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• Information Processing
• Intrinsic Computation
• Applications
• Looking Forward
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History of
Computing Substrates

• Mechanical: Gears
• Electron tube circuits
• Gates: Electron tubes, semiconductors
• Memory: Mercury delay lines, storage scopes, ...

• Molecular Computing (1970s)
• “Physics and Computation” (MIT Endicott House 1981)
• Quantum Computing (Feynman there)
• Josephson Junction Computers (IBM 1980s)
• “Nanotech” (Drexler/Merkle XEROX PARC 1990s)

• Design goal: Useful computing
3Saturday, June 15, 13



History Of
Intrinsic Computing

• Nature already computes
• Information:                   (Shannon 1940s)
• In chaotic dynamics:        (Kolmogorov 1950s)
• “Physics and Computation” (MIT Endicott House 1981)
• “Intrinsic computing” there too!

H(Pr(X))
hµ
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Information Processing
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• Process                 is a communication channel 
from the past      to the future    :
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Information-Theoretic Analysis 
of Complex Systems ...
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• Channel Utilization: Excess Entropy
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Roadmap to
Information(s)
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J. P. Crutchfield and D. P. Feldman, “Regularities Unseen, Randomness Observed: Levels of Entropy Convergence”,
       CHAOS 13:1 (2003) 25-54.

Block Entropy

H(L) ⌘ H[
�!
XL]

7Saturday, June 15, 13



Is Information Theory 
Sufficient?

• No!

• Measurements = process states? Wrong!
• Hidden processes

• No direct measure of structure
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Intrinsic Computation

   (1) How much of past does process store?

   (2) In what architecture is that information stored?

   (3) How is stored information used to produce future 
behavior?
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• Group all histories that give same prediction:

• Equivalence relation:
• Equivalence classes are process’s causal states:

• !-Machine: Optimal, minimal, unique predictor.

�(⇥�x ) = {⇥�x � : Pr(
�⇤
X |⇥�x ) = Pr(

�⇤
X |⇥�x �)}

⇤�x ⇥ ⇤�x �

S = Pr(
⇤�
X,
�⌅
X )/ ⇥

Computational Mechanics:
What are the hidden states?

J. P. Crutchfield, K. Young, “Inferring Statistical Complexity”, Physical Review Letters 63 (1989) 105-108.
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• !-Machine:

• Dynamic:
T (x)

�,�� = Pr(��|�, x)

Computational 
Mechanics
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Varieties of
ε-Machine

Denumerable
Causal States

Fractal

Continuous
J. P. Crutchfield, “Calculi of Emergence: Computation, 
Dynamics, and Induction”, Physica D 75 (1994) 11-54.
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Kinds of
Intrinsic Computing

• Directly from !-Machine:
• Stored information  (Statistical complexity):

• Information production (Entropy rate):

Cµ = �
�

⇥�S

Pr(�) log2 Pr(�)

hµ = �
�

⇥⇥S

Pr(�)
�

⇥�⇥S,s⇥A
Pr(� ⇥s ��) log2 Pr(� ⇥s ��)
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• Theorem (Causal Shielding):

• Theorem (Optimal Prediction):

• Corollary (Capture All Shared Information):

• Theorem: !-Machine is smallest prescient model

Pr(
⇥�
X,
�⇤
X |S) = Pr(

⇥�
X |S)Pr(

�⇤
X |S)

Pr(
�⇤
X |S) = Pr(

�⇤
X |⇥�X )

I[S;
�⇥
X ] = E

Computational 
Mechanics

Cµ � H[S] ⇥ H[ �R]

(Prescient models)

14Saturday, June 15, 13



Prediction V. Modeling

• Hidden: State information via measurement.
• So, how accessible is state information?
• How do measurements reveal internal states?
• Quantitative version:

• Prediction ~ 
• Modeling ~ 

E

Cµ

15Saturday, June 15, 13



Information 
Accessibility

• How hidden is a hidden Process?
• Crypticity:

� = Cµ �E

Stored
Information

Apparent
Information
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Summary

Information stored in the present
is not

that shared between the past and the future.
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• Cryptic Processes: Excess 
entropy can be arbitrarily 
small (          ).

• Even for very structured 
(            ) processes.Cµ � 1

E � 0

IC

• Care when applying informational analyses to 
complex systems.

• Best to focus on causal architecture, then 
calculate what you need.

Cautionary
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Intrinsic Computation

   (1) How much of past does process store?

   (2) In what architecture is that information stored?

   (3) How is stored information used to produce future 
behavior?
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Applications

• Chaotic Crystallography
• Single Molecule Dynamics
• Atomic Computing
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Chaotic Crystallography via
ε-Machine Spectral Reconstruction

ε-MSR

D. P. Varn, G. S. Canright, and J. P. Crutchfield, "ε-Machine spectral reconstruction theory: A direct method for 
inferring planar disorder and structure from X-ray diffraction studies", Acta Cryst. Sec. A 69:2 (2013) 197-206.

Close-packed structures:
   Polytypes (semiconductors)
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Designer 
Semiconductors

•Hypothesis: Structure key to computational & physical properties.
•!MSR:

•New theory of structure in disordered materials
•Infer intrinsic computation
•Calculate new physical properties (length scales, interaction energy, ...)

•Exotic semiconductors = Rational design of polytypes:
•Identify !M with desired physical+informational properties
•Run !MSR “backwards” to assemble polytypic materials
•Desired properties in an ensemble of realizations, reduces complexity 

of assembly
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Molecular Dynamics Spectroscopy

C.-B. Li, H. Yang, & T. Komatsuzaki, Proc. Natl. Acad. Sci USA 105:2 (2008) 536–541.
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Atomic Computing
Rydberg atoms:
     Isolated, highly excited electron states

Chaotic ionization
              mechanism:
      Nonlinear turnstiles

M
om

en
tu

m
 p

r

K. Burke, K. Mitchell, B. Wyker, S. Ye, and F. B. Dunning, “Demonstration of Turnstiles as a 
Chaotic Ionization Mechanism in Rydberg Atoms”, Physical Review Letters 107 (2011) 113002.
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Atomic Computing

• Measured ionization well predicted (classically!)

• Current work:
• Intrinsic computational analysis via !M
• Embed logic gates in turnstile dynamics

 Phase shift as a function of T. Small displacements in
T are applied to 1D and experimental data to separate markers.
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Atomic Computing

• Couple to build circuits ... Rydberg Computers? 
• Optical lattice of Rydberg atoms:

• Rydberg atoms in solid-state materials?
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Looking forward

• Theory of Computational Mechanics:
Complete, closed-form analysis of intrinsic computing.

• Experiment:
Analyze intrinsic computation in dynamic, nonlinear 
nanosystems.

• Information Engine MURI @ UC Davis:
Workshops, visit Davis, collaborate, ...!
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Thanks!
http://csc.ucdavis.edu/~chaos/
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