneously organizes
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Emergent
     structures
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Why We Must Model 2
Engineered systems spontaneously organize

Internet route flapping
Power-law Internet self-organization
Financial markets crash
Power grids fail spectacularly
Social pattern formation on the web
...
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And so ... 1 + 2 = ...

Problem:
Emergent structures not given directly by the system 
coordinates, governing equations of motion, or 
design plan

Consequence:
Each needs its own explanatory basis
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Why We Must Model 3
Fundamental Mathematics: Intrinsic Randomness

Nonlinear dynamical systems:
       Chaotic systems: Shannon entropy rate 

Kolmogorov-Chaitin complexity of Data:
     |Shortest Turing Machine Program  to Predict Data|

KC complexity = f(Shannon entropy rate):

hµ > 0

|Program| ∝ ehµ|Data| [Brudno 1978] 

[Kolomogorov 1963, Chaitin 1964] 

[Kolomogorov 1958] 
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Exponential Increase in Prediction Resources

Prediction Horizon T
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Exponential Increase in Prediction Resources

Prediction Horizon T

Accuracy ∝ e−T
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Exponential Increase in Prediction Resources

Prediction Horizon T

|Measurements| ∝ eT

Accuracy ∝ e−T
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Exponential Increase in Prediction Resources

Prediction Horizon T

|Compute time| ∝ eT

|Measurements| ∝ eT

Accuracy ∝ e−T
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Consequence
No short cuts!

No closed-form solutions
Probabilistic description misses embedded order
No computational speed-ups
Must compute full trajectory

Right representation is critical for reducing the 
prediction error as far as possible (but no further!)
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Fundamental in Nonlinear Dynamics!

Each nonlinear system requires its own representation

Selecting balance between ascribing structure or 
noise to a measurement depends on representation

Fundamental issue: (Theory of) Theory Building

Subsidiary issue:

       Statistical fluctuations due to finite data sample

       (This is not about machine learning!)

13Thursday, December 4, 2008



Information Theory
for Complex Systems

Processes

Information versus Entropy

Communication Channels

Processes as Channels

First Pass: Measures of Complexity
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Additional Reference

Thomas Cover & Joy Thomas

“Elements of Information Theory”

Second Edition (2006)
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Stochastic Processes:

Chain of random variables:
↔

S ≡ . . . S−2S−1S0S1S2 . . .

Random variable: St

AAlphabet:

Realization:

· · · s
−2s−1s0s1s2 · · · ; st ∈ A
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Stochastic Processes:

Chain of random variables:

L-Block:

Word:

Past:

Future:

SL
t ≡ StSt+1 . . . St+L−1

sL
t ≡ stst+1 . . . st+L−1 ∈ AL

↔
S=
←
S t

→
S t

←
S t = . . . St−2St−1St

→
S t = St+1St+2St+3 . . .
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Stochastic Processes ...
Process:

Pr(
↔

S ) = Pr(. . . S−2S−1S0S1S2 . . .)

Sequence (or word) distributions:

{Pr(SL
t ) = Pr(StSt+1 . . . St+L−1) : St ∈ A}

{Pr(SL
t ) : ∀t, L}

Process:

Pr(SL−1
t ) =

∑

St+L−1

Pr(SL
t )

Consistency condition:
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Stationary process:

Assume stationarity, unless otherwise noted.

Notationally: Drop time indices.

Pr(StSt+1 . . . St+L−1) = Pr(S0S1 . . . SL−1)

Types of Stochastic Process:
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Example:
  Fair Coin ...

Sequence Distribution:

s
L
∈ [0, 1]

Word as binary fraction:

“s
L
” =

L∑

i=1

si

2i

s
L

= s1s2 . . . sL

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0
sL 1

L = 8

0
sL 1

L = 9

0
sL 1

Pr(sL) = 2−L
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Example:
  Biased Coin ...

Sequence Distribution:

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0
sL 1

L = 8

0
sL 1

L = 9

0
sL 1

Pr(sL) = pn(1 − p)L−n,

n =Number Hs in sL
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Example: Golden Mean Process

  No Consecutive 0s

5

log P

-3

L = 1 L = 2 L = 3

5

log P

-3

L = 4 L = 5 L = 6

5

log P

-3

L = 7

0
sL 1

L = 8

0
sL 1

L = 9

0
sL 1
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Models of Stochastic Processes ...

Two Lessons:

    Structure in the behavior:

    Structure in the distribution of behaviors:

supp Pr(sL)

Pr(sL)
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Classification of Discrete Stochastic Processes:

Uniform

IID

R-Block

Markov

Order-R Markov

Nondeterministic
Hidden Markov

Deterministic 
Hidden Markov
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Sources of Information:

   Apparent randomness:

 Uncontrolled initial conditions
     Actively generated: Deterministic chaos

  Hidden regularity:

 Ignorance of forces

 Limited capacity to model structure

25Thursday, December 4, 2008



History:

 Boltzmann (19th Century):
         Equilibrium in large-scale systems

 Hartley-Shannon-Wiener (Early 20th):

 
 Communication & Cryptography

 Current threads (late 20th century):
         Coding, Statistics, Dynamics, and Learning

Issues:

 What is information?

 How do we measure unpredictability

 How do we quantify structure?

 Information     Energy!=
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Information as uncertainty and surprise:


 Observe something unexpected: gain information


 Bateson: “A difference that makes a difference”
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Information as uncertainty and surprise ...

How to formalize?

 Shannon’s approach: Connection with Boltzmann’s Entropy

 A measure of surprise.


 Self-information of an event                             .


 
 Predictable: No surprise


 
 Completely unpredictable: Maximally surprised

∝ − log Pr(event)

− log 1 = 0

− log
1

Number of Events
= log(Number of Events)
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Random variables:

Distribution: Pr(X) = (p1, . . . , pk)

Shorthand: X ∼ p(x)

X, Y ; events x, y ∈ {1, 2, . . . , k}

How to measure?

               Information = f(Pr(event))?

