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In what ways does nature organize?
(Phenomenology)

How does it organize?
(Mechanism)

Are these levels real or merely convenient?
(Objectivity)

Why does nature organize?
(Optimization versus chance versus ....)

Physics Today, March 2006
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Why Information”

Magnetic 90 um nickel spheres are
suspended over the surface of water
being supported by surface tension

A. Snezhko, M. Belkin, I.S. Aranson, and W.-K. Kwok, Phys. Rev. Lett., 102, 118103 (2009).
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Pattern Discovery!

Seen from the outside, the Amazonian forest seems like a mass of
congealed bubbles, a vertical accumulation of green swellings; it is
as if some pathological disorder had attacked the riverscape over
its whole extent. But once you break through the surface-skin and
go inside, everything changes: seen from within, the chaotic mass
becomes a monumental universe. The forest ceases to be a
terrestrial distemper; it could be taken for a new planetary world, as
rich as our world, and replacing it.

As soon as the eye becomes accustomed to recognizing the
forest's various closely adjacent planes, and the mind has
overcome its first impression of being overwhelmed, a complex
system can be perceived.

Claude Levi-Strauss, Triste Tropiques (1955).



Pattern Discovery!

VOLUME 45, NUMBER 9 PHYSICAL REVIEW LETTERS 1 SEPTEMBER 1980

Geometry from a Time Series

N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw

Dynamical Systems Collective, Physics Depaviment, University of California, Santa Cruz, California 95064
(Received 13 November 1979)

It is shown how the existence of low-dimensional chaotic dynamical systems describing
turbulent fluid flow might be determined experimentally. Techniques are outlined for re-
constructing phase-space pictures from the observation of a single coordinate of any dis-
sipative dynamical system, and for determining the dimensionality of the system’s at-
tractor. These techniques are applied to a well-known simple three-dimensional chaotic
dynamical system.

n

Bér'iard Convectio

VoLuME 51, NUMBER 16 PHYSICAL REVIEW LETTERS 17 OcTOBER 1983

Low-Dimensional Chaos in a Hydrodynamic System

A. Brandstater, J. Swift, Harry L. Swinney, and A, Wolf
Department of Physics, University of Texas, Austin, Texas 78712

and

J. Doyne Farmer and Erica Jen
Center for Nonlinear Studies, Los Alamos National Labovatorvy, Los Alamos, New Mexico 87545

and

P, J. Crutchfield
Physics Department, Univevsity of California, Bevkeley, Berkeley, California 94720
(Received 21 July 1983)

Evidence is presented for low-dimensional strange attractors in Couette-Taylor flow
data. Computations of the largest Lyapunov exponent and metric entropy show that the
system displays sensitive dependence on initial conditions. Although the phase space is
very high dimensional, analysis of experimental data shows that motion is restricted to
an attractor of dimension 5 for Reynolds numbers up to 30% above the onset of chaos.
The Lyapunov exponent, entropy, and dimension all generally increase with Reynolds
number.



X ~Pr(X), Y ~Pr(Y):
H[X] = - ) Pr(z)log, Pr()

Why Information?, =<

Z Pr(z,y)log, Pr(z,y)
(z,y)€(X,Y)

1. Accounts for any type of co-relation [[X: Y] = H[X]+ H[Y] - H[X, Y]
e Statistical correlation ~ linear only
* Information measures nonlinear correlation
2. Broadly applicable:
* Many systems don’t have “energy”, physical modeling precluded
* Information defined: social, biological, engineering, ... systems
3. Comparable units across different systems:
 Correlation: Meters v. volts v. dollars v. ergs v. ...
* Information: bits.
4. Probability theory ~ Statistics ~ Information
5. Complex systems:
* Emergent patterns!
* We don’t know these ahead of time
* Architecture of information storage and flows



Anatomy of a Bit

Joint work with Ryan James
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Anatomy of a Bit

Process: Past Present Future
H[ Xy

H[X;()] H[Xl]



Anatomy of a Bit

axy,, 0<x, <1/2
Tyl =
1 a(l — x,),

o € [O, 1]
a € [0,2]

Entropy-rate

h, = logya

1/2 < xy

<1

Entropy rate anatomy for the tent map
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Shannon Information Measures

Information measures to set-theoretic operations
X, Y]

~ Roadmap:

p(X) H|X] .

(V) = H[Y HandI — u
p(XNY) = I[X;Y] , — U
pH(X =) HIXY] ;= [
w(¥-X) = HY|X -

w(XNY)Y) = HIX|Y]+ H[Y|X]
pr@ = 0
For example

I[X;Y]=H[X]+ H[Y] - HX,Y

p(XNY)=p"(X)+p7(Y) - p (X UY)

SN RN




Shannon Information Measures
(?,}) = Channel = (?,7)

H[Y] H[Y]

N. Barnett and J. P. Crutchfield, “Computational Mechanics of Input-Output Processes:
Structured transformations and the e-transducer”, Journal of Statistical Physics 161:2 (2015) 404-451.



