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Motivating results : Sunspots time series

(these predictions
should not be 
trusted!)

We can try anyway

Known to be
extremely hard
to predict

Illustrative example
for the method



Motivating results : Sunspots time series (notations)
Notations (slight change from Adam's)
–                : the observed values at each time
–                : the observed past time series :                    ,  possibly truncated  : 
–                : the observed future time series :                    ,  possibly truncated  : 
–           : Random variables for the time series

Past = 
11 years

Future = 
11 years

132 months

Solar cycles
For the Sunspots example
– Observable: Sunspot counts
– Measurements: Monthly total… during day time.
                            Averaged over multiple observatories.
– Discrete time
– Continuous values (due to averaging)
– Temporal scale for           : 1 solar cycle



Different views on dynamical systems – Causal States
Basic dynamical systems view

observable value (sunspots)
unobservable system (full Sun) state

Koopman operator
values to predict. Can use 

Markov order-       process view
observable value (series)

Koopman operator

⇒ focus remains on the values
predictions on future x values

Causal states focus on distributions

distribution of possible futures.   Defines a partition of 

should include all the past that has some (causal) effect on the present
should include all the future that is influenced by the present

→∞ or not
→∞ or not

evolution operator ?

No new observation can distinguish      from     in the same causal state

Expectation operator makes predictions.
f  could be X, or any quantity of interest

detailed shortly

Markovian as
consequence

Note: x can also be 
seen as a vector of 
time-lagged values 
with lag=1



Motivating results : Sunspots time series (attractor)

Axes = most relevant variables

Reconstructed dynamics / attractor
– Each point ⇔ causal state
– “Projection” from space of distributions

– axis 1 & 2 : 11-years cycle and phase
– axis 3 : amplitude modulations over 
               80-100 years  (= Gleissberg cycles)

Pattern found ≫ analysis scale
⇒ Evolution operator encodes the dynamics
    (and uses it for predictions)



Functions defined by their values, seen as ∞-dimension vectors

Causal state = distribution of Y = function of the Y

N=5

N=10

N=20

N→∞

Vector of dimension 5
= Class of functions with these values

Single function, but now lives in an ∞-dimension space

Causal state as a
vector defined 

on data samples
Increasing number of points
    =
Increasing the dimension
    =
Finer and finer equivalence
classes of functions

Coarser
numerical

approximations

Program for generating a string ⇔ Formal expression for function values
Most strings are random ⇔ Most functions of data have no expression

In terms of Kolmogorov complexity

Note: operators acting 
          on causal states
          become matrices



– Unconditional distributions :                      → usual kernel density estimation

Reproducing kernels, distributions

– Inner product 
Analogy with

– Delta selects an element
– Delta as a function of 2 variables

Reproducing kernel in Hilbert Space 
– Inner product implicitly defined
– Kernel “reproduces” an element
– Kernel as a function of 2 variables

Any positive symmetric definite function is a kernel for an associated Hilbert Space
Aronszajn 1950

Representing distributions 

Widely used example

Gretton et al 2012

– Use the data span as a pseudo-basis : 
Distribution estimated as
a vector     of N elements

– Conditional distributions                          :      depends on how     is similar to observation 

–                          indicates equality –                   indicates the similarity between 
Kernels act as generalized δ : yes/no equality → similarity

involves



Causal states – kernelized version
Causal states = distribution on series

Product kernels = kernel of product spaces

Need a kernel        on past series for the definition of 
Need a kernel        on future series for the data span in

Aronszajn 1950

with                      the series i-th entry

with                   a kernel on values, r a decay ratio for causal influence

Also works for composing heterogenous data sources
E.g., T = temperature,  P = precipitations, E = evapotranspiration

An analyzing scale is needed for each data source
Kernel acts on 
dimensionless data 

For each data source:
– Past causal duration
– Future causal duration
– Data scale

Main parameters = scales

The nature of the kernel is 
surprisingly not as important



Another example : Forest ecosystem
Heterogenous measurements
– Temperature
– Solar energy influx
– Precipitations

Scales
– Past = 2 weeks
– Future = 1 week
– Data = 10 std.dev.

– Soil water content
– Evapotranspiration
– CO2 flux

Days (9 previous years not shown)

Data
Prediction

Evapotranspiration (normalized)

Days (9 previous years not shown)

Data
Prediction

CO2 flux (normalized)

Seasonal patterns
≫ analysis scale
are clearly captured
and predicted

(need to fix this)



Another example : Forest ecosystem (attractor)

Number of relevant components ?
how to do this = next slides!