Y ∼ p(y)
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Khinchin axioms for a measure of information:

Entropy:


 (1) Maximum at equidistribution:


 (2) Continuous function of distribution:


 (3) Expansibility:


 (4) Additivity of independent systems: 

H(X) = H(p1, . . . , pk)

H(p1, . . . , pk) versus pi

H(p1, . . . , pk) ≤ H
(

1

k
, . . . , 1

k

)

H(p1, . . . , pk) = H(p1, . . . , pk, pk+1 = 0)

X ⊥ Y ⇒ H(X, Y ) = H(X) + H(Y )
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Khinchin axioms for a measure of information ...

Get unique (up to a factor) functional form,

    The Shannon entropy:

Theorem:

H(X) ∝ −
k∑

i=1

pi log pi
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Shannon Entropy:

Units:

 Log base 2:

 Natural log:

H(X) = [bits]
H(X) = [nats]

H(X) = 〈− log2 p(x)〉

H(X) = −
∑

x∈X
p(x) log2 p(x)

Properties:
 1. Positivity:
 2. Predictive:
 3. Random:

H(X) ≥ 0

H(X) = log2 k ⇔ p(x) = U(x) = 1/k
H(X) = 0 ⇔ p(x) = 1 for one and only one x

x ∈ X = {1, 2, . . . , k}X ∼ P

Note: 0 log 0 = 0
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Examples: Binary random variable

X = {0, 1}

Binary entropy function:

Pr(1) = p & Pr(0) = 1 − p

H(p) = −p log2 p − (1 − p) log2(1 − p)

Fair coin:

H(p) = 1 bit

p =
1

2

Completely biased coin:p = 0 (or 1)

H(p) = 0 bits

X

0 · log 0 = 0Note:

H(X) ?
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Example: IID Process over four events

X = {a, b, c, d} Pr(X) = (1

2
, 1

4
, 1

8
, 1

8
)

H(X) = 7

4
bitsEntropy:

Number of questions to identify the event?

 x = a? (must always ask at least one question)

 x = b? (this is necessary only half the time)

 x = c? (only get this far a quarter of the time)

1 · 1 + 1 ·
1

2
+ 1 ·

1

4
= 1.75Average number: questions

Theorem: Optimal way to ask questions.
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Example: IID Process over four events ...

1 · 1 + 1 ·
1

2
+ 1 ·

1

4
= 1.75Average number: questions

a?

b?

c?

c d

b

a

1
2

1
2

1
2

1
2

1
2

1
2

Pr(X) = (1

2
, 1

4
, 1

8
, 1

8
)
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Example: IID Process over four events ...

d?

c?

b?

a b

c

d

Average number: questions1 · 1 + 1 · 7
8 + 1 · 6

7 ≈ 2.7
Query in a different order:

7
8

1
8

6
7

1
7

2
3

1
3

Pr(a, b, c) = ( 4
7 , 2

7 , 1
7 )

Pr(a, b) = ( 2
3 , 1

3 )

Pr(X) = (1

2
, 1

4
, 1

8
, 1

8
)
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Example: IID Process over four events

H(X) = 7

4
bitsEntropy:

Theorem:
   Entropy gives the smallest number of questions
   to identify an event, on average.

At each stage, ask question that is most informative.

Choose partitions of event space that give “most random”
    measurements.
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Interpretations of Shannon Entropy:

Observer’s degree of surprise in outcome of a random variable

Uncertainty in random variable

Information required to describe random variable

A measure of flatness of a distribution
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Joint Entropy: Average uncertainty in X and Y occurring

(X, Y ) ∼ p(x, y)Two random variables:

H(X, Y ) = −

∑

x∈X

∑

y∈Y

p(x, y) log2 p(x, y)

Independent:

X ⊥ Y ⇒ H(X, Y ) = H(X) + H(Y )
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Conditional Entropy: Average uncertainty in X, knowing Y

H(X|Y ) = −
∑

x∈X

∑

y∈Y

p(x, y) log2 p(x|y)

H(X|Y ) = H(X, Y ) − H(Y )

H(X|Y ) != H(Y |X)Not symmetric:
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Relative Entropy of Two Distributions:

Relative Entropy:

0 log 0

q
= 0

p log p

0
= ∞

Note:

D(X||Y ) =
∑

x∈X
p(x) log2

p(x)
q(x)

X ∼ P & Y ∼ Q, over common x ∈ X

Alternate use (notation):

D(P ||Q)

Typically applied to: Q : q(x) > 0 , ∀ x ∈ X
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Relative Entropy of Two Distributions ...

Also called:

 Kullback-Leibler Distance

 Information Gain: Number of bits of describing X as Y
     Discrimination between X & Y

Not a distance: not symmetric, no triangle inequality

Properties:

 (1)

 (2)

 (3) 

D(X||Y ) ≥ 0
D(X||Y ) = 0 ⇔ P = Q

D(X||Y ) #= D(Y ||X)
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Common Information Between Two Random Variables:
X ∼ p(x) & Y ∼ p(y)(X, Y ) ∼ p(x, y)

I(X;Y ) = D(P (x, y)||P (x)P (y))

I(X;Y ) =
∑

(x,y)∈X×Y

p(x, y) log2
p(x,y)

p(x)p(y)

Mutual Information:

Interpretation:

 Information one variable has about another

 Information shared between two variables

 Measure of dependence between two variables

Properties:

 (1)

 (2)

 (3)

 (4)

 (5)

I(X;Y ) ≥ 0
I(X;Y ) = I(Y ;X)
I(X;Y ) = H(X) − H(X|Y )
I(X;Y ) = H(X) + H(Y ) − H(X, Y )
I(X;X) = H(X)
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Event Space Relationships of Information Quantifiers:
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Event Space Relationships of Information Quantifiers:
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Event Space Relationships of Information Quantifiers:

H(X)
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Event Space Relationships of Information Quantifiers:

H(X)
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Event Space Relationships of Information Quantifiers:

H(X)H(Y )
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Event Space Relationships of Information Quantifiers:

H(X)H(Y )

H(X, Y )
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Event Space Relationships of Information Quantifiers:

H(X)H(Y ) H(X|Y )

H(X, Y )
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Event Space Relationships of Information Quantifiers:

H(X)H(Y ) H(X|Y )H(Y |X)

H(X, Y )
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Event Space Relationships of Information Quantifiers:

H(X)H(Y ) H(X|Y )H(Y |X) I(X;Y )

H(X, Y )
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Event Space Relationships of Information Quantifiers:

H(X)H(Y ) H(X|Y )H(Y |X) I(X;Y )

H(X, Y )

d(X;Y )
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 Central Results of Information Theory


 How to compress a process:

 
 Can’t do better than H(X)

 
 (Shannon’s First Theorem)


 How to communicate a process’s data:

 
 Can transmit error-free at rates up to channel capacity

 
 (Shannon’s Second Theorem)


 Both results give operational meaning to entropy.