Information Flows”

Joint work with Ryan James and Nix Barnett



Information Flows”

 (Goal: Pattern discovery
Detect structure & organization in

complex systems

via the internal & external flows of information.

* [nformation flow from process X to p
Existence of information currently
“‘Cause” of which solely attributed

'0OCess Y:

N Y,

0 X's past.

e |f iInformation can be solely attributed:

it Is localized.



Information Flows”

» [ranster entropy (Schreiber, PRL 2000):
Tx_y =11Y: : Xo:|Yo:4]

 How much better one predicts Y;

using both Xy.; and Yy.; over using Yy.; alone.



Information Flows”

Dyadic Distribution

e Two times series ¥ 0 with probability 1/2
t N
1 with probability 1/2

_ {0 with probability 1/2 and

1 with probability 1/2
Yi =X 1@ Y1 ;

e One bit of information transferred from Xto Y at
each time”?



Information Flows?

Y

XO:t YO:t XO:t YO:t
Yo+t alone does not predict Y;. However, # X’s past Xo:t alone does not predict Yi. Given
Yot and Xoit completely predict its value. knowledge of Xot, then Yo predicts Y:.

(?

The bit of information about Y; does not come from either time series individually,
but rather from both of them simultaneously.

The bit of reduction in uncertainty H[Y;] should not be localized to either time series.
Transfer entropy erroneously localizes this information to Xgs.
The transfer entropy overestimates information flow.
Transfer entropy can be positive due not to information flow,
but rather to nonlocalizable influence —a conditional dependence between variables.



Information Flows”

Triadic Distribution
. . (0 with probability 1/2
* [hree times series | with probability 1/2

(0 with probability 1/2
1 with probability 1/2

The transfer entropy underestimates influence in the present.

IZt . YO:t] —
IZt . Z():t] —




Information Flows”

Misunderstanding of conditional mutual information.

Conditioning is not subtractive.

[|X :Y|Z]is information shared by X and Y
taking into account Z

Conditioning can increase information shared
between two processes:

[ X:Y|<IX:Y|Z]



Information Flows”

e Synergy, Uniqueness, and Redundancy:

“Inputs”
(X0, Your) : Yi] = RHU )+ Uz £ S
“Output”

Tx v

Partial Info Decomposition (Williams, Beer 2011)

* [ransfer entropy conflates unique & synergistic
informations.



Information Flows”

Do not conflate conditional independence &
conditional dependence.

Do not conflate unigue information & synergistic
iInformations.

Still need a measure of information flow!



Beyond Shannon

Joint work with Ryan James



Beyond Shannon
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Beyond Shannon

Z X Y Z
X0 Y Yi. Zo Z7 Pr Xo X9 Yo Y1 Zo Z1 Pr
0 o0 00 ¥ 0 0 0 0 0 0 1/
0 1 0 0 1 1/8 0 1 0 1 0 1 1/8
0 0O O 1 0 1/8 0O O 1 0 1 0 1/8
0 1 0 1 1 1/8 0 1 1 1 1 1 1/8
1 0 1 0O O 1/8 1 0 0O O 1 0 1/8
1 1 1 0 1 1/8 1 1 0 1 1 1 1/8
1 o1 1 0 ¥ 1 0 1 0 0 0 1/8
1 1 1 1 1 1/8 1 1 1 1 0 1 1/8
(a) Dyadic



Beyond Shannon

e Shannon Information Diagrams

H[X] H [ X]

A A

(a) Dyadic (b) Triadic



Beyond Shannon

* Bayes net inference

O
O O



Beyond Shannon

Measures

Dyadic

Triadic

H[X,V,Z]
X,Y, 7]
Y, 7]
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3 bit
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1 bit

1 bit
1.349 bit
0 bit

8

0.761 bit
0.381 bit
2 bit

0 bit

0 bit
1.349 bit
0 bit

8

0.761 bit
0.381 bit
2 bit

TABLE III. Suite of information measures applied to the
dyadic and triadic distributions, where: H [e] is the Shan-
non entropy [32], H, [e] is the Rényi entropy [61], Sq[e] is
the Tsallis entropy [62], I[e] is the co-information [44], T [e]
is the total correlation [47], B[e]| is the dual total correla-
tion [48, 63], J [e] is the CAEKL mutual information [49], II [e]
is the interaction information [64], K [e] is the Gacs-Ko6rner
common information [57], C [e] is the Wyner common infor-
mation [65, 66], G [e] is the exact common information [67],
F [e] is the functional common information®, M [e] is the MSS
common information®, I[e | o] is the intrinsic mutual infor-
mation [26]°, I[e || e] is the reduced intrinsic mutual infor-
mation [27]°¢, X [e] is the extropy [68], R [e] is the residual
entropy or erasure entropy [60, 63|, P [e] is the perplexity [69],
D [e] is the disequilibrium [51], Crmgp [®] is the LMRP com-
plexity [51], and TSE [e] is the TSE complexity [59]. Only
the Gacs-Korner common information and the intrinsic mu-
tual informations, highlighted, are able to distinguish the two
distributions; the Gacs-Korner common information via the
construction of a subvariable (X; = Y1 = Z1) common to
X, Y, and Z, and the intrinsic mutual informations via the
relationship Xp = Y7 being independent of Z.



