CONTINUUS CAUSAL STATES AND SOME OTHER IDEAS

Nicolas Brodu

nicolas.brodu@inria.fr

Ínia Bordeaux, France

Inference for dynamical systems meeting Feb 2021

(slightly updated after the presentation)

Motivating results : Sunspots time series

Known to be extremely hard to predict

(these predictions should not be trusted!)

We can try anyway

Illustrative example for the method

Motivating results : Sunspots time series (notations)

Notations (slight change from Adam's)

- $-v_t \in \mathcal{V}$: the observed values at each time
- $-x_t \in \mathcal{X}$: the observed past time series : $x_t = v_{\tau < t}$, possibly truncated : $\tau > t L^X$ $-y_t \in \mathcal{Y}$: the observed future time series : $y_t = v_{\tau > t}$, possibly truncated : $\tau \leq t + L^Y$
- -X, Y: Random variables for the time series

For the Sunspots example

- Observable: Sunspot counts
- Measurements: Monthly total... during day time.

Averaged over multiple observatories.

- Discrete time
- Continuous values (due to averaging) $v_t \in \mathcal{V}$
- Temporal scale for X, Y: 1 solar cycle

Different views on dynamical systems – Causal States

Basic dynamical systems view

 $v_t = V(\omega_t)$ observable value (sunspots) ω_t unobservable system (full Sun) state $v_t = (U^t V) (\omega_0)$ Koopman operator $v_{\tau > t}$ values to predict. Can use U^{τ}

Markov order- L^X process view

Causal states focus on distributions P(Y|X)

X should include all the past that has some (causal) effect on the should include all the future that is influenced by the present Y $s_t \equiv P(Y|X = x_t)$ distribution of possible futures. Defines a partition of \mathcal{X}

No new observation can distinguish x' from x in the same causal state \longrightarrow

 $s_t = (U^t S)(\omega_0)$ evolution operator ? $\mathbb{E}_{P}[f(y)]$ Expectation operator makes predictions. *f* could be *X*, or any quantity of interest

 $x_t = X(\omega_t)$ observable value (series)

- $x_t = (U^t X)(\omega_0)$ Koopman operator
- predictions on future *x* values \Rightarrow focus remains on the values

Note: *x* can also be seen as a vector of time-lagged values with lag=1

The present
$$L^X \to \infty$$
 or not $L^Y \to \infty$ or not

Markovian as consequence

detailed shortly

Motivating results : Sunspots time series (attractor)

Reconstructed dynamics / attractor -->

- Each point \Leftrightarrow causal state
- "Projection" from space of distributions

Axes = most relevant variables

- axis 1 & 2 : 11-years cycle and phase
- axis 3 : amplitude modulations over
 80-100 years (= Gleissberg cycles)

Pattern found ≫ analysis scale

⇒ Evolution operator encodes the dynamics (and uses it for predictions)

Functions defined by their values, seen as ∞-dimension vectors

Increasing number of points Increasing the dimension Coarser Finer and finer equivalence numerical classes of functions approximations

In terms of Kolmogorov complexity Program for generating a string \Leftrightarrow Formal expression for function values Most strings are random \Leftrightarrow Most functions of data have no expression

	Note:	operators acting
~		on causal states
•		become matrices

Causal state as a vector defined on data samples

Single function, but now lives in an ∞ -dimension space Causal state = distribution of Y = function of the Y

Reproducing kernels, distributions

Analogy with L^2

- Inner product $\langle f, g \rangle_{L^2} = \int_V fg \, \mathrm{d}\mu^Y$
- Delta selects an element $\langle f, \delta_y \rangle_{L^2} = f(y)$
- Delta as a function of 2 variables $\delta_y = \delta(y, \cdot)$ - Kernel as a function of 2 variables $k_y = k(y, \cdot)$
- $-k(y_1, y_2)$ indicates the similarity between y_1, y_2 $-\delta(y_1, y_2) \neq 0$ indicates equality

Kernels act as generalized δ : yes/no equality \rightarrow similarity

Any positive symmetric definite function is a kernel for an associated Hilbert Space

Widely used example $k(y_1, y_2) = \exp(-\|y_1 - y_2\|^2)$

Representing distributions

- Use the data span as a pseudo-basis : $P(Y) \cong \sum_{i=1}^{N} c_i k(y_i, \cdot)$
- Unconditional distributions : $c_i = 1/N \rightarrow$ usual kernel density estimation
- Conditional distributions P(Y|X = x): c_i depends on how x is similar to observation x_i

