
A Behavior-Driven Theory of Emergent Pattern and Structure
in Complex Spatiotemporal Systems

By

Adam Thomas Rupe

Dissertation

Submitted in partial satisfaction of the requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Office of Graduate Studies

of the

University of California

Davis

Approved:

Chair James P. Crutchfield

Richard Scalettar

David Doty

Committee in Charge

2020

i

Copyright c© 2020 by

Adam Thomas Rupe

All rights reserved.

To my grandparents, Ethel and Norman Rupe

ii

Contents

List of Figures . vii

List of Tables . xiv

Abstract . xvi

Acknowledgments . xviii

1 Pattern and Structure 1

1.1 In Nature . 2

1.1.1 Near Equilibrium . 3

1.1.2 Far From Equilibrium . 10

1.2 In Data . 14

1.2.1 Machine Learning . 14

1.2.2 Representation Learning . 17

1.3 In Theory . 23

1.3.1 Computational Mechanics . 26

1.4 In Cellular Automata . 31

1.5 In Complex Fluid Flows . 35

1.5.1 Extreme Weather and Climate Change 39

1.6 Complexity, Emergence, and Computation 42

1.6.1 A Quick Example: Mechanisms of Instability in Bénard Convection . . 46

2 Mathematical Preliminaries 50

2.1 Theory of Computation and Complex Dynamical Systems 50

2.1.1 Physics of Computation . 51

2.1.2 Dynamical Structure Modeling 54

2.2 Measurement Theory . 57

2.2.1 Measurements of a Dynamical System 57

2.3 Symbolic Dynamics . 63

2.3.1 Shift Spaces . 63

iii

2.3.2 Stochastic Processes . 66

2.4 Spatiotemporal Processes . 68

2.4.1 Topology of Configurations . 68

2.4.2 Dynamics . 69

2.4.3 Shift Spaces in Spacetime . 70

2.4.4 Spacetime Stochastic Processes 71

3 Computational Mechanics 72

3.1 Temporal Presentations . 72

3.1.1 Causal States and the Causal Equivalence Relation 73

3.1.2 Causal State Transitions . 74

3.1.3 Basic Measures . 75

3.1.4 Topological Machines . 76

3.1.5 An Example: The Even Shift . 77

3.1.6 Algebraic Theory of Patterns as Generalized Symmetries 79

3.2 Spatiotemporal Presentations . 85

3.2.1 Global ε-Machine . 86

3.2.2 Local Causal States . 86

4 Cellular Automata: Domain Patterns 93

4.1 Cellular Automata . 96

4.1.1 Elementary Cellular Automata 97

4.2 Topological Reconstruction . 97

4.3 Automata-Theoretic CA Evolution . 98

4.4 CA Domains . 100

4.4.1 DPID Patterns: Spacetime Invariant Sets 102

4.4.2 Local Causal State Symmetries 104

4.4.3 Domain Classification: Explicit vs Hidden Symmetry 108

5 Cellular Automata: Domain Subdynamics 112

5.1 Additive CAs . 113

iv

5.2 CA Subdynamics . 114

5.2.1 Lookup Table Linearizations . 115

5.2.2 Language-Restricted Lookup Tables 116

5.3 Domain-Restricted Lookup Tables and Their Linearizations 117

5.4 Additive CAs Produce Only Domains . 118

5.4.1 Causal asymmetry of Rule 60 . 121

5.5 Explicit Symmetry Domains . 121

5.6 Hidden Symmetry Domains and ECA Rule 90 126

5.6.1 Invariant Subshifts of Rule 90 . 130

5.6.2 Rule 22 . 133

5.7 A Non-Additive Domain . 137

5.8 Conclusion . 140

5.9 Appendices . 142

5.9.1 Proof of Theorem 1 . 142

6 Cellular Automata: Coherent Structures 144

6.1 Structures as Domain Deviations . 147

6.2 Explicit Symmetry CAs . 148

6.2.1 ECA 54’s Domain . 149

6.2.2 ECA 54’s Structures . 150

6.2.3 ECA 110 . 157

6.3 Hidden Symmetry CAs . 157

6.3.1 ECA 18’s Domain . 158

6.3.2 ECA 18’s Structures . 160

6.4 Remarks . 164

6.5 Conclusion . 167

7 Coherent Structures in Complex Fluid Flows 170

7.1 Reconstruction and Approximations . 173

7.1.1 Setup . 173

v

7.1.2 Reconstruction Formalism . 174

7.1.3 Reconstruction Algorithm . 177

7.1.4 Distributed Reconstruction Pipeline 181

7.2 DisCo – HPC Implementation in Python 183

7.2.1 Contributions . 185

7.2.2 Related Work . 185

7.2.3 Challenges of Lightcone Clustering 188

7.2.4 Experimental Setup . 190

7.2.5 Performance Results . 193

7.2.6 Hero Run . 198

7.2.7 Intel Legal Disclaimers . 198

7.3 Lagrangian Coherent Structures . 200

7.3.1 Reconstruction Parameters . 201

7.3.2 2D Turbulence . 203