 Previously: Entropy motivated as a measure of surprise.
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Communication channel

Information
Source Encoder Decoder ReceiverChannel

Noise

X ∈ X

. . . x3x2x1 . . . C(x3)C(x2)C(x1) . . . Ĉ(x3)Ĉ(x2)Ĉ(x1)

X → C Ĉ → Xp(Ĉ|C)

. . . x3x2x1

Messages Codewords
Corrupted
Codewords

Inferred
Messages
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Kinds of channel:

 Phone line, ftp transfer, monologue, ...

 Dynamical system at time t and t+1

 Spin system at one site and another

 Measurement channel

Channel coding problem is to overcome errors:

 Equivocation:

 
 Same input sequence leads to different outputs

 Ambiguity:

 
 Two different inputs lead to same output

Strategy:

 Find channel inputs that are least ambiguous

 
 given distortion properties.

 Codebook: Map information source onto those inputs.

Coding for Communication Channels
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Data Compression Theorem (Shannon’s First Theorem):

R(C) ≥ H(X)

Cannot compress source (at code rate         ) below its 
entropy rate.

Operational meaning of entropy:  A fundamental limit.

Use incorrect probability model for code construction: Q != P

Source             , but you use         .∼ P (x) Q(x)

〈l(x)〉 = H(X) + D(P ||Q)

R(C)
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Discrete channel:

 Input:

 Output:

 Channel:

X ∼ p(x)
Y ∼ p(y)
p(y|x)

Memoryless channel:
p(yt|xtxt−1 · · · ) = p(yt|xt)

Channel Capacity:

C = max
p(x)

I(X;Y )

Highest rate one can transmit over channel.
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Channel Capacity:

C = max
p(x)

I(X;Y )

Duality:

 Compression removes redundancy for smallest description.

 Transmission adds redundancy: compensate channel errors.

Extremes of no communication:
   No info to send:

   Complete distortion:
      Output independent of input:

H(X) = 0

I(X;Y ) = 0

X ⊥ Y

I(X;Y ) = H(X)−H(X|Y ) = 0− 0 = 0
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Channel Coding Theorem (Shannon’s Second Theorem):


 (1) Capacity is the maximum reliable transmission rate.

 (2) Error-free codes exist if                . 

Idea:

 Use long block lengths.

 In effect, have noisy channel with non-overlapping outputs.

 Choose codewords (channel inputs) that
          produce non-overlapping output sequences.

R(C) < C
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Channel Coding Theorem ...


 What happens when transmitting above capacity,           ?R > C

C R

Pr(error)

0

 (Typical of complex systems?)
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Block Entropy:

H(L) = H(Pr(sL)) = −

∑

sL∈A

Pr(sL) log2 Pr(sL)

Monotonic increasing: H(L) ≥ H(L − 1)

Adding a random variable cannot decrease entropy:

No measurements, no information: H(0) = 0

Entropy Growth for Stationary Stochastic Processes: Pr(
↔

S )

Bounds:

 (1) Crude:

 (2) 1-block Markov:

H(L) ≤ L log2 |A|
H(L) ≤ LH(1)

H(S1, S2, . . . , SL) ≤ H(S1, S2, . . . , SL, SL+1)

Information Theory for General Processes
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Block Entropy ...

H(L)

L

L log2 |A| LH(1)

0
0
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Block Entropy ...

 Example: Period-2 Process

Pr(0) = Pr(1) = 1

2

Pr(01) = Pr(10) = 1

2

Pr(101) = Pr(010) = 1

2

Pr(sL) = 0, otherwise

L

H(L)

0
0

P

log2(P )

H(1) = H(2) = H(L ≥ 1) = 1

Period-P Process:
H(L ≥ P ) = log2(P )

55Thursday, December 4, 2008



Entropy Rates for Stationary Stochastic Processes

hµ = lim
L→∞

H(L)

L
(When limits exists.)

Interpretations:

 Asymptotic growth rate of entropy

 Irreducible randomness of process

 Average description length (per symbol) of process

Use: Typical sequences have probability: 
(Shannon-MacMillian-Breiman Theorem)

Pr(sL) ≈ 2−L·hµ

Entropy per symbol is given by the Source Entropy Rate:
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Length-L Estimate of Entropy Rate:

ĥµ(L) = H(sL|s1 · · · sL−1)

ĥµ(L) = H(L) − H(L − 1)

ĥµ(0) = log2 |A| :  no measurements, all things possible

Conditioning cannot increase entropy:
Monotonic decreasing: ĥµ(L) ≤ ĥµ(L − 1)

H(sL|s1 · · · sL−1) ≤ H(sL|s2 · · · sL−1) = H(sL−1|s1 · · · sL−2)

ĥµ(1) = H(1)

Boundary conditions:
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Entropy rate as conditional (predictive) entropy:

ĥµ = hµ

Alternate entropy rate definitions agree:

Interpretations:

 Uncertainty in next measurement, given past

 A measure of unpredictability

 Asymptotic slope of block entropy 

ĥµ = lim
L→∞

ĥµ(L) = lim
L→∞

H(s0|
←

s
L
) = H(s0|

←

s )
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Memory in Processes

Motivation:


 Previous: Measures of randomness

 
 Block entropy

 
 Entropy rate


 Today’s end point:

 
 Measures of memory & information storage


 Big Picture:

 
 Complementary properties of a source.

 
 Need both: Measures of randomness and structure.

H(L)
hµ
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Entropy Convergence

0 L

H(1)

1

log  |A|
2

0

H(1)

hµ

h  (L)µ

H∆

hµ(L) = H(L) − H(L − 1)

Monotonic decreasing:   

hµ(L) = ∆H(L)

Process appears less random 

 as account for longer correlations    

hµ(L) ≤ hµ(L − 1)

Length-L entropy rate estimate:
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Redundancy in Processes

R = log2 |A| − hµ

Anatomy of Measurement:

{ }
}

Information
in single

measurement

Redundancy

True
Randomness

R

hµ
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Redundancy in Processes ...

