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Two Lectures

o [rst Lecture

TS Whg Must We Model?

o Randomness & 156:901161: Information Theorg
e Second Lecture
& Structure: Computational Mechanics

XS Leaming: Rate Distortion Tlﬁeorg

XS The Future: Interactive Leaming
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Complcx Sgstems ToPics Covered

» Randomness & Its Origins

» Kinds of Information

» RePresenting Structure: Automata
* Intrinsic ComPutation

o Causal Inference
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Main References
+ [RURO]:

J. P. Crutchfield & D. P. Feldman
Regularities Unseen, Randomness Observed: Levels of E‘ntropg Convergence

| httl:)://cse.ucclavis.edu/~cmg/comPmech/l:)ubs/ruro.htm
o [CMPPSS]:

C.R. Shalizi & J. P Crutchfield

Computational Mechanics: Pattern and Prediction, Structure and Simplicitg
http://cse.ucclavis.edu/"cmg/compmech/pubs/cmppss.htm

*» [NCASO] Course on Natural Computation:

ht’cp: //cse.ucdavis.edu/ ~c:mg;/ courses/ncaso/
Lectures 11 - 16.

* & These notes @ http: //cse.ucdavis.edu/~chaos/chaos/talks.htm
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Whg Must We Model?

Three reasons!
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Whg We Must Model |

Nature spontaneouslg organizes
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Whg We Must Model 2 .

° .__.ngineerecl sgste ns spontaﬂeouslg organize

* Internet route ‘anPing

QT @ O e

Financial ma

Power~law Internet sehc—-organization

"kets crash

Power gri&s fail sPectacularlg

Social Pattem Formation on the Web
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Andso .. 1+2= ..

| Problem:

Lmergent structures not gi\/en direct|9 bﬂ the system
coordinates, governing equations of motion, or

clesign Plan

* Consequence:

Fach needs its own explanatorg basis
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Whg We Must Model % .

o Fundamental Mathematics: Intrinsic Randomness

B Nonlinearclgnamical sgstems:

Chaotic SL stems: Shannon entropy rate

h,u > () [Kolomogorov 1958]

. * Ko mogorov—-Chaitin complexitg of Data:

lslﬂortest Turing Machine Program to Predict D
[Kolomogorov 1963, Chaitin 1964]

l o KC complexi‘cﬂ = F(Shannon entropg rate):

|Program| X ehu |Datal [Brudno 1978]
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fixPonential Increase in Prediction Resources

Prediction Horizon T
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fixPonential Increase in Prediction Resources

Accuracy o< e 1

Prediction Horizon T
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fixPonential Increase in Prediction Resources

75

2 'Measurements| o e

Accuracy o< e~

Prediction Horizon T
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fixPonential Increase in Prediction Resources

75

2 Measurements| e

Accuracy o< e~ -

Compute time| x e

Prediction Horizon T
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Consequence

« No short cuts!
No closed-form solutions
Probabilistic clescription misses embedded order

No comPutational sl:)cecl~u|:>s

[ R DR FRSRRE

Must compute full trajcctorg

® Right representation is critical for reducing the

Precliction error as far as Possible (but Nno Further!)

Thursday, December 4, 2008
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Fundamental in Nonlinear Dgnamics!

o Fach nonlinear system requires its own rel:)resentation

" Selccting balance between ascribing structure or

noise to a measurement clepencls on rePresentation
. e Fundamental issue: (T]’weorg ob) TI’ICOI‘H [‘Suilcling
| » Subsi&iarg Issue:
Statistical fluctuations due to finite data sample

(This is not about machine learningl)
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Information Theorg

for Complex Systems

® Processes

| ArL

o Information versus .L__ntropg

o Communication Channels

® Processes as Channels

o First Pass: Measures of Complexitg

Thursday, December 4, 2008

14



Additional Reference

Thomas Cover & Jog Thomas

() ==

Elements of Information Theorg”

Second Edition (2008)
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Stochastic Processes:

Chain of random variables:

=

o AL 5_25_1503152 TR

Random variable: S;

Alphabet: A

Realization:

SR e e e e A A

Thursday, December 4, 2008
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Stochastic Processes:

T e e

Chain of random variables: S=5:5¢

Past: 54

Eo S S5 Snon

Future: St = St 1St QSt_|_3 B

L-Block: S}

OrOiay adb: tis

WWord tisi— o5, =l Slei oL et
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Stochastic Processes ...
Process:

Pr(G) LBt 998 6.5 )

Sequence (or word) distributions:

{PI’(StL) — PI’(StSt_|_1 Do St—I—L—l) : St = A}

Process:

FRE(S e )

Consistency condition:

Pr(Sk 1 Z Pr(SE)

o SR

Thursday, December 4, 2008
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Types of Stochastic Process:

Stationary process:

Pr(StSt+1 LS St—l—L—l) — PI‘(S()Sl T SL—l)

Assume stationarity, unless otherwise noted.

Notationally: Drop time indices.

Thursday, December 4, 2008
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Example: Sequence Distribution: Pr(s”) = 2%
Fair Coin ... B[ 22 e

log P

'Word as binary fraction: -

L=4 =5 L=6
st == e e
log P
L T 2y e e e A R e Wi T S MMWW
ccSLn 55 i >
27’ 3 =" L=8 L=9
1=
log P
s [0,1] :
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Example:
Biased Coin ...

log P

1
W W

Sequence Distribution:

log P

PI(SL) = pn(l L3 p)L—n7 3

n =Number Hs in s™

log P

| =2 189=3
EEoy ke
| BR o S|
L=4 =:5 L=6
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Example: Golden Mean Process

5
=] =2 L

No Consecutive Os

log P

1
W W

wel L O] oL Y

1
W W

log P | Il
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Models of Stochastic Processes ...

