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Open questions

Classical Stochastic thermodynamics

Quantum physics

Fluctuation theorems (1990s) Informational thermodynamics

Quantum Information Processing Work and Heat
Quantum 

coherence/correlations

Quantum 
coherence/correlations

Heat transfer

Consistent theory
to bridge the classical and 

quantum approach?
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We focus on 
Second Law of Thermodynamics

S. Lloyd et al, arXiv:1510.05035



Second law of thermodynamics: Quantum approach

1. (Review) Two-time measurement scheme

2. One-time measurement scheme

H. Tasaki, arXiv:cond-mat/0009244 (2000)
J. Kurchan, arXiv:cond-mat/0007360 (2001)

S. Mukamel, Phys. Rev. Lett. 90, 170604 (2003)

S. Deffner et al, Phys. Rev. E 94, 010103(R) (2016)

Benefit

(1) Quantum coherence is protected 

(2) Informational contribution 

(3) Classical correspondence 
Sharper bound with 

quantum relative entropy



Second law of thermodynamics: Quantum approach

One-time measurement scheme

S. Deffner et al, Phys. Rev. E 94, 010103(R) (2016)

Conditional Thermal State (guessed state) Gibbs state with 
𝐻𝐵

Thermal state characterized by the conditional final energy expectation 
conditioned on a initial energy measurement



Second law of thermodynamics: Classical approach

AS and S. Deffner, arXiv:2010.05835 (2020)

Transition probability distribution

The transition probability distribution counts the 
intersection points of  and 𝒟𝐵 𝐶𝐵

Sharper bound with 
classical relative entropy

Conditional Thermal Distribution Thermal distribution with 𝐻𝐵

where



Geometric Quantum Mechanics (GQM)

Different decompositions

Probabilistic interpretation based on 
ensemble theory is not unique

Ambiguity of density matrix formalism Manifold of quantum states

Complex projective space 𝒱𝑑

pure state

Complex homogeneous coordinate

coordinate-invariant volume element

where

Given an observable the state in GQM is 
described as

𝑂,  

Functional:

where

Geometric entropy (generalized entropy):

and geometric quantum state is

: probability distribution of (𝒛, �̄�)

Relation to von-Neumann entropy:

diagonal decomposition in eigensystems

Geometric quantum state (solution)
then, the von-Neumann entropy

becomes
(*it is not usually equivalent to von-Neumann entropy)

Ashtekar and Schilling (1999)
Bengtsson and K. Zyczkowski (2017)

F. Anza and J. P. Crutchfield, arXiv:2008.08679 (2020)
F. Anza and J. P. Crutchfield, arXiv:2008.08682 (2020) 
F. Anza and J. P. Crutchfield, arXiv:2008.08683 (2020)



Geometric Relative Entropy

Definition of Geometric Relative Entropy and its relation to Quantum Relative Entropy

Given two geometric quantum states  and , the geometric relative entropy is defined as 𝑝1(𝒛, �̄�) 𝑝2(𝒛, �̄�)

Given two density matrices with diagonal decompositions in eigensystems (  is in decreasing order) 𝑝𝑗(𝐳, �̄�)

then given an unitary , the geometric relative entropy is the minimum of the quantum relative entropy𝐾 ∈ 𝒰

namely

any relation to quantum ergotropy?

AS and S. Deffner, in preparation (2021)



Geometric Relative Entropy

Result 1: Quantum Ergotropy and Geometric Relative Entropy

Given a quantum state

AS and S. Deffner, in preparation (2021)

and an Hamiltonian

the maximum work extracted by a unitary	  is given by 𝐾 ∈ 𝒰

namely 

A. E. Allahverdyan et al, Europhys. Lett. 67, 565 (2004).

then we have

In our case, when we set  is in increasing order)(𝐸(𝐳, �̄�)



Geometric Relative Entropy and Coherence Measure

Result 2: Coherent Quantum Ergotropy and Geometric Relative Entropy

AS and S. Deffner, in preparation (2021)

G. Francica et al, Phys. Rev. Lett. 125, 180603 (2020).

Quantum Ergotropy:

● Coherence-invariant state: such that

Unitaries without changing coherence

● Dephasing in the energy bases: 

● Relative entropy of coherence (distillable quantum coherence): 

Coherent: Incoherent:



Revisit Second Law of Thermodynamics

Result 3: Conditional Thermal State is Geometric Canonical Ensemble

AS and S. Deffner, in preparation (2021)

Geometric Canonical Ensemble:

F. Anza and J. P. Crutchfield, arXiv:2008.08679 (2020)
F. Anza and J. P. Crutchfield, arXiv:2008.08682 (2020) 
F. Anza and J. P. Crutchfield, arXiv:2008.08683 (2020)

Conditional Thermal State:

Derived from the principle of maximum entropy of geometric quantum state

Density of State 
(continuous-variable representation) 

: Geometric Canonical Ensemble 



Result 4: Second Law of Thermodynamics and Quantum Coherence

AS and S. Deffner, in preparation (2021)

Quantum Ergotropy:

Incoherent:

Revisit Second Law of Thermodynamics

Sharper bound (Quantum):

Coherent:

Second Law of Thermodynamics with quantum coherence:

● Incoherent quantum ergotropy of geometric canonical ensembles

● Distillable quantum coherence from geometric canonical ensembles

● Population mismatch between the geometric canonical ensembles and Gibbs state

Geometric canonical ensembles

Coherence source providing the informational 
contribution to second law of thermodynamics



AS and S. Deffner, in preparation (2021)

Sharper bound (Classical):

Bridging Quantum and Classical Approach

Result 5: Classical Ergotropy

Conditional Thermal State:
transition probability distribution (𝐴 → 𝐵)

Definition of Classical Ergotropy:

sets of transition probabilities distributions

Solution can be
which yields

where

Classical and Geometric Relative Entropy:

Not an explicit function of the Hamiltonian
(classical inhomogeneities = classical analogue of quantum coherence)

A. M. Smith, Ph.D. thesis, University of Maryland, College Park (2019).



Conclusion

(1) We have introduced geometric relative entropy defined in a unified manner in both quantum and classical approach

(2) We have demonstrated the relation of geometric relative entropy to quantum ergotropy and quantum coherence. 

(3) We have verified that conditional thermal state is characterized by a geometric canonical ensemble. 

(4) We have explicitly clarified that this state is a source of coherence for the informational contribution to second law. 

(5) We have derived the classical ergotropy, and showed that the geometric canonical ensemble in the classical is 
      a source of classical inhomogeneities, which demonstrated the consistency to the quantum approach. 

Quantum Thermodynamics Classical Stochastic Thermodynamics

Geometric Quantum Mechanics