Redundancy in words:
R(L) = H(L) − hµL

Redundancy per symbol:

0 L

H(L)
H(L)

0

h  Lµ

IID
Approx

L1

0

hµ

h  (L)µ

H∆

R = lim
L→∞

D(Pr(sL)||U(sL))

r(L) = R(L)−R(L− 1) = hµ(L)− hµ
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Predictability Gain
1 L

H(1)
|- log  |A2

0

∆ H(L)
2

Rate at which unpredictability is lost

∆2
H(L) = hµ(L) − hµ(L − 1)

∆2
H(1) = H(1) − log2 |A|

Properties:
  (1)         Curvature:
  (2)         Concavity:
  (3)                            Lth measurement significant 

∆2
H(L) ≤ 0

∆2
H(L) = H(L) − 2H(L − 1) − H(L − 2)

|∆2
H(L)| ! 1 ⇒

H(L)
H(L)

Boundary condition:
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Entropy Hierarchy

So far have taken derivatives:

  (1) Block entropy:

  (2) Entropy rate:

  (3) Predictability gain:

Now take integrals!

H(L)

hµ(L) = ∆H(L)

∆hµ(L) = ∆2
H(L)
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G =
∞∑

L=1

∆2
H(L)

Total Predictability:

Redundancy:

−G = R = log2 |A| − hµ

Interpretation:
  (1) Account for all correlations to see intrinsic randomness
  (2) Until that point, correlations appear as excess randomness

1 L

H(1)
|- log  |A2

0

! H(L)2

G
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Excess Entropy:

As intrinsic redundancy:

Properties:

 (1) Units:

 (2) Positive:

 (3) Controls convergence to actual randomness.

 (4) Slow convergence: Correlations at longer words.

 (5) Complementary to entropy rate.

As entropy convergence:

E =
∞∑

L=1

[hµ(L) − hµ]

E =
∞∑

L=1

r(L)

E ≥ 0

E = [bits]

1 L

h (L)µ

hµ

E

H(1)

(∆L = 1 symbol)
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Excess Entropy ...

As asymptote of entropy growth:

E = lim
L→∞

[H(L) − hµL]

H(L) ∝ E + hµL

0 L

µ
+ h  L

E

E

H(L)

0

Y-Intercept of
        entropy growth

That is,
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Excess Entropy ...

Cf. Memoryless Source: IID at same entropy rate
0 L

H(L)

H(L)

0

h  Lµ

E

Cost of Amnesia:
    Forget what you know:

   Information needed to recover predicting with error ~hµ
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Excess Entropy ...

Interpretation:
   Information that process communicates from past to future.
   Reduction in uncertainty about the future, given the past.
   Reduction in uncertainty about the past, given the future.

as Mutual information between past and future:
    View process as a communication channel: Past to Future



Property:

 Symmetric in time

E = I(
←

S ;
→

S )
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Examples of Excess Entropy:

Fair Coin:

Biased Coin:

Any IID Process:

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14

H(
L)

L

H(L): Fair Coin
H(L):  Biased Coin, p=.7

hµ = 1 bit per symbol

hµ = H(p) bits per symbol

hµ = H(X) bits per symbol

E = 0 bits

E = 0 bits

E = 0 bits
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Examples of Excess Entropy ...

Period-2 Process:  010101010101

0 1 2 3

H(L)

L

1

2

3

H(1) = 1

H(2) = 1

H(3) = 1

hµ(1) = 1

hµ(2) = 0

hµ(3) = 0

E = 1 bit

Meaning:

 1 bit of phase information

 0-phase or 1-phase?

hµ = 0 bits per symbol

1 2 3

h  (L)

L

1
µ

0
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Examples of Excess Entropy ...

Period-16 Process:

Period-P Processes:

E = log2 P bits

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16 18

H(
L)

L

H(L)
E + hµL

(1010111011101110)∞

E = 4 bits

hµ = 0 bits per symbol

Entropy rate does not distinguish periodic processes

hµ = 0 bits per symbol

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6 8 10 12 14 16 18

h
µ(
L
)

L

hµ(L)
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Examples of Excess Entropy ...

Golden Mean Process:

R-Block Markov Chain:

E ≈ 0.2516 bits
0-

0.5-

1-

1.5-

2-

2.5-

3-

3.5-

4-

4.5-

H
(L

)-

H(L)-

E + h-µ−L-

1- 2- 3- 4- 5- 6-

L-

0-

1- 2- 3- 4- 5- 6-

L-

0-

0.2-

0.4-

0.6-

0.8-

1-

1.2-

h-µ−

h-µ−(L)-

0-

E = H(R) − R · hµ

(E.g., 1D Ising Spin System)

hµ = 2

3
bits per symbol
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Examples of Excess Entropy:
Finitary Processes: Exponential entropy convergence

0-

2-

4-

6-

8-

10-

12-

14-

H
(L

)-

H(L)-

E + h-µL-

2- 4- 6- 8- 10- 12- 14- 16- 18-

L-

0-

Random-Random
   XOR (RRXOR) Process:

St = St−1 XOR St−2

0-

0.2-

0.4-

0.6-

0.8-

1-

1.2-

h-µ−

h-µ−(L)-

2- 4- 6- 8- 10- 12- 14- 16- 18-

L-

0-

E =
H(1) − hµ

1 − 2−γ

hµ(L) − hµ ≈ 2−γL

General finitary processes:
  Exponential convergence:

hµ = 2

3
bits per symbol

γ ≈ 0.30

E ≈ 2.252 bits
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Examples of Excess Entropy:

Infinitary Processes:

Excess entropy can diverge:

 Slow entropy convergence

 Long-range correlations

 
 (e.g., at phase transitions)

0

2

4

6

8

10

12

14

H
(L

)

H(L)

0

0.1

0.2

0.3

0.4

0.5

0.6

1 2 3 4 5

h
µ(

L
)

L x 1000

hµ(L)

0

0.2

0.4

0.6

0.8

1

0 10 20 30

L

0

E → ∞

Morse-Thue Process:

 A context-free language

 From Logistic map at onset of chaos

hµ = 0 bits per symbol
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Information-Entropy Roadmap for a Stochastic Process:

0 L

H(L)

µ+ h  L
E

E

H(L)

0

T

h  Lµ

E
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Calculus of the Entropy Hierarchy:

Via Discrete-Time Derivatives and Integrals

Level Gain (Derivative) Information (Integral)

0
Block Entropy Transient Information

1
Entropy Rate Loss Excess Entropy

2
Predictability Gain    Total Predictability

    (Redundancy)

...
... ...