Two Lessons:

Structure in the behavior: supp Pr(s”)

Structure in the distribution of behaviors: Pr(s")

Thursday, December 4, 2008
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Classification of Discrete Stochastic Processes:

Nondeterministic
Hidden Markov

Deterministic
Hidden Markov

Order-R Markov

R-Block

Thursday, December 4, 2008
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Sources of Information:

Apparent randomness:
Uncontrolled initial conditions
Actively generated: Deterministic chaos

Hidden regularity:
lgnorance of forces
Limited capacity to model structure

Thursday, December 4, 2008
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Issues:
What is information?
How do we measure unpredictability
How do we quantify structure!
Information # Energy

History:
Boltzmann (19th Century):
Equilibrium in large-scale systems
Hartley-Shannon-Wiener (Early 20th):
Communication & Cryptography
Current threads (late 20th century):
Coding, Statistics, Dynamics, and Learning

Thursday, December 4, 2008
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Information as uncertainty and surprise:

Observe something unexpected: gain information

Bateson:“A difference that makes a difference”

Thursday, December 4, 2008
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Information as uncertainty and surprise ...

How to formalize?
Shannon’s approach: Connection with Boltzmann’s Entropy
A measure of surprise.

Self-information of an event & — log Pr(event).
Predictable: No surprise —log1l =0

Completely unpredictable: Maximally surprised

1
e = log(Numb f Event
6 Number of Events HE L Veaing 0 bven S)

Thursday, December 4, 2008
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How to measure?

Information = f(Pr(event))?

Random variables: X,Y; events z,y € {1,2,...,k}
Distribution: Pr(X) = (p1,...,px)

Shorthand: X ~ p(z) Y ~ p(y)

Thursday, December 4, 2008

29



Khinchin axioms for a measure of information:

Entropy: H(X) = H(p1,...,px)

(1) Maximum at equidistribution:

B Do e Hile g
(2) Continuous function of distribution:

H(p1,...,pr) versus p;
(3) Expansibility:

H(p1,...,px) = H(p1,- -, Pk, Pr+1 = 0)
(4) Additivity of independent systems:

X1Y=HXY)=HX)+H(Y)

Thursday, December 4, 2008

30



Khinchin axioms for a measure of information ...

Theorem:

Get unique (up to a factor) functional form,

The Shannon entropy:

k
H(X) o« — sz' log p;
pil

Thursday, December 4, 2008
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Shannon Entropy: X ~ P

— Y p(x)logy p(x

reX

. H(X) = (—log, p(z))

Units:
Log base 2: H(X) = |bits]
Natural log: H(X ) = |nats]

Properties:
- |. Positivity: H(X) >0

2. Predictive: H(X) =0 < p(x )
- 3.Random: H(X) =log, k <

fo e = e Rl Wi S

Note: 0log0 =10

f or one and only one x

Uz) =1/k

Thursday, December 4, 2008

32



Examples: Binary random variable X
X =051 Pr(l) =p & Pr(0)=1-0p
H(X)?

. Binary entropy function:

H(p) = —plogy p — (1 — p)logy(1 — p)

. . 1
Fair coin: p = %

H(p) =1 bit
Completely biased coin:p = 0 (or 1)
H(p) = 0 bits

0.8 -

0.6 -

04 -

0.2 -

- Note: 0-log0 =0 " b
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Example: [ID Process over four events

X ={a,b,c,d} PI’(X):(%&’%%)

Entropy: H(X) = £ bits

Number of questions to identify the event!
x = a! (must always ask at least one question)
x = b? (this is necessary only half the time)
x = ¢! (only get this far a quarter of the time)

Average number: 1-1+ 1 - % S % — 1.75 questions

Theorem: Optimal way to ask questions.

Thursday, December 4, 2008

34



Example: [ID Process over four events ...

Average number: 1-1 +1 - % aff L i — 1.75 questions
PEoc e ©

oo |

Thursday, December 4, 2008
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Example: [ID Process over four events ...
Query in a different order:
Average number: 1-1+ 1 - % == g ~ 2.7 questions

PI(X):( 7%7%)

IS

1
)
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Example: [ID Process over four events

Entropy: H(X) = £ bits

At each stage, ask question that is most informative.

Choose partitions of event space that give “most random”
measurements.

Theorem:
Entropy gives the smallest number of questions
to identify an event, on average.

Thursday, December 4, 2008
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Interpretations of Shannon Entropy:

Observer’s degree of surprise in outcome of a random variable
Uncertainty in random variable

Information required to describe random variable

A measure of flatness of a distribution

Thursday, December 4, 2008
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Two random variables: (X,Y) ~ p(z, y)

Joint Entropy: Average uncertainty in X andY occurring

H(X7 Y) oA Z Zp(xvy) 1Og2p($7y)

rEX yey

Independent:

X1Y=HXY)=HX)+H(Y)

Thursday, December 4, 2008
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~ Conditional Entropy: Average uncertainty in X, knowing Y

H(X|[Y)==> ) plz,y)log, p(z|y)

reEX yey

H(X|Y)=H(X,Y) - H(Y)

Not symmetric: H(X|Y) # H(Y |X)

Thursday, December 4, 2008
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Relative Entropy of Two Distributions:
X~P&Y ~ (@, over common x € X

Relative Entropy:

DXIY) = 3 o) log, 2

Note: Olog— 0
plog § = oo

Typically applied to: Q) : g(z) >0, Vx e X

Alternate use (notation):

D(P||Q)

Thursday, December 4, 2008
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Relative Entropy of Two Distributions ...