Beyond Shannon

e Partial Information Decomposition

[[(X,Y): 7] Y
0 |
1[X:2] 1Y : Z] 1[X:2] I[Y :Z]

(a) Dyadic (b) Triadic



Beyond Shannon

» Arbitrary, higher dimensions, too!

» Dyadic Camouflage Distribution

W XY Z Pr

0 000 1/s
1 1/8
2 1/8
3 1/8
3 1/8
2 1/8
1 1/8
3 3 20 s

(a) Distribution (b) I-diagram

Only dyadic
dependencies.

W NN = O
O LW N = O

NO!

O = O W DN W

* Dependency diffusion:
Cryptographic embedding NP-Hard to discover.



Beyond Shannon

Shannon information measures cannot capture
even simple dependency structures.

Shannon extensions cannot either.

Except for several.
(There are dependency structures for which they fail!)

Whither information?



Ambiguity of Simplicity

Joint work with Cina Aghamohammadi & John Mahoney



Ambiguity of Simplicity

Process: X—oo:oo = ... X_QX_lX()XlXQ c .

e-Machine {S,{T") : x € A}, |no) }: Minimal, optimal predictor.
Causal states: 0 € S

G~ — Pr(X|%) = Pr(X|T)
Process memory Statistical complexity

Z Pr(o)log, Pr(o)

occS
Process A is simplerthan B: C,,(A) < C,(B)

Process is emergent: C.(Xy) > C,(Xo)

Crutchfield & Young Inferring Statistical Complexity, Physical Review Letters (1989)



Ambiguity of Simplicity
Alice wants to send Bob information to predict

X 000 = .- X_ 90X 1 XgX1Xo...

How much information must be sent?

Classical channel?
Minimal amount is the statistical complexity C,.

Quantum channel (transmits qubits)?



Ambiguity of Simplicity

Gu et al, Nat Physics (2012)
Q- -Machine Slgﬂa| states: Mahoney et al, Sci Rep & Phys. Rev. A (2016)

nLy= Y. S \/Pr(whoxloy) [wh) o)

wle|A|L opeS

Density matrix:

p=> mi|ni) (nil
)
Quantum memory: von Neumann entropy

C, = —Trplogp

Quantum smaller than classical model:
C, <C,

Bibliography: At end; also see Mile Gu, John Mahoney, and others’ talks.



Ambiguity of Simplicity

Classical Quantum Aghamohammadi et al
arXiv:1609.03650

Consistent




Ambiguity of Simplicity

Classical Quantum Classical Quantum Aghamohammadi et al

o

arXiv:1609.03650

A\

Consistent Ambiguous




Ambiguity of Simplicity

Classical Quantum Classical Quantum

Consistent

Aghamohammadi et al
arXiv:1609.03650

b:il—=p
S COZED-

ISing Spin
Chain

Feldman et al (1997)
Suen et al arXiv:1511.05738




Ambiguity of Simplicity

Typical? Yes.
Compare two Ising spin chains at 17 and 15 :

5 0




Ambiguity of Simplicity

Classical and guantum theory
do not agree on
measure of structure

or, even, what structure is.



Conseqguences

* Big problem using information measures to discover
organization in complex systems:

Misleading!
* Bigger problem in the physics of complex systems:
Classical and quantum theories do not agree.

Occam’s Razor: Out the window!



Where are we?

Information theory is very strong on the negative side, i.e., In
demonstrating what cannot be done; on the positive side its
application has not produced many results
so far; it has not yet led to the discovery of new facts, nor has its
application to known facts been tested in critical experiments. To date,
a definitive and valid judgment of the value of information theory

IS not possible.



The view from 19506 ...

Information theory is very strong on the negative side, i.e., In
demonstrating what cannot be done; on the positive side its
application to the study of living things has not produced many results
so far; it has not yet led to the discovery of new facts, nor has its
application to known facts been tested in critical experiments. To date,
a definitive and valid judgment of the value of information theory in
biology is not possible.

Joint statement of final panel of the Symposium on Information Theory in Biology, Oak Ridge National
Laboratory, Gatlinberg, Tennessee. 28-31 October 1956. Henry Quastler, chair.

H. Quastler (ed.), The Status of Information Theory in Biology, p. 399 in Symposium on Information Theory in
Biology, H. P. Yockey, editor, Pergamon Press, New York (1958).



End?

Deal breaker for information theory?

Deal breaker for our notions of pattern”
Pure subjectivity?

No! A fantastic opportunity.

Full Employment Theorem.
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