H(L)

hµ(L) = ∆H(L)

∆2
H(L)

T =
∞∑

L=1

[E + hµL − H(L)]

E =
∞∑

L=1

[hµ(L) − hµ]

G = −R
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What is information?


 Depends on the question!


 Uncertainty, surprise, randomness, ....

 Compressibility.

 Transmission rate.

 Memory, apparent stored information, ....

 Synchronization.

 ...
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0
1

1

1
0

...001011101000...

ModellerSystem

A

B

C

ProcessInstrument

α

δ

γ β
1

0

0

0
0

0

1

1 1

1

1. An information source:
a. Dynamical System:

deterministic or stochastic
low-dimensional or high-dimensional (spatial?)

b. Design instrument (partition)
2 . Information-theoretic analysis:

a. How much information produced?
b. How much stored information?
c. How does observer synchronize?

Pr(sL)

H(L)
hµ

E
T

Calculate or estimate

Project Pipeline:
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Introduction to
Computational Mechanics

Learning as a Channel

Prediction

Causal Architecture

Optimality

Why We Must Model
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The Learning Channel

0
1

1

1
0

...001011101000...

ModellerSystem

A

B

C

ProcessInstrument

α

δ

γ β
1

0

0

0
0

0

1

1 1

1

Central questions:

 What are the states?

 What is the dynamic?
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The Prediction Game

Rules:

1. I give you a data stream (an observed past sequence).

2. You predict its future.

3. You give a model (states & transitions) for the process.
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The Prediction Game ...

Process I: 
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The Prediction Game ...

Past: . . . 111111111111

Process I: 
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The Prediction Game ...

Past: . . . 111111111111

Your prediction is?

Process I: 
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The Prediction Game ...

Past: . . . 111111111111

Your prediction is?

Future: 111111111111 . . .

Process I: 
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The Prediction Game ...

Past: . . . 111111111111

Your prediction is?

Future: 111111111111 . . .

Your model (states & dynamic) is?

Process I: 
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The Prediction Game ...

Past: . . . 111111111111

Your prediction is?

Future: 111111111111 . . .

Your model (states & dynamic) is?

1

Process I: 
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The Prediction Game ...

Process II: 
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The Prediction Game ...

Process II: 

Past: . . . 10110010001101110
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The Prediction Game ...

Your prediction is?

Process II: 

Past: . . . 10110010001101110
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The Prediction Game ...

Your prediction is?

Process II: 

Past: . . . 10110010001101110

Analysis: All words of length L occur & equally often 

84Thursday, December 4, 2008



The Prediction Game ...

Your prediction is?

Process II: 

Future: Well, anything can happen, how about? 

Past: . . . 10110010001101110

Analysis: All words of length L occur & equally often 
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The Prediction Game ...

Your prediction is?

Process II: 

Future: Well, anything can happen, how about? 

01010111010001101 . . .

Past: . . . 10110010001101110

Analysis: All words of length L occur & equally often 
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The Prediction Game ...

Your prediction is?

Your model is?

Process II: 

Future: Well, anything can happen, how about? 

01010111010001101 . . .

Past: . . . 10110010001101110

Analysis: All words of length L occur & equally often 
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The Prediction Game ...

Your prediction is?

Your model is?

Process II: 

Future: Well, anything can happen, how about? 

01010111010001101 . . .

Past: . . . 10110010001101110

10

Analysis: All words of length L occur & equally often 
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The Prediction Game ...

Process III: 
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The Prediction Game ...

Process III: 

Past: . . . 1010101010101010
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The Prediction Game ...

Your prediction is?

Process III: 

Past: . . . 1010101010101010
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The Prediction Game ...

Your prediction is?

Process III: 

Past: . . . 1010101010101010

Future: 101010101010101 . . .
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The Prediction Game ...

Your prediction is?

Your model is?

Process III: 

Past: . . . 1010101010101010

Future: 101010101010101 . . .
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The Prediction Game ...

Your prediction is?

Your model is?

Process III: 

Past: . . . 1010101010101010

10 1

0

A B

Future: 101010101010101 . . .
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Goal:

 Predict the future

 
 using information from the past

→

S
←

S

But what “information” to use?

We want to find the effective “states”

 and the dynamic (state-to-state mapping)

How to define “states”, if they are hidden?

All we have are sequences of observations

 Over some measurement alphabet

 These symbols only indirectly reflect the hidden states

A
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Effective States:
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Effective States:

0

1

1

0

1

1 0 1 1 0 1 1 0 1

1

1

0

0

1

0

1

0

1

1
1

1

0

t
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Effective States:

0

1

1

0

1

1 0 1 1 0 1 1 0 1

1

1

0

0

1

0

1

0

1

1
1

1

0

t

0

1

1

1

0 0 1 0 1 1 0 1 0

1

1

0

0

1

0

1

t+1
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Effective States:

0

1

1

0

1

1 0 1 1 0 1 1 0 1

1

1

0

0

1

0

1

0

1

1
1

1

0

t

0

1

1

1

0 0 1 0 1 1 0 1 0

1

1

0

0

1

0

1

t+1

Process is in different “states”
  when futures look different
      State(t)     State(t+1)!
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Effective States:

0

1

1

0

1

1 0 1 1 0 1 1 0 1

1

1

0

0

1

0

1

0

1

1
1

1

0

t

0

1

1

1

0 0 1 0 1 1 0 1 0

1

1

0

0

1

0

1

t+1
0

1

1

0

1

1 1 0 1 1 0 1 0 1

1

1

0

0

1

0

1

0

1

1
1

1

0

t+2

Process is in different “states”
  when futures look different
      State(t)     State(t+1)!
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Effective States:

0

1

1

0

1

1 0 1 1 0 1 1 0 1

1

1

0

0

1

0

1

0

1

1
1

1

0

t

0

1

1

1

0 0 1 0 1 1 0 1 0

1

1

0

0

1

0

1

t+1
0

1

1

0

1

1 1 0 1 1 0 1 0 1

1

1

0

0

1

0

1

0

1

1
1

1

0

t+2

Process is in the same “state”
  when the future looks the same:
     State(t) ~ State(t+2)

Process is in different “states”
  when futures look different
      State(t)     State(t+1)!
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Effective for what?