Properties:
(DY BPEX =0
(2l PEE e — R )
B)D(X|Y) # DY]X)

Also called:
Kullback-Leibler Distance
Information Gain: Number of bits of describing X as Y
Discrimination between X &Y

Not a distance: not symmetric, no triangle inequality
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Common Information Between Two Random Variables:

(X,Y) ~plz,y) X~p(z)&Y ~p(y)
Mutual Information:
I(X;Y) =D(P(z,y)||P(z)P(y))

I(X;Y)= Y  plz,y)log, 232k
Yy)EXXY
0

- Properties:

Interpretation:
Information one variable has about another
Information shared between two variables
Measure of dependence between two variables

Thursday, December 4, 2008
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Event Space Relationships of Information Quantifiers:

Thursday, December 4, 2008
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e it

- Event Space Relationships of Information Quantifiers:

L}
; e . et b Tt i, e it = il i-'t-n.-h-' 5

L]
1 e - i . s S i g 0 s

e —— —_ - e T —_ il Ik ar—— k. ]

e -

e i, iy g A R T
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- Event Space Relationships of Information Quantifiers:
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e it

- Event Space Relationships of Information Quantifiers:
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e it

- Event Space Relationships of Information Quantifiers:

L}
; e . et b Tt i, e it = il i-'t-n.-h-' 5

L]
1 e - i . s S i g 0 s

e —— —_ - e T —_ il Ik ar—— k. ]

e -

e i, iy g A R T

Thursday, December 4, 2008

44



- Event Space Relationships of Information Quantifiers:
§
.i H(X,Y)
3 l\ :
: |
!
i
1
E
=
:
i
o H(Y) H(X)
|
i |
: |
':
:
i
:
£
:
:
*I
}
R L i S R i e i A i S e
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- Event Space Relationships of Information Quantifiers:
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Central Results of Information Theory

How to compress a process:
Can’t do better than H(X)
(Shannon’s First Theorem)

How to communicate a process’s data:
Can transmit error-free at rates up to channel capacity
(Shannon’s Second Theorem)

Both results give operational meaning to entropy.
Previously: Entropy motivated as a measure of surprise.

Thursday, December 4, 2008
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Communication channel

Corrupted Inferred
Messages Codewords Cadivoide Messages
s L2060 ...0(333)0(3?2)0(561) f é(xg)a(xg)@\(xl) rart 1D ADIes]
Infgrmatlon ——» Encoder ——>» Channel ——>» Decoder ——) Receiver
ource 2 A

-

Thursday, December 4, 2008
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Coding for Communication Channels

Kinds of channel:
Phone line, ftp transfer, monologue, ...
Dynamical system at time t and t+|
Spin system at one site and another
Measurement channel

Channel coding problem is to overcome errors: e
Equivocation: 0\
Same input sequence leads to different outputs ®
Ambiguity: =
Two different inputs lead to same output i
o
Strategy:

Find channel inputs that are least ambiguous
given distortion properties.
Codebook: Map information source onto those inputs.

Thursday, December 4, 2008
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Source ~ P(x),but you use Q(x).

'Use incorrect probability model for code construction: () # P

((z)) = H(X) + D(P||Q)

: Data Compression Theorem (Shannon’s First Theorem):

R(C) > H(X)

Cannot compress source (at code rate R(C')) below its
entropy rate.

- Operational meaning of entropy: A fundamental limit.

Thursday, December 4, 2008
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Discrete channel:
Input: X ~ p(z)
Output: Y ~ p(y)
Channel: p(y|z)

Memoryless channel:
P(yt|xere—1 -+ ) = p(ye|2e)

Channel Capacity:

C=max I ¥)
p(z)

Highest rate one can transmit over channel.

Thursday, December 4, 2008 49



Channel Capacity:
C = max F ¢S

p(x)
- Extremes of no communication:

No info to send: H(X) = 0
I(X;Y)=HX)—HX|Y)=0—-0=0
Complete distortion:
Output independent of input: X | Y

I(X;Y)=0

- Duality:
Compression removes redundancy for smallest description.
Transmission adds redundancy: compensate channel errors.
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Channel Coding Theorem (Shannon’s Second Theorem):

(1) Capacity is the maximum reliable transmission rate.
(2) Error-free codes exist if R(C') < C.

|dea:
Use long block lengths.
In effect, have noisy channel with non-overlapping outputs.
Choose codewords (channel inputs) that
produce non-overlapping output sequences.

Thursday, December 4, 2008
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Channel Coding Theorem ...

What happens when transmitting above capacity, R > C?

Pr(error)

(Typical of complex systems?)

Thursday, December 4, 2008 52



Information Theory for General Processes

Entropy Growth for Stationary Stochastic Processes: Pr(g*))
Block Entropy:

H(L) = H(Pr — Y  Pr(s*)log, Pr(s")
steA

Monotonic increasing: H(L) > H(L — 1)
Adding a random variable cannot decrease entropy:

HES159590 70 0 r ) =SH (5 by a8 o)

No measurements, no information: H(0) = 0

Bounds:
(1) Crude: H(L) < Llog, | A
(2) I-block Markov: H(L) < LH (1)

Thursday, December 4, 2008
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Block Entropy ...