7.3.3 Clouds of Jupiter . 204

7.3.4 Lightcone Clustering Revisited . 204

7.4 Extreme Weather Events . 206

vi

List of Figures

1.1 Color-enhanced compilation image of Jupiter’s clouds captured by NASA’s

Juno Spacecraft, taken on April 1 2019. While locally turbulent and

chaotic at the smallest scales, there is obvious large-scale organization.

A few of the large horizontal zonal bands can be seen, including the strong

jet streams that separate adjacent bands. Coherent vortices at all scales

can be seen throughout, including the largest: Jupiter’s famous Great Red

Spot. 2

1.2 Diagram of the experimental setup for Raleigh-Bénard convection. A box

of fluid is heated from below and cooled from above. Reproduced, with

permission, from Ref. [1]. 4

1.3 Close up image of a time lapse view of hexagonal cells in free surface

Bénard convection. Aluminum flakes were used to trace the fluid velocity

of the convective motion; the fluid moves up through the center of the cells

and sinks at the edges. Image used with the permission of The Parabolic

Press [2]. 5

1.4 Depiction of the binary circle classification problem and its solution using

the “kernel trick”. On the left is the problem in the original observable

space. Points inside the circle are colored red, and points outside colored

purple. No hyperplane can separate these points. On the right are the

points in the transformed latent space with an extra radial dimension. In

this space a horizontal plane can be drawn at a height equal to the circle’s

radius that will separate points in the two classes. Credit: Shiyu Ji [3]. . 19

vii

1.5 Local causal states as predictive spacetime autoencoders. An observable

spacetime field X, up to time t (shown as a red horizontal line), is mapped

to the local causal state field S = ε(X). Using, ε−1, a reconstructed

spacetime field can be created X = ε−1(S). With the inferred stochastic

dynamic over local causal states, Φ, the states can be evolved forward

in time to produce a forecasted local causal state field S̃ = Φ(S). The

forecasted state field is then mapped to a forecasted observable field X̃ =

ε−1(S̃). 29

1.6 ECA 110 structural segmentation: (a) A sample observable field evolved

from a random initial configuration. (b) A local causal state coherent

structure segmentation filter with domain sites in white and non-domain

in black. 34

1.7 Kármán vortex street structural segmentation: (a) Spatial snapshot of the

vorticity observable field. (b) The corresponding spatial snapshot of the

local causal state field. Each unique color represents a unique local causal

state. 38

2.1 Schematic of dynamical structure modeling. A continuous dynamical sys-

tem is observed using a finite-precision measuring devices to produce a dis-

crete structured stochastic process. The set of allowed symbol sequences

is presented by a finite-state machine that captures the structure of the

process. Credit: James P. Crutchfield, with modification. 55

2.2 Generating partition of the logistic map with r = 4, and its first iterate. 60

3.1 (a) Topological machine presentation of the Even Shift. (b) ε-machine

presentation of the Even Process . 78

3.2 Minimal machine presentation of the Even Shift that includes a “forbidden

word state” F . All transitions that lead to this state produce forbidden

words and thus the associated concatenations map to the absorbing semi-

group element e in the machine algebra G(M). 83

viii

3.3 Minimal machine presentation of the shift space of translation-invariant

strings · · · 111000111000111 · · · . 84

3.4 Lightcone random variable templates: Past lightcone L−(r0, t0) and future

lightcone L+(r0, t0) for present spacetime point Xr0
t0 in a 1 + 1 D field with

nearest-neighbor (or radius-1) interactions. 88

4.1 Pure domain spacetime fields for explicit symmetry and hidden symmetry

domains shown in (a) and (b) for ECA 110 and ECA 22, respectively.