 Prediction!


 Find states that are effective for prediction.

  What are the “predictive states” in the measurements?


 Simple, but key observation:

        Histories leading to the same predictions are equivalent.

    What are these predictions?
    How to group histories?
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Effective for what?

 What’s a prediction?

           A mapping from the past to the future.


 Process


 Future:


 Future Morph:                        (the most general mapping)


 Refined goal:
         Predict as much about the future   ,


 
 using as little of the past    as possible.

Pr(
↔

S ) :
↔

S=
←

S
→

S

←

S

→

S

→

S

L

Pr(
→

S

L

|
←

s )

Particular past:
←
s
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Grouping Predictively Equivalent Histories

Effective States = Partitions of History:

R1 R2

R4

R5

R3

←

S

R = {Ri : Ri ∩ Rj = ∅,
←

S =

⋃

i

Ri}

Histories leading to the same predictions are equivalent.

Space of Histories:
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How Effective are the Effective States?

Effective Prediction Error Rate:


 Entropy rate given effective states

Effective Prediction Error:


 Uncertainty about future given effective states
H[

→

S

L

|R]

hµ(R) = lim
L→∞

H[
→

S

L

|R]

L

hµ(R∅) = log2 |A|

hµ(R) ≤ log2 |A|

Bounds:
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How Effective are the Effective States ...

Prescience:

Bad model says nothing about process:

Upper bounded by Total Predictability:

Π(R) = log2 |A| − hµ(R)

Π(R∅) = 0

Π(R) ≤ |G|

Find states     such that                    .R hµ(R) = hµ
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How Effective are the Effective States?

Statistical Complexity of the Effective States:

Cµ(R) = H[R] = H(Pr(R))

Interpretations:

     Uncertainty in state.


 Shannon information one gains when told effective state.


 Model “size”


 Historical memory used by    .R

∝ log2(number of states)
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Limits on Prediction:

H[
→

S
L

|R] = H[
→

S
L

|η(
←

S )]

≥ H[
→

S
L

|
←

S ]

That is,                     .hµ(R) ≥ hµ

Models can do no better than to use histories.

(Data Processing Inequality)

Effective Prediction Error: H[
→

S

L

|R]
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Goals Restated:

Question 1:
   Can we find effective states that give good predictions?

Question 2:
   Can we find the smallest such set?

hµ(R) = hµ

H[
→

S

L

|R] = H[
→

S

L

|
←

S ]

or

minCµ(R)
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Causal States:

Causal State:

 Set of pasts with same morph                .

 Set of histories that lead to same predictions.

Pr(
→

S |
←

s )

Predictive equivalence relation:

←

s
′

,
←

s
′′

∈

←

S

←

s
′

∼
←

s
′′

⇐⇒ Pr(
→

S |
←

S=
←

s
′

) = Pr(
→

S |
←

S=
←

s
′′

)
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Causal States ...

Causal State = Pasts with same morph: Pr(
→

S |
←

s )

S = {
←

s

′

:

←

s

′

∼
←

s }

Si

⋂
Sj = ∅, i "= j

←

S =

⋃

i

Si

Partition of histories:

Set of causal states:

S =

←

S/ ∼ = {S0,S1,S2, . . .}
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Causal States ...

ε(
←

s ) = {
←

s

′

:
←

s

′

∼
←

s }

ε :

←

S → S

Causal state map:

S = ε(
←
S )

Random variable:
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Causal States ...

We’ve answered the first part of the modeling goal:

We have the effective states!

Now,

    What is the dynamic?

Not enough time ... see [CMPPSS] or [NCASO].
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The   -Machine of a Process ...ε

M =

{

S, {T (s), s ∈ A}
}

Recurrent States

Transient States

Unique Start State:
S0 = [λ]

Pr(S0,S1,S2, . . .) = (1, 0, 0, . . .)

State State

Transient
States

Recurrent
States

BA

D

C

1| 2
3

1| 3
4

0| 1
4

0| 1
3

0| 1
2

1| 1
2

1|1

Pr(
↔
S ) ⇒

←
S / ∼ ⇒ ε−Machine

Process ⇒ Predictive equivalence ⇒ ε−Machine
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The Learning Channel

0
1

1

1
0

...001011101000...

ModellerSystem

A

B

C

ProcessInstrument

α

δ

γ β
1

0

0

0
0

0

1

1 1

1

Central questions:

 What are the states?   Causal States

 What is the dynamic?  The   -Machineε
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A Model of a Process           :

Pr(s1),Pr(s2),Pr(s3), . . .

s
L

= s1s2 . . . sL

Pr(sL) =
L∏

l=1

T
(sl)
i=ε(sl−1),j=ε(sl)

Pr(
↔
S )

Initially,                  .Pr(S0) = 1

  -Machine reproduces the process’s word distribution:

Pr(sL) = Pr(S0)Pr(S0 →s=s1 S(1))Pr(S(1)→s=s2 S(2))
· · ·Pr(S(L− 1)→s=sL S(L))

ε
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Past and Future are Independent given Causal State:

Process: Pr(
↔

S ) = Pr(
←

S
→

S )

Pr(
←

S
→

S |S) = Pr(
←

S |S) Pr(
→

S |S)

Causal states shield past & future from each other.

Similar to states of a Markov chain, but for hidden processes.

103Thursday, December 4, 2008



are Optimal Predictors:εMs

Compared to any rival effective states   :R

H

[

→

S

L

|R

]

≥ H

[

→

S

L

|S

]

Proof sketch: H

[

→

S

L

|S

]

= H

[

→

S

L

|
←

s ∈ S

]

= H

[

→

S

L

|
←

s

]

≤ H

[

→

S

L

|R

]

!!