Llog, | A

LH(1)

Thursday, December 4, 2008
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Block Entropy ... Pr(0 = Pr(l i —
Example: Period-2 Process Pr(01) = Pr(10) = 5
Pr(101) = Pr(010) = =
Pr(s™) = 0, otherwise
R — SER S 1

H(L)

- log, (P)

Period-P Process:
H(L > P) = log,(P)

Thursday, December 4, 2008
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Entropy Rates for Stationary Stochastic Processes

Entropy per symbol is given by the Source Entropy Rate:

H(L
h“:LILH;o é)

(When limits exists.)

Interpretations:
Asymptotic growth rate of entropy
Irreducible randomness of process
Average description length (per symbol) of process

Use: Typical sequences have probability: Pr(sL) A O R

(Shannon-MacMillian-Breiman Theorem)
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Length-L Estimate of Entropy Rate:

PSS

hH(L) — H(SL‘Sl T SL—l)
hu(L) = H(L) — H(L - 1)

Boundary conditions:

h,,(0) = logs | A| : no measurements, all things possible

h(1) = H(1)

N

Monotonic decreasing: h, (L) < }\LM(L — 1)

Conditioning cannot increase entropy:
H(ST 810 S henls) < 8H(Slsoessey o) —rbl G wiE s =)

Thursday, December 4, 2008
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Entropy rate as conditional (predictive) entropy:

AN

o 5 —
h,u: lim hM(L): lim H(SO‘S ):H(SO‘S)

L— o0 L—o0

Interpretations:
Uncertainty in next measurement, given past
A measure of unpredictability
Asymptotic slope of block entropy

Alternate entropy rate definitions agree:

S

h, = h,

Thursday, December 4, 2008

58



Memory in Processes

Motivation:

Previous: Measures of randomness
Block entropy H (L)
Entropy rate h,

Today’s end point:
Measures of memory & information storage

Big Picture:
Complementary properties of a source.
Need both: Measures of randomness and structure.

Thursday, December 4, 2008
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Entropy Convergence

~ Length-L entropy rate estimate:
AH

logslhs

hu(L) = AH(L) H(I) (L)
hu(L) = H(L) — H(L — 1) “\

Monotonic decreasing: e e
Bl LY & (L= 1)

0 1 L

Process appears less random
as account for longer correlations
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Redundancy in Processes

R = log, |A| — hy,

Anatomy of Measurement:

Information >R Redundancy
in single <
measurement | _| /
.
True

}h,u Randomness

Thursday, December 4, 2008
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Redundancy in Processes ...

R = lim D(Pr(sY)||U(s%))

L— o0

. Redundancy in words: Redundancy per symbc)l;
! R(L)=H(L)-—h,L r(L) =R(L) —R(L—1)=h,(L) - h,
AH
e H(L)
_____ s
,,,,,,,,,, IID
,,,,,,,,,,, ApprOX hu“‘
B .
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Predictability Gain

1 L
0
A*H(L) = hy(L) = hyu(L - 1)
Boundary condition:
LBt
A?H(1) = H(1) — logy |A| -los2Al
NH(L)

- Rate at which unpredictability is lost

Properties:
(I)H(L)Curvature:AzH(L) =H(L)—2H(L—-1)— H(L —2)
(2) H(L)Concavity: A°H(L) < 0
(3) |A“H(L)| > 1 = Lth measurement significant
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Entropy Hierarchy
So far have taken derivatives:

(1) Block entropy: H (L)
(2) Entropy rate: h, (L) = AH(L)
(3) Predictability gain: Ah, (L) = A*H(L)

Now take integrals!

Thursday, December 4, 2008
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Total Predictability: 1 L
0 (A A

£ i A2H(L) ]|

H(l) |
- log, 1Al

- Redundancy:
—G =R =log, |A| — h,

A°H(L)

Interpretation:
- (I) Account for all correlations to see intrinsic randomness
(2) Until that point, correlations appear as excess randomness
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Excess Entropy:

As entropy convergence: H(I)—

E= > h(L)~ b,
L=1

(AL =1 symbol) \
As intrinsic redundancy: E Hﬂmmmmmwwm
P T ll

E=) r(L)

[Ty

Properties: 1
(1) Units: E = [bits]
(2) Positive: EE > 0
(3) Controls convergence to actual randomness.
(4) Slow convergence: Correlations at longer words.
(5) Complementary to entropy rate.
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Excess Entropy ...

~ As asymptote of entropy growth:
15— i (= L

L— o0

- That s,
H(L) xE+ h,L H(L)

~ Y-Intercept of
entropy growth
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Excess Entropy ...
Cost of Amnesia:

Forget what you know:
Information needed to recover predicting with error ~h,,

H(L)

0
0 L

- Cf. Memoryless Source: IID at same entropy rate

Thursday, December 4, 2008
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Excess Entropy ...

- as Mutual information between past and future:
View process as a communication channel: Past to Future

E =1(S; S)

Property:
Symmetric in time

~Interpretation:
Information that process communicates from past to future.
Reduction in uncertainty about the future, given the past.
Reduction in uncertainty about the past, given the future.

Thursday, December 4, 2008
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Examples of Excess Entropy:

16
Fair Coin: Al H(L): Bial;.lcilc_i):Clz)?riwr, (;S; -------
h, = 1 bit per symbol 12
E = 0 bits 2 8}
6 L
4 }
Biased Coin: 2 A ot
hi = Hip) bits per symabol2 ol “ 4 -

E = 0 bits

- Any |ID Process:
h,, = H(X) bits per symbol
E = 0 bits
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Examples of Excess Entropy ...