Reproducing kernel in Hilbert Space \mathcal{H}^Y

– Inner product implicitly defined $\langle f, g \rangle_{\mathcal{H}^Y}$

- Kernel "reproduces" an element $\langle f, k_y \rangle_{\mathcal{H}^Y} = f(y)$

Aronszajn 1950

Distribution estimated as a vector c of N elements

Gretton *et al* 2012

involves $k^{X}(x, x_{i})$

Causal states – kernelized version

Causal states = distribution on *series*

 $x_t = (v_\tau)_{-L^X < \tau < t}$ Need a kernel k^X on past series for the definition of c_i $y_t = (v_\tau)_{t < \tau < t + L^Y}$ Need a kernel k^Y on future series for the data span in \mathcal{H}^Y

Product kernels = kernel of product spaces Aronszajn 1950

$$k^{Y}(y, y') = \prod_{i=1...L^{Y}} k^{V}_{i}(y_{i}, y'_{i}) \text{ with } y_{i} = v_{t+i\tau} \text{ the ser}$$
$$k^{V}_{i}(y_{i}, y'_{i}) = k^{V}(v, v')^{r^{i}} \text{ with } k^{V}(v, v') \text{ a kernel on values,}$$

Also works for composing heterogenous data sources

E.g., T = temperature, P = precipitations, E = evapotranspiration $k^{V}(v, v') = k^{T}(t, t') k^{P}(p, p') k^{E}(e, e')$

An analyzing scale is needed for each data source

 $k^{V}\left(\frac{v}{\lambda}, \frac{v'}{\lambda}\right) = \exp\left(-\left\|\frac{v}{\lambda} - \frac{v'}{\lambda}\right\|^{2}\right)$ Kernel acts on dimensionless data

- $P(Y|X=x) \cong \sum_{i=1}^{N} c_i k^Y(y_i, \cdot)$

r a decay ratio for causal influence

Main parameters = scales

- For each data source:
- Past causal duration L^X
- Future causal duration L^Y
- Data scale

The nature of the kernel is surprisingly not as important

Another example : Forest ecosystem

Heterogenous measurements

- Temperature
- Solar energy influx
- Precipitations

- Soil water content
- Evapotranspiration
- $-CO_2$ flux

- Scales

Evapotranspiration (normalized) 3 Data **Prediction** 2 1 0 -1-2 3250 4750 5000 3500 3750 4000 4250 4500 Days (9 previous years not shown)

-Past = 2 weeks -Future = 1 week - Data = 10 std.dev. (need to fix this)

Seasonal patterns \gg analysis scale are clearly captured and predicted

Another example : Forest ecosystem (attractor)

Reconstructed dynamics / attractor →

- Each point \Leftrightarrow causal state
- "Projection" from space of distributions
- Black curve = predicted states

how to do this = next slides!

Number of relevant components ?

Interpretation

- Color = temperature
- Recovers the seasonal cycle

5:2

Causal states embedding

Causal states = distribution = point in ∞ -dimensional RKHS $s \equiv P(Y|X=x) \cong \sum_{i=1}^{N} c_i k^Y(y_i, \cdot)$ $s \in \mathcal{S} \subset \mathcal{H}^Y$ subset is indexed by $x \in \mathcal{X}$

Geometry of S, the set of causal states

Distances $||s - s'||^2_{\mathcal{H}^Y} = \langle s - s', s - s' \rangle$ can be written as a function of $c, c', k^Y(y_i, y_j)$ \Rightarrow Distances between every pair of states can be computed from data! \leftarrow thus, the N-1 simplex \Rightarrow An embedding can be found $\mathbb{S} \subset \mathbb{R}^{N-1}$ One to one embedding $\mathcal{S} \subset \mathcal{H}^Y$ **Diffusion Maps** recover the geometry independently from the sampling density **—**

Low dimension hypothesis

Causal states are intrinsic properties of the physical process

 \Rightarrow Main structure with M \ll N descriptive parameters + small fluctuations / errors

Diffusion Maps is a spectral method, eigenvalues = how relevant is each dimension

- Reproducing property $k(y,z) = \langle k_y, k_z \rangle$ other choices are possible
- (and invariant by coordinate transforms)
- (independent of observation count)
- (that depend on N)
- (similar to PCA)

Dynamics, inference

Back to basic dynamical system in $\mathbb{S} \subset \mathbb{R}^{N-1}$?