Associated local causal state fields fully display these symmetries in (c)

and (d), with each unique color corresponding to a unique local causal

state. For ECA 110, lightcone horizons h− = h+ = 3 were used and for

rule 22 h− = 10 and h+ = 4. 110

5.1 Causally-filtered spacetime fields of (a) rule 90 and (b) rule 150, evolved

from random initial conditions. White and black squares represent 0 and

1 CA site values, respectively. While blue letters are the associated local

causal state label for that site. (c) Their domains Λ90 = AZ and Λ150 = AZ

are described by the single-state machine M(AZ). 120

5.2 Filtered spacetime field of rule 60, evolved from random initial conditions.

White and black squares represent 0 and 1 site values, respectively. Colored

letters denote the associated local causal state label for a site. (a) The

result of using full lightcones, as depicted in Figure 3.4, for local causal

state filtering. (b) Local causal state filtering appropriate to the left-skewed

causal asymmetry of rule 60, using half-lightcones depicted in (c). This

filtering recovers the single-state, trivially symmetric, local causal state

field expected for additive CAs. 122

5.3 Filtered spacetime fields from the explicit symmetry domains of rules 58

(a), 54 (b), and 110 (c), with the associated local causal states superim-

posed on top. 125

ix

5.4 (a) Finite-state machine M(Λ18) for the invariant set language L(Λ18) of

the rule 18 domain. (b) Filtered spacetime field xΛ18
(white and black

squares) of the rule 18 domain Λ18 with the associated local causal state

field SΛ18
= ε(xΛ18

) (green and orange letters) superimposed. 127

5.5 (a) Machine M(Λeven) for the invariant language L(Λeven) of the rule 126

even domain. (b) Sample spacetime field xΛ126
(black and white squares)

of the even domain Λeven of rule 126 with the associated local causal state

field SΛ126
= ε(xΛ126

) (green and orange letters) superimposed. 132

5.6 Machine M(Λ22) for rule 22’s domain Λ22, which has two distinct temporal

phases: ΛA
22 = Φ22(ΛB

22) and ΛB
22 = Φ22(ΛA

22). 133

5.7 Filtered spacetime field xΛ22
(white and black squares) of the rule 22 do-

main Λ22 with the associated local causal state field SΛ22
= ε(xΛ22

) (colored

letters) superimposed. 134

5.8 Filtered spacetime fields of the two domains of the (A = {0, 1}, R = 2) CA

rule 2614700074. Format and notation similar to previous such diagrams.

(a) The Λ0,Σ domain has the same invariant set language of ECA rule

90. Its machine is shown in Figure 5.4(a)). (b) The Λ1,1,0,Σ domain. (c)

Machine for L(Λ1,1,0,Σ). 138

6.1 ECA 54 domain: A sample pure domain spacetime field xΛ is shown in (a).

This field is repeated with the associated local causal states SΛ = ε(xΛ)

added in (b). Lightcone horizons h− = h+ = 3 were used. The DPID

spacetime invariant set language is shown in (c). (Reprinted from Ref. [4]

with permission.) . 149

6.2 Overview of ECA 54 structures: (a) A sample spacetime field evolved from

a random initial configuration. (b) A filter that outputs white for cells

participating in domains and black otherwise, using the DPID definition

of domain. (c) The analogous domain-nondomain filter that uses the local

causal state definition of domain. Lightcone horizons h− = h+ = 3 were

used. 151

x

6.3 ECA 54’s α particle: In both (a) and (b) white (0) and black (1) squares

display the underlying ECA spacetime field xα. (a) The DPID domain

transducer filter T = τ(xα) output is overlaid atop the spacetime field

values of xα. Blue letters are sites participating in domain and red numbers

are particular deviations from domain. (b) The local causal state field

S = ε(xα). The eight domain states are given by blue letters, all others

by red numbers. In both diagrams, the non-domain sites outline the α

particle of rule 54, according to the two different semantic fields. Lightcone

horizons h− = h+ = 3 were used. 153

6.4 ECA 54’s γ+ + γ− → β interaction: In both diagrams the white (0) and

black (1) squares display the underlying ECA spacetime field xβ. (a)