Period-2 Process: 010101010101

T
H(2) =1
i (3) — 1

h,, = 0 bits per symbol

H(L)
S
2

1

E =1 bit

Meaning:
| bit of phase information

O-phase or |-phase?
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Examples of Excess Entropy ... s T
Period-16 Process: 3'2_
(1010111011101110)*° 2|
h, = 0 bits per symbol e bt
E = 4 bits

Period-P Processes:
h,, = 0 bits per symbol
E = log, P bits

0 2 4 6 8 37187 S 2= et [ N S 21 1
L

Entropy rate does not distinguish periodic processes
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Examples of Excess Entropy ...

Golden Mean Process:
hy,
E

% bits per symbol
0.2516 bits

2

R-Block Markov Chain:
E=H(R)—-R: T

(E.g., ID Ising Spin System)

4.5-

3.5-F

2.5-F

1.5-F

2

0.8-

0.6-f

0.4-}

0.2-f

0.5- .

H{S
E + hill—_- .............
4- 5
1=
el
4- 5
s
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Examples of Excess Entropy:
Finitary Processes: Exponential entropy convergence

Random-Random :Z
XOR (RRXOR) Process: =y
St = St—l XOR St_g = Z

h, = 2 bits per symbol 4 —

E ~ 2.252 bits

0- 2- . 4- B~ SAT8- T 10- 22124 14 =16 RNE

General finitary processes:

1- hitﬂ‘)'_
Exponential convergence: 0_8_\\
h-

hM(L) s h,u ~ 2—7[, BT nURL Sanase. i _
e,

gy 7 ol B [ Bt ey DB | e
|==

=277 S x~030
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Examples of Excess Entropy:

Infinitary Processes:

E — o

Excess entropy can diverge:
Slow entropy convergence
Long-range correlations

(e.g., at phase transitions)

H(L)

Morse-Thue Process:

A context-free language
From Logistic map at onset of chaos

14 |

12

10 }

OO0 N A O o

5«

2 3
L x 1000

h,, = 0 bits per symbol
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Information-Entropy Roadmap for a Stochastic Process:

H(L)
~”~ A
L A
h
vr .
H(L) Y

.°
.
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Calculus of the Entropy Hierarchy:

Via Discrete-Time Derivatives and Integrals

Gain (Derivative) Information (Integral)

Block Entropy Transient Information
H(L) T=) [E+h,L—H(L)

=1

Entropy Rate Loss Excess Entropy

h,(L)=AH(L) E=)> [hu(L)—hyl

Predictability Gain Total Predictability
A?H(L) (Redundancy) G = —R
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What is information?
Depends on the question!

Uncertainty, surprise, randomness, ....
Compressibility.

Transmission rate.

Memory, apparent stored information, ....
Synchronization.

Thursday, December 4, 2008

78



Project Pipeline:

0

...001011101000...

(B

l@
2

1
0

D

©

System Instrument Process Modeller

|.An information source: Calculate or estimate Pr(s™)
a. Dynamical System:
deterministic or stochastic
low-dimensional or high-dimensional (spatial?)
b. Design instrument (partition)

2 . Information-theoretic analysis: H(L)
a. How much information produced? it
b. How much stored information? E

9k

c. How does observer synchronize?
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Introduction to

Computational Mechanics

* | earning as a Channel
» Prediction

o Causal Architecture

* OPtimalitg

* Whg We Must Model
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System

The Learning Channel

Instrument Process

Central questions:
What are the states?
What is the dynamic!

Modeller
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The Prediction Game

Rules:
|. | give you a data stream (an observed past sequence).
2.You predict its future.

3.You give a model (states & transitions) for the process.
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Process I:

The Prediction Game ...
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Process I:

Past:

The Prediction Game ...

111111111111
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The Prediction Game ...

Process I:

Past: Lo111111111111

Your prediction is!?
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The Prediction Game ...

Process I:

Past: Lo111111111111

Your prediction is!?

Future: 11111111111 ...
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The Prediction Game ...

Process I:

Past: Lo111111111111

Your prediction is!?
Future: IBEEEEEE RN e

Your model (states & dynamic) is?

Thursday, December 4, 2008

83



The Prediction Game ...

Process I:

Past: Lo111111111111

Your prediction is!?
Future: IBEEEEEE RN e

Your model (states & dynamic) is?
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Process ll:

The Prediction Game ...
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The Prediction Game ...

Process ll:

Past: ...10110010001101110
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The Prediction Game ...

Process ll:

Past: ...10110010001101110

Your prediction is!?
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The Prediction Game ...

Process ll:

Past: ...10110010001101110

Your prediction is!?

Analysis: All words of length L occur & equally often
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The Prediction Game ...

Process ll:

Past: ...10110010001101110

Your prediction is!?
Analysis: All words of length L occur & equally often

Future:WVell, anything can happen, how about!
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The Prediction Game ...

Process ll:

Past: ...10110010001101110

Your prediction is!?
Analysis: All words of length L occur & equally often

Future:WVell, anything can happen, how about!
01010111010001101 ...
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The Prediction Game ...

Process ll:

Past: ...10110010001101110

Your prediction is!?
Analysis: All words of length L occur & equally often

Future:WVell, anything can happen, how about!
01010111010001101 ...

Your model is?
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The Prediction Game ...

Process ll:

Past: ...10110010001101110

Your prediction is!?
Analysis: All words of length L occur & equally often

Future:WVell, anything can happen, how about!
01010111010001101 ...

Your model is?
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Process lll:

The Prediction Game ...
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Process lll:

Past:

The Prediction Game ...

...1010101010101010
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The Prediction Game ...

Process lll:

Past: ...1010101010101010

Your prediction is!?
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The Prediction Game ...

Process lll:

Past: ...1010101010101010

Your prediction is!?

Future: 101010101010101 . . .
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The Prediction Game ...

Process lll:

Past: ...1010101010101010

Your prediction is!?

