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In what ways does nature organize?
(Phenomenology)

How does it organize?
(Mechanism)

Are these levels real or merely convenient?
(Objectivity)

Why does nature organize?
(Optimization versus chance versus ….)

Does thermodynamics play a role?

Physics Today, March 2006

Structural Hierarchy 
    in Biology
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Punch Line
• Meaning, purpose, and functionality arise from 

• Organization  
• Thermodynamics



Problem Statement

JP Crutchfield, “The Calculi of Emergence: Computation, Dynamics, and Induction“, Physica D 75 (1994) 11-54.
In Proceedings of the Oji International Seminar:
    Complex Systems—from Complex Dynamics to Artificial Reality 5 - 9 April 1993, Numazu, Japan.

+ Reproduction
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     population dynamics)

= Ecological population
    dynamics of structurally
    complex adapting agents
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Thermodynamics of Organization: 
Information Processing Second Law of 

Thermodynamics (IPSL)



Information Ratchets

A. Boyd, D. Mandal, and JPC, “Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets”.
New Journal of Physics 18 (2016) 023149.
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Beyond Maxwell+Szilard: Net Work Extraction!

D. Mandal and C. Jarzynski. “Work and information processing in a solvable model of Maxwell’s demon”. 
Proc. Natl. Acad. Sci. USA, 109(29):11641–11645, 2012. 
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Information Processing 
Second Law of thermodynamics
• Asymptotic IPSL:

• Information is fuel:
                   (Ordered inputs are a thermodynamic resource.) 

• Generalizes Landauer Principle; cf.:

A. B. Boyd, D. Mandal, and JPC, “Identifying Functional Thermodynamics in 
Autonomous Maxwellian Ratchets”, New Journal of Physics 18 (2016) 023149.

Qerase � kBT ln 2
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• IPSL constrains information processing done by 
a thermodynamic system.

• Upper bound on the maximum average work 
extracted per cycle. 

• Lower bounds the amount           of input work 
required for a physical system to support a 
given rate of intrinsic computation.

Information Processing 
Second Law of thermodynamics

hW i

�hW i



Information Processing 
Second Law of thermodynamics

IPSL determines
Thermodynamic Functionality



Engine
Eraser

Eraser

Dud

Eraser

Engine
Eraser

p

q0
0

1

1

Thermodynamic Functions

Second Law for Intrinsic Computation

hW i  kBT ln 2
�
hµ

0 � hµ

�

Information Ratchets

Ratchet
parameters:

(p, q)



Second Law for Intrinsic Computation
Information Ratchets

Entropy Rates

�hµ = hµ
0 � hµ
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     powered erasure



Requisite Complexity 

• Lessons: Information processing thermodynamic systems should 
match the complexity of their inputs/environment:

• Memoryless ratchets optimal for uncorrelated environments.
• Memoryful ratchets optimal for correlated environments.

W. Ross Asbhy, “An Introduction to Cybernetics.” John Wiley and Sons, New York, second edition, 1960.

A. B. Boyd, D. Mandal, and JPC, “Leveraging Environmental Correlations: The Thermodynamics 
of Requisite Variety”, Journal of Statistical Physics (2017) in press. arxiv.org:1609.05353.

http://arxiv.org


Functional Fluctuations

J. P. Crutchfield and C. Aghamohammadi, “Not All Fluctuations are Created Equal: 
Spontaneous Variations in Thermodynamic Function. arxiv.org:1609.02519.



Functional Fluctuations



Functional Fluctuations

When is an Engine an Eraser?



Functional Fluctuations

Information Processing Second Law
+

Large Deviation Theory

When is an Engine an Eraser?



Fluctuations?
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Fluctuations?
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Fluctuations in 
Intrinsic Computation

• Spectrum of Fluctuations
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Information Ratchets
(A. Boyd, D. Mandal, and JPC, “Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets ”,

New Journal of Physics 18 (2016) 023149.)
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Fluctuations in 
                Thermodynamic Function
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Fluctuations in 
                Thermodynamic Function

Informational Second Law
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Fluctuations in 
                Thermodynamic Function

Informational Second Law
      ⇒ Thermodynamic Function

Information Ratchet
+ Fluctuation Spectroscopy
+ Informational Second Law (IPSL)

hµ

hµ

h0
µ



Fluctuations in 
                Thermodynamic Function

Observable?
Length 100 input sequences:
   Engine: 80%
   Dud:     17.8%
   Eraser:    2.2%



Fluctuations in 
Intrinsic Computation

• What’s new: Determine S(U) and other 
measures for any structured process from 



Lessons
• Function emerges from the 

Information Processing Second Law of Thermodynamics 

• Computing fluctuates 

• Function fluctuates
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• Process                 is a communication channel 
from the past      to the future    :
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• Channel Utilization: Excess Entropy

E = I[
⇥�
X ;
�⇤
X ]



Foundations: Computational Mechanics

 ε-Machine: Unique, minimal, & optimal predictor
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Foundations: Computational Mechanics
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J.P. Crutchfield, “Between Order and Chaos”, 
Nature Physics 8 (January 2012) 7-24.

