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Why Information?
In what ways does nature organize?
(Phenomenology)

How does it organize?
(Mechanism)

Are these levels real or merely convenient?
(Objectivity)

Why does nature organize?
(Optimization versus chance versus ....)

Physics Today, March 2006



Why Information?

M. M. Hanczyc et al, J. Am. Chem. Soc. 129 (2007) 9386-9391. (Packard)



Why Information?

M. M. Hanczyc et al, J. Am. Chem. Soc. 129 (2007) 9386-9391. (Packard)



Why Information?

A. Snezhko, M. Belkin, I.S. Aranson, and W.-K. Kwok, Phys. Rev. Lett., 102, 118103 (2009).

Magnetic 90 μm nickel spheres are 
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Pattern Discovery!
Seen from the outside, the Amazonian forest seems like a mass of 
congealed bubbles, a vertical accumulation of green swellings; it is 
as if some pathological disorder had attacked the riverscape over 
its whole extent. But once you break through the surface-skin and 
go inside, everything changes: seen from within, the chaotic mass 
becomes a monumental universe. The forest ceases to be a 
terrestrial distemper; it could be taken for a new planetary world, as 
rich as our world, and replacing it.

As soon as the eye becomes accustomed to recognizing the 
forest's various closely adjacent planes, and the mind has 
overcome its first impression of being overwhelmed, a complex 
system can be perceived.

Claude Levi-Strauss, Triste Tropiques (1955).



Bénard Convection

Pattern Discovery!



Why Information?
1. Accounts for any type of co-relation

• Statistical correlation ~ linear only
• Information measures nonlinear correlation

2. Broadly applicable:
• Many systems don’t have “energy”, physical modeling precluded
• Information defined: social, biological, engineering, ... systems

3. Comparable units across different systems:
• Correlation: Meters v. volts v. dollars v. ergs v. ...
• Information: bits.

4. Probability theory ~ Statistics ~ Information
5. Complex systems:

• Emergent patterns!
• We don’t know these ahead of time
• Architecture of information storage and flows

X ⇠ Pr(X), Y ⇠ Pr(Y ) :

H[X] = �
X

x2X
Pr(x) log2 Pr(x)

H[X,Y ] = �
X

(x,y)2(X ,Y)

Pr(x, y) log2 Pr(x, y)

I[X : Y ] = H[X] + H[Y ]�H[X,Y ]
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Anatomy of a Bit

H[X:0] H[X1:]

H[X0]

rµ

bµbµ
qµ

�µ

Process:        Past           Present            Future



Anatomy of a Bit

hµ = log2 a

Entropy-rate

xn+1 =

(
axn, 0  xn  1/2

a(1� xn), 1/2 < xn  1

x0 2 [0, 1]

a 2 [0, 2]



Shannon Information Measures

µ⇤( eX [ eY ) = H[X,Y ]

µ⇤( eX) = H[X]

µ⇤(eY ) = H[Y ]

µ⇤( eX \ eY ) = I[X;Y ]

µ⇤( eX � eY ) = H[X|Y ]

µ⇤(eY � eX) = H[Y |X]

µ⇤(( eX \ eY )c) = H[X|Y ] +H[Y |X]

µ⇤(;) = 0

Information measures to set-theoretic operations

H and I ! µ⇤

, ! [
; ! \
| ! �

I[X;Y ] = H[X] +H[Y ]�H[X,Y ]

µ⇤( eX \ eY ) = µ⇤( eX) + µ⇤(eY )� µ⇤( eX [ eY )

For example

= + �

Roadmap:



Shannon Information Measures
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N. Barnett and J. P. Crutchfield, “Computational Mechanics of Input-Output Processes: 
Structured transformations and the ε-transducer”, Journal of Statistical Physics 161:2 (2015) 404-451.
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Information Flows?
• Goal: Pattern discovery 

Detect structure & organization in complex systems 
via the internal & external flows of information. 

• Information flow from process X to process Y: 
       Existence of information currently in Y, 
      “Cause” of which solely attributed to X’s past. 

• If information can be solely attributed: 
       it is localized.



Information Flows?
• Transfer entropy (Schreiber, PRL 2000): 

• How much better one predicts    
        using both        and       over using       alone.  

TX!Y = I[Yt : X0:t|Y0:t]

Yt

X0:t Y0:t Y0:t



Information Flows?
• Two times series 

• One bit of information transferred from X to Y at 
each time?

TX!Y = 1 bit

Dyadic Distribution



Information Flows?

Y0:t alone does not predict Yt. However, 
Y0:t and X0:t completely predict its value.

X’s past X0:t alone does not predict Yt. Given 
knowledge of X0:t, then Y0:t predicts Yt.

The bit of information about Yt does not come from either time series individually,
but rather from both of them simultaneously. 

6=
?

The bit of reduction in uncertainty H[Yt] should not be localized to either time series.
Transfer entropy erroneously localizes this information to X0:t.
The transfer entropy overestimates information flow.
Transfer entropy can be positive due not to information flow,
       but rather to nonlocalizable influence—a conditional dependence between variables. 