Future: 101010101010101 . . .

Your model is?
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The Prediction Game ...

Process lll:

Past: ...1010101010101010

Your prediction is!?

Future: 101010101010101 . . .

Your model is?
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Goal:
Predict the future ¢
using information from the past 4

But what “information’’ to use!?

We want to find the effective “states”
and the dynamic (state-to-state mapping)

How to define “states”, if they are hidden!?

All we have are sequences of observations
Over some measurement alphabet A
These symbols only indirectly reflect the hidden states
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Effective States:

C—— S == — e— PSS
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Effective States:

Thursday, December 4, 2008

87



Effective States:

t+|
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Effective States:

ST 0

Process is in different “‘states’”
when futures look different
State(t) ~ State(t+1)

\ |ojo|1

t+|
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Effective States:

)

1

0

1

1

Process is in different “‘states”
when futures look different

State(t) ~ State(t+1)

)

0
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Effective States:

e

Process is in different “‘states”

when futures look different

State(t) ~ State(t+1)

)

0

0

i

Process is in the same ‘“‘state”

when the future looks the same:

State(t) ~ State(t+2)

)
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Effective for what!

Prediction!

Find states that are effective for prediction.

What are the “predictive states” in the measurements!?

Simple, but key observation:
Histories leading to the same predictions are equivalent.

What are these predictions?
How to group histories?
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Effective for what!
What'’s a prediction?

A mapping from the past to the future.

o e

Process Pr(g) 0 1088
—L i
Future: S Particular past: s

Tineg
Future Morph: Pr(S |s)  (the most general mapping)

Refined goal:
Predict as much about the future S

using as little of the past S as possible.
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Grouping Predictively Equivalent Histories

Space of Histories:
Histories leading to the same predictions are equivalent.

Effective States = Partitions of History:

R={R;:RinR; =0, =| JR}

Oy
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How Effective are the Effective States!?

Effective Prediction Error:
S
H[S |R]
Uncertainty about future given effective states

Effective Prediction Error Rate:

~
H
B [SL =

Entropy rate given effective states

Bounds:
h.(R) < log, |A
hu(R(Z)) = log, | A
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How Effective are the Effective States ...

Prescience:

II(R) = log, [A| — hy(R)

Bad model says nothing about process:

II(Ry) = 0

Upper bounded by Total Predictability:
[I(R) < |G|

Find states R such that h,(R) = h,,.
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How Effective are the Effective States!?

Statistical Complexity of the Effective States:
Cu(R) = H|R| = H(Pr(R))
Interpretations:
Uncertainty in state.
Shannon information one gains when told effective state.
Model “size” o log, (number of states)

Historical memory used by R?.
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Limits on Prediction:

L
Effective Prediction Error: H|S |R]

H[S |R] = H[S [n(3)]

= H[S | S] (Data Processing Inequality)

Models can do no better than to use histories.

Thatis, h,(R) > h,,.
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Goals Restated:

Question |:
Can we find effective states that give good predictions?

By b e

H[S |R]=H[S | 5

or

Question 2:
Can we find the smallest such set?

min C), (R)
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Causal States:
Causal State:

Set of pasts with same morph Pr(§ 's).
Set of histories that lead to same predictions.

Predictive equivalence relation:
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Causal States ...

H
S

Causal State = Pasts with same morph: Pr(S |s)
ok i Ly —
SE—f s e o AU
Set of causal states:

S-Sl (888 )

Partition of histories:

s={Js

&ﬂé:W¢j
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Causal States ...

Causal state map:

GZE%S
(5)={5

Random variable:

H

S =¢(S)

:SNS}
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Causal States ...

WVe've answered the first part of the modeling goal:
We have the effective states!
Now,
What is the dynamic!?

Not enough time ... see [CMPPSS] or [NCASO].
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The €-Machine of a Process ...

Process = Predictive equivalence = € — Machine

T

PrEsSHe=" g/fv = ¢ — Machine

State State

M:{S,{T<S>,36A}} Sl ntr

Transient
 States
Unique Start State: g
So = [Al
Pr(SOv 817 827 . ) = (1, O, O, S ) E\tiilelgl’ent

Transient States

Recurrent States g
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The Learning Channel

System  Instrument Process Modeller

Central questions:
What are the states! Causal States
What is the dynamic? The €-Machine
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v

A Model of a Process Pr(9):

€-Machine reproduces the process’s word distribution:

| oo e Pl

SL28182...SL

CPr(sE) = Pr(So)Pr(So —ses, S(1))Pr(S(1) —ss, S(2))
S PHS(L S, S

Initially, Pr(Sg) = 1.
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Past and Future are Independent given Causal State:

<=

Process: Pr(S) = Pr(gg)
Pr(S S |S) = Pr(S |S) Pr(S |S)

Causal states shield past & future from each other.

Similar to states of a Markov chain, but for hidden processes.
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eMs are Optimal Predictors:

Compared to any rival effective states :
<

H

"~ Proof sketch: H

e
S |R

S I

R =n(s)

(Data processing inequality)
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eMs are Optimal Predictors ...

Corollary:

hu(S) > hu

Proof:

L e Py
BlSie i b HiS ST = b HiE tal

L— o0

L— o0

O
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Prescient Rivals R :
Alternative models that are optimal predictors

ReR

(Prescient rivals are sufficient statistics for process’s future.)
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Minimal Statistical Complexity:

For all prescient rivals, eM is the smallest:

AN

Cu(R) 2 Cu(S)

Proof sketch:
(1) Prescient rivals are refinements, so

AN

35S = glR)
(2) But

H[f(X)] < H[X] = H[S] = H[g(R)] < H[R]
(3) So C,, < H|R] O
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Minimal Statistical Complexity ...