R = η(
←
s )

(Data processing inequality)
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are Optimal Predictors ...εMs

Proof:

!!

Corollary:

hµ(S) = hµ

hµ(S) = lim
L→∞

L
−1

H[
→

S

L

|S] = lim
L→∞

L
−1

H[
→

S

L

|
←

s ] = hµ
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Prescient Rivals    :
      Alternative models that are optimal predictors

R̂

(Prescient rivals are sufficient statistics for process’s future.)

H[
→

S

L

|R̂] = H[
→

S

L

|S] R̂

R̂

R

S

R̂ ∈ R̂
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Minimal Statistical Complexity:

For all prescient rivals,       is the smallest:εM

Cµ(R̂) ≥ Cµ(S)

Proof sketch:

 (1) Prescient rivals are refinements, so


 (2) But


 (3) So

∃g : S = g(R̂)

H[f(X)] ≤ H[X] ⇒ H[S] = H[g(R̂)]

Cµ ≤ H[R̂] !!

≤ H[R̂]

107Thursday, December 4, 2008



Lecture 16: Natural Computation & Self-Organization, Physics 250 (Winter 2008); Jim Crutchfield

Minimal Statistical Complexity ...

Consequence:


 (1)      measures historical information process stores.


 (2) This would not be true, if not minimal representation.

Cµ
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(1) Optimal predictor: Lower prediction error than any rival.

(2) Minimal size: Smallest of the prescient rivals.

(3) Unique: Smallest optimal predictor is equivalent.

(4) Model of the process: Reproduces all of process’s statistics.

(5) Causal Shielding:

        States renders process’s future independent of its past.

(6) “Deterministic”: Sequence ~ one internal state path

εM Summary:
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hµ

E

G

T

Info. Theory Measures Interpretation

Entropy Rate Intrinsic Randomness

Excess Entropy Info: Past to Future

Predictability Gain Redundancy

Transient Information Synchronization

How related to statistical complexity?

How to get from      ?εM

Measures of Structural Complexity
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Entropy Rate given      :    

Measures from the      :εM

Possible only due to      determinism/unifiliarity!

   1-1 mapping between measurement sequences
            & internal paths.

hµ(S) = −
∑

S∈S

Pr(S)
∑

s∈A,S′∈S

T
(s)
SS′ log2 T

(s)
SS′

     where          is casual-state asymptotic probability.Pr(S)

εM

εM
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Lesson: Need      to calculate entropy rate.

Typical case example: Nontrivial, infinite      . 

Curious:
       Even to estimate a process’s intrinsic randomness,
            need to infer its structure.

Entropy rate ...

εM

εM
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Statistical Complexity of a Process:

Meaning:

   Shannon information in the causal states.

   Amount of historical information a process stores.

   Amount of structure in a process.

Cµ(S) = −
∑

S∈S

Pr(S) log2 Pr(S)

Pr(S)     where          is casual-state asymptotic probability.
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Bound on Excess Entropy:

E ≤ Cµ

Proof sketch:

 (1)


 (2) Causal States:


 (3)

E = I[
→

S ;
←

S ] = H[
→

S ] − H[
→

S |
←

S ]

H[
→

S |
←

S ] = H[
→

S |S]

E = H[
→

S ] − H[
→

S |S]

= I[
→

S ;S]

= H[S] − H[S|
→

S ]

≤ H[S] = Cµ !!
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Bound on Excess Entropy ...

Consequence:

  Possible for            when             .


 Excess entropy is not the process’s stored information.


     is the apparent information,
               as revealed in measurement sequences.


 Statistical complexity is stored information.

E

E→ 0 Cµ ! 1 (Cryptographic limit)
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Bound on Excess Entropy ...

Executive Summary:

               is the amount of information the process requires

    to communicate

    bits of information from the past to the future.E

Cµ
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Bound on Excess Entropy: E ≤ Cµ

Consequence:

     The inequality is Why We Must Model.

     Cannot simply use sequences as states.

           There is internal structure not expressed by this.
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Dynamical system’s intrinsic computation:

   (1) How much of past does process store?

   (2) In what architecture is that information stored?

   (3) How does stored information produce future behavior?
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The Point

How nature is structured

                    is how nature computes.
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Structure or Noise?

Just completed: “In Principle”

Now: “Practically”
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Passive Learning

Problem: Experiment to Learn World Model

The world behaves:

Agent learns model of the world: StatesR
past future

↔
X=

←
X

→
X
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Passively Learning a Model
Pattern discovery:

     Learn the world’s hidden states

Causal shielding:

Dynamics of learning:

     Search in the space of models: R ∈M

Pr(
←
X
→
X) = Pr(

←
X |R)Pr(

→
X |R)

Pr(R|
←
X)
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Passively Learning a Model

Causal shielding objective function

min
Pr(R|

←
X)

(
I[
←
X;R] + βI[

←
X;
→
X |R]

)

Info states contain
about histories

Reduce info history
has about future

Model: Map from
histories to states

β ∼ 1/T
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Passively Learning a Model

Optimal states                    are Gibbs states:

where

Pr(R|
←
X)

Propt(R|
←
X) =

Pr(R)

Z(
←
X,β)

e−βE(R,
←
X)

E(R,
←
X) = D

(
Pr(
→
X |

←
X)||Pr(

→
X |R)

)

Pr(
→
X |R) =

1
Pr(R)

∑

←
X

Pr(
→
X |

←
X)Pr(R|

←
X)Pr(

←
X)

Pr(R) =
∑

←
X

Pr(R|
←
X)Pr(

←
X)
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Passively Learning a Model

Solve these equations self-consistently

    (Analytical in special cases; numerical generally)

Parametrized family of models:

Structure or Noise?

         trades-off model size against prediction error

Pr(R|
←
X)Rβ

β

:
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What Do Solutions Mean?
Causal Models

Causal architecture given by   -Machine     :

Optimal predictor:

Minimal size (within optimal predictors     ):

Unique (within min, opt predictors)

ε

JPC & K. Young, Inferring Statistical Complexity, Physical Review Letters 63 (1989) 105-108.
C. R. Shalizi & JPC, Journal Statistical Physics 104 (2001) 817-879.