Information Flows?
• Three times series

TX!Z = 0 bit
TY!Z = 0 bit

The transfer entropy underestimates influence in the present.

The time series are pairwise independent: I[Zt : X0:t] = 0

I[Zt : Y0:t] = 0

I[Zt : Z0:t] = 0

Triadic Distribution



Information Flows?
• Misunderstanding of conditional mutual information.  

• Conditioning is not subtractive. 

•                  is information shared by X and Y 
                        taking into account Z.  

• Conditioning can increase information shared 
between two processes:

I[X : Y |Z]

I[X : Y ] < I[X : Y |Z]



Information Flows?
• Synergy, Uniqueness, and Redundancy: 

• Transfer entropy conflates unique & synergistic 
informations.

“Inputs”

“Output”
I[(X0:t, Y0:t) : Yt] = R+ U1 + U2 + S

TX!Y

Partial Info Decomposition (Williams, Beer 2011)



Information Flows?
• Do not conflate conditional independence & 

conditional dependence. 

• Do not conflate unique information & synergistic 
informations. 

• Still need a measure of information flow!
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Beyond Shannon
• Shannon Information Diagrams



Beyond Shannon
• Bayes net inference

X

Y Z



Beyond Shannon



Beyond Shannon
• Partial Information Decomposition



Beyond Shannon
• Arbitrary, higher dimensions, too! 

• Dyadic Camouflage Distribution 

• Dependency diffusion: 
        Cryptographic embedding NP-Hard to discover.

Only dyadic 
dependencies. 

NO!



Beyond Shannon

• Shannon information measures cannot capture 
              even simple dependency structures. 

• Shannon extensions cannot either. 

• Except for several. 
     (There are dependency structures for which they fail!) 

• Whither information?
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Ambiguity of Simplicity
• Process: 

• ε-Machine                                      : Minimal, optimal predictor. 
• Causal states: 

• Process memory: Statistical complexity 

• Process A is simpler than B: 

• Process is emergent:

Cµ = �
X

�2S
Pr(�) log2 Pr(�)

X�1:1 = . . . X�2X�1X0X1X2 . . .

� 2 S
 �
x ⇠  �x 0 () Pr(

�!
X | �x ) = Pr(

�!
X | �x 0

)

Cµ(A) < Cµ(B)

Crutchfield & Young Inferring Statistical Complexity, Physical Review Letters (1989)

Cµ(Xt) > Cµ(X0)

�
S, {T (x) : x 2 A}, |⌘0i

 



Ambiguity of Simplicity
• Alice wants to send Bob information to predict 

• How much information must be sent? 

• Classical channel? 
                  Minimal amount is the statistical complexity      . 

• Quantum channel (transmits qubits)?

X�1:1 = . . . X�2X�1X0X1X2 . . .

Cµ



Ambiguity of Simplicity
• q-Machine signal states: 

• Density matrix: 

• Quantum memory: von Neumann entropy 

• Quantum smaller than classical model:

Bibliography: At end; also see Mile Gu, John Mahoney, and others’ talks.

|⌘j(L)i ⌘
X

wL2|A|L

X

�k2S

q
Pr(wL,�k|�j) |wLi |�ki

⇢ =
X

i

⇡i |⌘ii h⌘i|

Cq = �Tr⇢ log ⇢

Gu et al, Nat Physics (2012) 
Mahoney et al, Sci Rep & Phys. Rev. A (2016)

Cq  Cµ
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Ambiguity of Simplicity
Aghamohammadi et al 
arXiv:1609.03650

‡1 ‡2ø :p
¿ :1 ≠ p

ø :1 ≠ q

¿ :q

Ising Spin 
Chain
Feldman et al (1997) 

Suen et al arXiv:1511.05738



Ambiguity of Simplicity
Typical? Yes. 
Compare two Ising spin chains at      and      :T1 T2



Ambiguity of Simplicity
Classical and quantum theory 

     do not agree on 

         measure of structure 

             or, even, what structure is.



Consequences
• Big problem using information measures to discover 

organization in complex systems: 

Misleading! 

• Bigger problem in the physics of complex systems: 

Classical and quantum theories do not agree. 

Occam’s Razor: Out the window!



Information theory is very strong on the negative side, i.e., in 
demonstrating what cannot be done; on the positive side its 
application to the study of living things has not produced many results 
so far; it has not yet led to the discovery of new facts, nor has its 
application to known facts been tested in critical experiments. To date, 
a definitive and valid judgment of the value of information theory in 
biology is not possible.

Where are we?
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Joint statement of final panel of the Symposium on Information Theory in Biology, Oak Ridge National 
Laboratory, Gatlinberg, Tennessee. 28-31 October 1956. Henry Quastler, chair. 

H. Quastler (ed.), The Status of Information Theory in Biology, p. 399 in Symposium on Information Theory in 
Biology, H. P. Yockey, editor,  Pergamon Press, New York (1958).

The view from 1956 …



End?

Deal breaker for information theory? 

Deal breaker for our notions of pattern? 
Pure subjectivity? 

No! A fantastic opportunity. 

Full Employment Theorem.
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