Consequence:
(1) C,, measures historical information process stores.

(2) This would not be true, if not minimal representation.

Lecture 16: Natural Computation & Self-Organization, Physics 250 (Winter 2008); Jim Crutchfield
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eM Summary:

(1) Optimal predictor: Lower prediction error than any rival.
(2) Minimal size: Smallest of the prescient rivals.
(3) Unique: Smallest optimal predictor is equivalent.
(4) Model of the process: Reproduces all of process’s statistics.
(5) Causal Shielding:

States renders process’s future independent of its past.

- (6) “Deterministic’: Sequence ~ one internal state path
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Measures oF Structural Complexitg

Info. Theory Measures Interpretation
Entropy Rate hy Intrinsic Randomness
Excess Entropy E Info: Past to Future
Predictability Gain G Redundancy
Transient Information T Synchronization

. How related to statistical complexity!?

- How to get from eM !
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Measures from the eM:

Entropy Rate given eM:

Sl D EEATE e AR s ey
SeS sec A,S'eS

where Pr(S)is casual-state asymptotic probability.

Possible only due to eM determinism/unifiliarity!

|-1 mapping between measurement sequences
& internal paths.
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Entropy rate ...

Lesson: Need eM to calculate entropy rate.

Typical case example: Nontrivial, infinite eM .

Curious:
Even to estimate a process’s intrinsic randomness,
need to infer its structure.
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Statistical Complexity of a Process:

Cu(8) =— ) Pr(8)log, Pr(S)
SeS

where Pr(S)is casual-state asymptotic probability.
Meaning;
Shannon information in the causal states.

Amount of historical information a process stores.

Amount of structure in a process.
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Bound on Excess Entropy:

E<C,

Proof sketch:

() E=1I[S;S] = H[S] - H[S | &]

(2) Causal States: H [§ | E] =k
() E = H[s] - H[S |S

— I[5; 8]
= N5 HeS
< H[S]=C,

—
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Bound on Excess Entropy ...

Consequence:
Possible for E — 0 when CM e (Cryptographic limit)
Excess entropy is not the process’s stored information.

E is the apparent information,
as revealed in measurement sequences.

Statistical complexity is stored information.
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Bound on Excess Entropy ...

Executive Summary:

C . is the amount of information the process requires
to communicate

E bits of information from the past to the future.
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Bound on Excess Entropy: E < C,

Consequence:
The inequality is VWhy We Must Model.
Cannot simply use sequences as states.

There is internal structure not expressed by this.

Thursday, December 4, 2008 117



- Dynamical system’s intrinsic computation:
(1) How much of past does process store?
(2) In what architecture is that information stored!?

(3) How does stored information produce future behavior?
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The Point

ow nature is structured

is how nature Computes.
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Structure or Noise”

& Just Completed: “In Principle”

* Now: © Practica”g”




Passive Learning

+ Problem:

_earn World Model

f:xl:)eri ment to |

o Theworld behaves: X= X X

° Agent learns model of the world: States R

Past Futu Fe
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Passivelg Leaminga Model

+ Pattern cliscoverg:
| earn the world’s hidden states Pr(R] X )
» Causal shielcling:
Pr(XX) = Pr(X |R)Pr(X [R)
* Dynamics of learning:

Search in the space of models: R e M
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Passivelg Leaminga Model

o Causal shielcling objective function

min_ (I[)?,R] —I—ﬁ[[X,X \R])
Pr(R|X)

Model: Map from Info states contain Reduce info historg

histories to states about histories has about future

B 17
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Passivelg Leaminga Model

| OPtimal states Pr(R] <_)are Gibbs states:
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Passivelg Leaminga Model

& Solve these equations selmc—-consistentlg
(Analgtical In sPecial cases: numerical genera”y)
.« Parametrized Familg of models:
Rs: Pr(R| X)
. @ Structure or Noise?

3 trades-off model size against Prediction error
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What Do Solutions Mean?

Causal Models
+ Causal architecture given bg e-Machine M.

XS OPtimal Preclictor:
hu(M) < hu(R)

+ Minimal size (within oPtimal Preclictors ¥

N

Cu(M) < Cu(R)

* Unique (within min, opt Preclictors)

©  JPC & K. Young, ln?erring Statistical Complexitg, Phgsical Review Letters 63 (1989) 105-108.
- C.R. Shalizi & JPC, Journal Statistical Physics 104 (2001) 817-879.
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Passivelg Leaminga Model

+ Theorem: Low~temPcrature limit
J: 00
Recover e-Machine:

Rg — M

® Conclusion:
et given Precliction error

Rg is best causal approximate.
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Passivelg Leaminga Model

OPtimaug balance structure & error

At each level 5 of apl:)roximation

Causal Rate Distortion Curve

In theorg

H[Past] et
eM limit

R(D)
[[Past:Rivals]

Slope = inverse T = Beta

1D limit

0 Distortion E = [[Past;Future]

I[Past;Future|Rivals]
= E - I[Future;Rivals]
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Passivelg Leaminga Model

Analgtical cases

GO r S o 5 ilaheadne = Preclicti\/clg Reversible:

|

| o

Feasible | i x,f(x)
I[X;R] | T Perioclic)

|
|
l
1
() (— B 1 state 1 state I
| |

| 0 I[X;X |R] E
- Al processes:
. P(z|z)=P(x)
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Passivelg Leaminga Model

OPtim8”9 balance structure & error

At each level 5 of approximation

In Prac’cice: | earn an oo-state world (SNS: simple nondeterminstic source)