Intrinsic Computation: 
   1. How much historical information does a process store? 
   2. In what architecture is it stored? 
   3. How is it used to produce future behavior? 
J.P. Crutchfield & K. Young, “Inferring Statistical Complexity”, Physical Review Letters 63 (1989) 105-108.
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• ε-Machine:

• Dynamic:
T (x)

�,�� = Pr(��|�, x)

Computational 
Mechanics

Start State
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Varieties of 
  -Machine

Denumerable
Causal States

Fractal

Continuous
J. P. Crutchfield, “Calculi of Emergence: Computation, 
Dynamics, and Induction”, Physica D 75 (1994) 11-54.

ε



A system is unpredictable
      if it has positive entropy rate:

A system is complex
      if it has positive structural complexity measures:

A system is emergent
      if its structural complexity increases over time:

A system is hidden
     if its crypticity is positive:

hµ > 0

Cµ > 0

Cµ(t
0) > Cµ(t), if t0 > t

� = Cµ �E > 0

Intrinsic Computation:
Consequences



What is a Level?



Long history:
     N.H. Packard, J.P. Crutchfield, J.D. Farmer, R. S. Shaw, “Geometry from a Time Series”, Phys. Rev. Lett. 45 (1980) 712-716.
     J. P. Crutchfield and B.S. McNamara, “Equations of Motion from a Data Series”, Complex Systems 1 (1987) 417-452.
     S. Still, C.J. Ellison, J.P. Crutchfield: arxiv.org: 0708.0654 [physics.gen-ph] & 0708.1580[cs.IT]

• Pattern discovery:
• Learn the world’s hidden states

• Causal shielding:

• Search in the space of models: 
• Objective function

min
Pr(R|

�
X)

�
I[
�
X;R] + �I[

�
X;
⇥
X |R]

⇥

Info states contain
about histories

Reduce info history
has about future

Model: Map from
histories to states

R �M
Pr(
�
X
⇥
X) = Pr(

�
X |R)Pr(

⇥
X |R)

Pr(R|
�
X)

What is a Level?

http://arxiv.org/abs/0708.0654v1
http://arxiv.org/abs/0708.1580v1


Optimal states                    are Gibbs distributions:

where

Pr(R|
�
X)

Propt(R|
⇥
X) =

Pr(R)
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X,�)

e��E(R,
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Now, solve these self-consistently

What is a Level?
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Measurement Semantics



             What does a particular measurement mean?
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An      Captures “Pattern”:ϵM

Measurement semantics: Prediction level

What is the meaning of a particular measurement?

Shannon says the amount of “information” is

Given       (assuming you’re sync’d):

� log2Pr(observing s) =� log2Pr(S !s S 0)
ϵM

� log2 Pr(observing s)

Measurement Semantics



An      Captures “Pattern”:ϵM

Measurement semantics: Prediction level ...

Example:

At  
How much information does this give?

Degree of observer’s surprise (predictability)
Does not say what the event              means to the observer!

t = 0 1 2 3 4 5 6 7 8 9 10 11
s = 0 1 1 1 1 0 1 1 0 1 1 1

t = 11 measure s11 = 1

H(s11|s10 = 1,s9 = 1, . . .)⇡ hµ(⇡ 0.585 bits)

s11 = 1

Measurement Semantics



Meaning: Tension between representations of same event at 
different levels; e.g.,
         Level 1 is data stream and the event is a measurement
         Level 2 is the agent and the event updates it’s model

Degree of meaning of observing 

     where    is the causal state to which    brings observer.

Meaning content: State selected from anticipated palette.

Θ(s) =� log2Pr(!s S)

s 2 A

S s

Measurement Semantics



Meaningless: Start state (all futures possible)

Action on disallowed transition:

      Reset to state of total ignorance (start state)

      Disallowed transition is meaningless.

Meaningless measurements are informative, though:

� log2Pr(S !s S0) =� log20= ∞

Θ(s) =� log2Pr(S0) =� log21= 0 s = �

Measurement Semantics



Theorem:

       Average amount of meaning is the Statistical Complexity.

h⇥(s)i = Cµ

Measurement Semantics



Thermodynamic Cost of 
Extracting Meaning



Thermodynamic Cost of 
Extracting Meaning

Two cases: 
    o In NESS 
    o Out of NESS



Thermodynamic Cost of 
Extracting Meaning in NESS

• Learning about environment 
• Agent predicts environment to leverage possible resources

(A. Boyd, D. Mandal, and JPC, “Identifying Functional Thermodynamics in Autonomous Maxwellian Ratchets ”,
New Journal of Physics 18 (2016) 023149.)
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Thermo cost of implementation that predicts:

Recall Theorem on Total Semantic Content 

      Agent memory about environment.
h⇥(s)i = Cµ

Thermo-semantic cost:

Thermodynamic Cost of 
Extracting Meaning in NESS

⌦
Qimplement

↵
min

= kBT ln 2 I[S; �Y 0]

= kBT ln 2 Cµ

⌦
Qimplement

↵
min

= kBT ln 2
⌦
⇥(s)

↵



Thermodynamics of 
Meaning and Function beyond NESS



Thermodynamics of 
Meaning and Function beyond NESS
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• Semiotics of Information Engines: 

• Syntactic information = Measurements 

• Semantic information = Envt’l Phase, Sync/No Sync 

• Functional information = Error Correction

Thermodynamics of 
Meaning and Function beyond NESS



Summary
• Level Thermodynamics 

• Level Organization 

• Level Semantics 

• Hierarchical Thermodynamics 

• Hierarchical Organization

Thanks!



Thermodynamics of Organization 
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