Eigenvalues

% 
of

 th
e fi

rst

Inflection at 3
components

Interpretation
– Color = temperature
– Recovers the seasonal cycle

Reconstructed dynamics / attractor
– Each point ⇔ causal state
– “Projection” from space of distributions
– Black curve = predicted states



Causal states embedding
Causal states = distribution = point in ∞-dimensional RKHS

Distances can be written as a function of 

Reproducing property

⇒ Distances between every pair of states can be computed from data!

subset is indexed by 

Geometry of    , the set of causal states

One to one embedding⇒ An embedding can be found
thus, the N-1 simplex

Low dimension hypothesis
Causal states are intrinsic properties of the physical process (and invariant by coordinate transforms)
⇒ Main structure with M ≪ N descriptive parameters 
     + small fluctuations / errors

Diffusion Maps recover the geometry independently from the sampling density other choices 
are possible

(independent of observation count)
(that depend on N)

Diffusion Maps is a spectral method, eigenvalues = how relevant is each dimension (similar to PCA)



is a distribution of futures given an observed past.

Dynamics, inference
Back to basic dynamical system in                    ?

Yes !

No !

is a one-to-one mapping

Inference

Sensitivity to initial conditions:
maybe keep M’ > M components

Wait! Pr on states? Are we going
to use a secondary RKHS? No!
Push-forward measure from      OK

with Perron-Frobeniusand
with Koopman operator estimation methods

is indexed by      : need to guarantee that          remains in 
In particular,     is not convex ⇒ cannot 
just estimate U, F, with arithmetic averages

makes predictions for future quantities of interest
from the current state (or distribution of states)

Work in progress… 
not implemented yet

Predictions for any f use histories from all dependent variables

The mapping depends on N



Part 2

Continous Time
and 

Information-related issues



From discrete to continuous time (information perspective)

Information perspective
distribution of possible futures

should include all the past that has some (causal) effect on the present
should include all the future that is influenced by the present

possible
causal decay

Discrete time case: transitions correspond to new information
New symbol

Continuous data: 
Edge-labeled unifilar transition graph, the ε-machine

Discrete data:

Motion in the causal state space
Evolution operators encode the process dynamics

transitions

transitions

Continuous time case: transitions correspond to a rate of new information

If that rate is limited: and this implies

from     in the same causal state
No new observation can distinguish

Definition of causal states

⇒ Continuous trajectories !Otherwise, sudden introduction of new information ⇒ jumps



From discrete to continuous time (modeling perspective)

Canonical Wiener process for continuous trajectories → 

Model becomes an inhomogenous Itô diffusion

Evolution of distributions            using the Fokker-Planck operator

Possible sources of discontinuities (= ∞ information rate)
Fundamental law = information comes in discrete packets

Data is measured at scale ≫ continuum

Quantum world

Renewal process modeling a queue

Long range correlationtoo short ⇒ introduce information jumps

Continuous-time, continuous state model

Modeling discontinuities
With a stochastic jump component
With a Lévy flights, with forced deterministic jump states (as in renewal processes)...

with     = adjoint
of the process
generator



Diffusion of information, loss of prediction accuracy

This model specifies how useful  information for prediction is diffused / lost through time

Initial causal state
(or distribution of)

Diffusion, distribution 
of causal states

Limit distribution
of the Itô diffusion

PredictionsCurrent data

Initial information
is completely lost

Predictions end up
with the long-term
average distribution

– Average rate of info loss ?
– Information “Half-life” = time scale for accuracy / 2 ?

⇒ To answer with meromorphic calculus
     and spectral decomposition of      ?



Anomaly detection - quantifying information in states ?
Example: El-Niño anomalies

– 4 sea surface temperature indicators
– Precipitations in 9 regions along the 
   south pacific coast
– Past scale = 2 years
– Future scale = 1 year
– Data scale = 10 standard deviations

Results
– Seasonal cycle well recovered
– 1982, 1997 and 2016 large events stand out

How to quantify / detect anomalies?
– Automatically (esp. in dim > 3)
– At what scales ? : limit of self-information
   of causal states → 0 at large scale and 
   → ∞ at small scales

(also need to fix this)



Open project: information spectrum

Information / structure rather than energy dissipation

Entropy reduction
needs energy

Energy dissipation allows to maintain patterns (out-of-equilibrium open & dissipative systems)
These patterns often have a functional role (e.g. living systems)
⇒ Can we create an “information spectrum”, instead of a “power spectrum” ?

May have the same power spectrum,
may dissipate both ≈ 30 W,
but their information spectrum should differ