SE A e TR R B S e B s S e R ke A e A e L R it M T el Saea T e
P(11 P(00) | |
301 4D Sl RS
H =k 7
o] P05 |
2.5 ¥ 6 states (X[%7) o
= 20| |5 states . » : B
[5< \ 4 states Feasible |
Rl Bl \3 states @% 27
1.0 2 states ko
e |
05k P(10) POD| 1
: . |
ool Infeasible 1 state, |
| | | | | | | | |
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
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Passivelg Leaminga Model

o Causal ComPressibilitH: Shape of RD curve

* Benefit of choosiﬂg smaller model for

loss in Predictabilitg
» Deviation from 5traight~|ine RD curve
® Do
> Preclictively reversible: No

® SNS: Yes
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Passivelg Leamin%a Model

(Conclusion

+ Causal shielcling Priﬂciple leads to

o c-Machine

S 'F“‘amilg of best aPProximations to e-M
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Passivelg Leaminga Model
(related work)
® Computational mechanics:

Focus on causal organization [Crutc]ﬁﬁelcl et al 1989]
o Information bottleneck:
Focus on Predic’tion [Bialek et al 19977

- ® Deterministic annealingz
Maximum entropy [Rose et al 1990]

| * Goal-directed information Processing:
[Sanchez-Montafies et al 2004]
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The Future?

= = S e — —

134
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Future:

Fundamental in Designing Multiageﬂt Sgstems

‘
NEnvironmentN
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The Feedback Lool:)

- \
World
g )
Observations Actions
- \
- \ - \
Model Policg
\ J - J
Agent
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Knowleclge + Action

* A central Cha”enge:
Actions change the world
and so
its statistics,

and

what is knowable.

Thursday, December 4, 2008 137



/—\Pproaches

* Mocleling:
o Statistical inference
* Strategjzing:
* Game tlﬁeorﬂ
* AclaPting:
o Reinforcement learning
* Group behavior:

TS Pol:)ulation clgnamics (evolution & ecologg)
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APProachesz Sticking Points

* Mocleling:
o Statistical inference: static, batch mode
* Strategjzing:
+ Game tlﬁeorﬂz equilibriaj no transients
* AclaPting:
o Reinforcement learning: a Priori clesign, brittle
* Group behavior:

« Population clgnamics (evolution & ecolog ) :
individuals have no structure (clon’t learn

o Where are the basic Principles’:’
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Interactive Leaming

(Susanne Still, Chris Ellison, & JPC)

+ Problem: Tf‘_xperiment to Learn World Model

o Theworld behaves: X= X X

Past Futu Fe

° Agent learns model of the world: States R
* Agent take actions A
o Those actions attect the world

o Now the world is different!

* How to close the feedback Iool:)?

arxiv.org; 0708.0654 [Phgsics.gemphl & 0708.1580][cs.IT]
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Interactive Leaming

* Decision: Using model, take actions

® Policy: Pr(A )?) (or fromR)

XS .’ixl:)erimentation objecti\/e function

max _ (I[{R, A}; X] - M[R; X] - pI[4; X))
Pr(R|X),Pr(A|X)
Model: MaP from

histories to states

Info states/actions Info states contain Info actions contain

contain about futures about histories about histories

Policg: MaP from

histories to actions
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Interactive Leaming: Results

OPtimal model: Recover causal architecture
OPtimai Policies

Causa”y equivalent Policies

Curiosity: Take informative actions

Control: Make world easier to model

Balance Oic exploitation anci controi

arxiv.org; 0708.0654 [Phgsics.gempiw] & 0708.1580][cs.IT]
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Connections

+ Note iLCaming SU]DSUITICS:

o Causal modeling

o (Game t]ﬁeorg

) 4

.’Equilibrium economics

* Reinforcement Iearning
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Knowledge Action

+ Deviation from knowleclge:

»  Model evaluation (e.g., Precliction error)

& Valuation: Commitment of resources to action

. Policg evaluation (e.g., average reward)

& How? Augment oojective function

* Change relative weigqting of Lagrange multipliers: )\ & U
* Add new terms: S

° ixaml:)les:

*  “Science”’: Need accurate knowledg&, at expense of Producing it
*  “Politics”: Need world to behave, indepenclent of ‘mowlecﬂge or cost

o These are Positions on causal rate-distortion curve

Thursday, December 4, 2008

144



The Feedback Lool:)

4 )
World
\ J
Observations Actions
4 )
4 ) 4 )
Model Policg
\ J \_ J
Agent
\Pr’ecliction Error Valuationj

Deviation From knowledge

Commitment of resources to actions
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Main message

® Closing the IOOP:
How interaction changes the world &
I’IOW one aclal:)ts to those Changes

& Theoretical foundations (& algorithms) for

closing the feedback ‘ool:) are now available.
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Conclusion

* Pasic Principles follow from
* Coml:)utational mechanics
* Stat Phgsics/ Info theorg (rate distortion)
i » Balance structure & noise
» Balance exploitation & exploration

| * Balance exploitation & control

. Cha”enge: Fold in risk
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Fros Pects

o Collective Cognition:

2

)

)

2

Pattern cliscovery o

, | (haent )
Interactive Ieammg
Aclal:)tation dgnamics (Paerty

'f:mergent Policg clesign (hasrty )
Multiagent clgnamical 535tem5
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Summarg

Whg Build Models?

Kinds of Information

Causal Mocleling

Intrinsic Computation
Balancing Noise & Structure

Interactive Leaming

Multiagent Dynamical 595ter15
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Thanks!
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