Yes !	$s \widehat{=} (\psi_1, \ldots \psi_M \ldots \psi_{N-1})$ is a one-to-one	mappir		
	$s_{t+1} = Us_t$ with Koopman operator estimation me			
	$Q_t = \Pr(s_t)$ and $Q_{t+1} = FQ_t$ with Perro	n-Frobe		
No !	$\mathcal{S} \equiv \mathbb{S}$ is indexed by \mathcal{X} : need to guarantee that Us			
	In particular, \mathbb{S} is not convex \Rightarrow cannot just estimate <i>U</i> , <i>F</i> , with arithmetic averages			
	The mapping depends on N			

Inference

 $s_t \equiv P(Y|X = x_t)$ is a distribution of futures given an observed past. $E_f = \mathbb{E}_{Q,t} \mathbb{E}_P[f(y)]$ makes predictions for future quantities of interest from the current state (or distribution of states)

Predictions for any f use histories from all dependent variables

PART 2

CONTINOUS TIME AND **INFORMATION-RELATED ISSUES**

From discrete to continuous time (information perspective)

Definition of causal states

- X should include all the past that has some (causal) effect on the present
- Y should include all the future that is influenced by the present

 $s_t \equiv P(Y|X = x_t)$ distribution of possible futures

Information perspective

Discrete time case: $s_t \rightarrow s_{t+1}$ transitions correspond to new information Discrete data: New symbol Edge-labeled unifilar transition graph, the ε -machine M^{τ} transitions $t \to t + \tau$ Continuous data: Motion in the causal state space SEvolution operators encode the process dynamics U^{τ} transitions $t \to t + \tau$ *Continuous time case:* $s_t \rightarrow s_{t+dt}$ transitions correspond to a rate of new information If that rate is limited: $D_{KL}(s_{t+dt} || s_t) \to 0$ and this implies $||s_{t+dt} - s_t||_{\mathcal{H}^Y} \to 0$ Otherwise, sudden introduction of new information \Rightarrow jumps

No new observation can distinguish x' from x in the same causal state

 \Rightarrow Continuous trajectories !

From discrete to continuous time (modeling perspective)

Possible sources of discontinuities (= ∞ information rate)

Fundamental law = information comes in discrete packets

Data is measured at scale \gg continuum

 L^X, L^Y too short \Rightarrow introduce information jumps

Continuous-time, continuous state model

Canonical Wiener process for continuous trajectories $\rightarrow dW$

Model becomes an inhomogenous Itô diffusion ds = a(s)dt + b(s)dW

Evolution of distributions Q(s) using the Fokker-Planck operator $Q(s, t+\tau) = F^{\tau}Q(s, t)$

Modeling discontinuities

With a stochastic jump component ds = a(s)dt + b(s)dW + dJ(s)With a Lévy flights, with forced deterministic jump states (as in renewal processes)...

Quantum world Renewal process modeling a queue Long range correlation

$F^{\tau} = e^{\tau \Gamma}$ with Γ = adjoint of the process generator

Diffusion of information, loss of prediction accuracy

This model specifies *how* useful information for prediction is diffused / lost through time

- Average rate of info loss ? \Rightarrow To- Information "Half-life" = time scale for accuracy / 2 ?and

Predictions

Predictions end up with the long-term average distribution

$\blacktriangleright Q_{\infty}$ Initial information is completely lost

Limit distribution of the Itô diffusion

 E_{f}

 \Rightarrow To answer with meromorphic calculus and spectral decomposition of F_{τ} ?

Anomaly detection - quantifying information in states ?

Example: El-Niño anomalies

- 4 sea surface temperature indicators
- Precipitations in 9 regions along the south pacific coast
- Past scale = 2 years
- Future scale = 1 year
- Data scale = 10 standard deviations

(also need to fix this)

Results

- Seasonal cycle well recovered
- 1982, 1997 and 2016 large events stand out

How to quantify / detect anomalies?

- Automatically (esp. in dim > 3)
- At what scales ? : limit of self-information of causal states \rightarrow 0 at large scale and
 - $\rightarrow \infty$ at small scales

Open project: information spectrum

Entropy reduction needs energy

Information / structure rather than energy dissipation

Energy dissipation allows to maintain patterns (out-of-equilibrium open & dissipative systems) These patterns often have a *functional* role (e.g. living systems)

 \Rightarrow Can we create an "information spectrum", instead of a "power spectrum"?

May have the same power spectrum, may dissipate both ≈ 30 W, but their information spectrum should differ