M

hµ(M) ≤ hµ(R)

R̂

Cµ(M) ≤ Cµ(R̂)
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Theorem: Low-temperature limit

        Recover   -Machine:

 Conclusion:

       At given prediction error

                 is best causal approximate.

β →∞

ε

Passively Learning a Model

Rβ →M

Rβ
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Passively Learning a Model

H[Past]

E = I[Past;Future]

Slope = inverse T = Beta

Causal Rate Distortion Curve

I[Past;Rivals]

I[Past;Future|Rivals]
          = E - I[Future;Rivals]

IID limit

!M limit

0
0

R(D)

Distortion

In theory

Optimally balance structure & error
At each level     of approximationβ
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Passively Learning a Model
Analytical cases

I[←X ;R]

0
0 I[→X ; ←X R]|

1 state

Feasible

1 state

E

Cμ Predictively Reversible:

(e.g., periodic)

P(
→
x | ←x) = δ→

x ,f(
←
x )

All IID processes:

P(
→
x | ←x) = P(

→
x)
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Passively Learning a Model

I[→X 2;←X 5R]

I[← X5 ;R]

0.0

3.5

0.5

3.0
2.5
2.0
1.5
1.0

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
|

P(00)

P(01)P(10)

P(11)

P(→X ←x )|

3 states
4 states

6 states

2 states

5 states

1 stateInfeasible

Feasible

5 2

In practice: Learn an oo-state world (SNS: simple nondeterminstic source)

Optimally balance structure & error
At each level     of approximationβ
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Passively Learning a Model

Causal compressibility: Shape of RD curve

Benefit of choosing smaller model for 
loss in predictability

Deviation from straight-line RD curve

IID: No

Predictively reversible: No

SNS: Yes
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Passively Learning a Model

Causal shielding principle leads to

   -Machine

Family of best approximations to   -M

(Conclusion)

ε

ε
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Passively Learning a Model

Computational mechanics:
 Focus on causal organization [Crutchfield et al 1989]

Information bottleneck:
 Focus on prediction [Bialek et al 1997]

Deterministic annealing:
 Maximum entropy [Rose et al 1990]

Goal-directed information processing:
 [Sanchez-Montañes et al 2004]

(related work)
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The Future?
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Environment

AgentX
AgentY

AgentW

AgentU

AgentV

AgentZ

Future:
Fundamental in Designing Multiagent Systems
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World

Agent

The Feedback Loop

Model Policy

ActionsObservations
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Knowledge + Action

A central challenge:

  Actions change the world

       and so

       its statistics,

       and

       what is knowable.

137Thursday, December 4, 2008



Approaches
Modeling:

Statistical inference
Strategizing:

Game theory
Adapting:

Reinforcement learning
Group behavior:

Population dynamics (evolution & ecology)
...
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Approaches: Sticking points
Modeling:

Statistical inference: static, batch mode
Strategizing:

Game theory: equilibria, no transients
Adapting:

Reinforcement learning: a priori design, brittle
Group behavior:

Population dynamics (evolution & ecology): 
individuals have no structure (don’t learn)

Where are the basic principles?
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Interactive Learning
(Susanne Still, Chris Ellison, & JPC)

Problem: Experiment to Learn World Model

The world behaves:

Agent learns model of the world: States

Agent take actions

Those actions affect the world

Now the world is different!

How to close the feedback loop?

arxiv.org: 0708.0654 [physics.gen-ph] & 0708.1580[cs.IT]

R
past future

↔
X=

←
X

→
X

A
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Interactive Learning

Decision: Using model, take actions

Policy:                         (or from     ) 

Experimentation objective function

max
Pr(R|

←
X),Pr(A|

←
X)

(
I[{R,A};

→
X]− λI[R;

←
X]− µI[A;

←
X]

)

Pr(A|
←
X) R

Info states contain
about historiesModel: Map from

histories to states

Policy: Map from
histories to actions

Info actions contain
about histories

Info states/actions
contain about futures

141Thursday, December 4, 2008



Interactive Learning: Results

Optimal model: Recover causal architecture

Optimal policies

Causally equivalent policies

Curiosity: Take informative actions

Control: Make world easier to model

Balance of exploitation and control

arxiv.org: 0708.0654 [physics.gen-ph] & 0708.1580[cs.IT]

142Thursday, December 4, 2008

http://arxiv.org/abs/0708.0654v1
http://arxiv.org/abs/0708.0654v1
http://arxiv.org/abs/0708.1580v1
http://arxiv.org/abs/0708.1580v1


Connections

Note iLearning subsumes:

Causal modeling

Game theory

Equilibrium economics

Reinforcement learning
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Knowledge + Action
Deviation from knowledge:

Model evaluation (e.g., prediction error)

Valuation: Commitment of resources to action
Policy evaluation (e.g., average reward)

How? Augment objective function
Change relative weighting of Lagrange multipliers:      &

Add new terms: e.g., ...

Examples:
“Science”: Need accurate knowledge, at expense of producing it

“Politics”: Need world to behave, independent of knowledge or cost

These are positions on causal rate-distortion curve

µλ
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World

Agent

The Feedback Loop

Model Policy

ActionsObservations

Prediction Error
Deviation from knowledge

Valuation
Commitment of resources to actions
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Main message

Closing the loop:

       How interaction changes the world &

       how one adapts to those changes

Theoretical foundations (& algorithms) for 
closing the feedback loop are now available.
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Conclusion
Basic principles follow from

Computational mechanics

Stat physics/Info theory (rate distortion)

Balance structure & noise

Balance exploitation & exploration

Balance exploitation & control

Challenge: Fold in risk
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Prospects
Collective Cognition:

Pattern discovery

Interactive learning

Adaptation dynamics

Emergent policy design

Multiagent dynamical systems

Environment

AgentX
AgentY

AgentW

AgentU

AgentV

AgentZ
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Summary
Why Build Models?
Kinds of Information
Causal Modeling
Intrinsic Computation
Balancing Noise & Structure
Interactive Learning
Multiagent Dynamical Systems
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Thanks!
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