The DPID domain transducer filter T = τ(xβ) output is overlaid atop the

spacetime field values of xβ. Blue letters are sites identified by T as partici-

pating in the domain. Colored numbers are sites identified as participating

in one of the three remaining structures. The γ+ particle is outlined only

by red numbers, γ− by yellow numbers, and β by a combination of red,

yellow, and orange. (b) The local causal state field S = ε(xβ) is overlaid

atop xβ. The eight domain states are in blue, and the other nondomain

states are colored the same as in (a). Lightcone horizons h− = h+ = 3

were used. 155

6.5 ECA 18 domain: (a) Iterates of a sample pure domain spacetime field xΛ,

white and black are values 0 and 1, respectively. (b) The same domain field

with the local causal state field SΛ = ε(xΛ) overlaid. Lightcone horizons

h− = 8 and h+ = 3 were used. (c) The finite-state machine M(Λ18) of the

DPID invariant set language of the ECA 18 domain Λ18. (Reprinted with

permission from Ref [5].) . 159

xi

6.6 ECA 18 structures: (a) Sample spacetime field evolved under ECA 18

from a random initial configuration. (b) Spacetime field after filtering

with domain regions in white and coherent structures in blue, using the

DPID domain transducer. (c) Spacetime field filtered with domain regions

in white and structures in blue, using local causal states. The occasional

gap in the structures is an artifact of using finite-depth lightcones during

reconstruction of local causal states. Lightcone horizons h− = 8 and h+ =

3 were used. 161

6.7 Comparative analysis of ECA 18’s α particle: In all three spacetime dia-

grams, the underlying ECA field values of 0 and 1 are represented as green

and gray squares, respectively. (a) DPID domain transducer filtered field

T = τ(x) with bidirectional scan interpolation. Domain sites are identified

with white 0s and particle sites with black 1s. (b) A coherent structure

causal filter; local causal state field S = ε(x) with nondomain local causal

states states satisfying the coherent structure definition are colored black

with all other states colored white. Lightcone horizons h− = 8 and h+ = 3

were used. (c) Comparison of the structures from the two methods: The

DPID transducer filter of (a) with sites that have local causal states iden-

tified as the coherent structure in (b) given a red square label. 163

7.1 2+1 D lightcone template with past horizon h− = 2, future horizon h+ = 2,

and speed of information propagation c = 1. Credit: Nalini Kumar . . . 177

7.2 Distributed reconstruction pipeline. Credit: Nalini Kumar 183

7.3 Breakdown of execution time spent in various stages of the DisCo on Haswell

nodes with K-Means. Top : weak scaling and Bottom: strong scaling. Parallel

efficiency are plotted on the secondary axis. Credit: Nalini Kumar 195

7.4 Breakdown of execution time spent in various stages of the DisCo on Haswell

and KNL nodes with DBSCAN. Top : weak scaling and Bottom: strong scaling.

Parallel efficiency are plotted on the secondary axis. Credit: Nalini Kumar . . 196

xii

7.5 Structural segmentation results for the three scientific data sets using K-Means

lightcone clustering. The leftmost image of each row shows a snapshot from the

data spacetime fields, and the other image(s) in the row show corresponding

snapshots from the reconstructed local causal state spacetime fields. Recon-

struction parameters given as (h−, h+, c,K−, τ): (b) - (14, 2, 1, 10, 0.8), (c)

- (14, 2, 1, 4, 0.0), (e) - (3, 3, 3, 8, 0), (g) - (3, 3, 1, 16, 0.04). K+ = 10

and 0.05 for chi-squared significance level were used for all reconstructions. Full

segmentation videos are available on the DisCo YouTube channel [6] 202

7.6 Comparison of structural segmentation results on 2D turbulence using DBSCAN

(a) and K-Means (b) for lightcone clustering. The K-Means results in (b) are

the same as Figure 7.5 (b), repeated here for easier comparison. The DBSCAN

results shown in (a) use reconstruction parameters (h−, h+, c) = (3, 2, 1), τ =

0.0, eps = 0.0, and minpts = 10. 205

xiii

List of Tables

5.1 Lookup tables for rule 90 (φ90) and rule 18 (φ18) as well as for rule 18 lin-

earized to rule 90 (φ18↔90) and rule 18 restricted to its domain (φ18|L(Λ18)).

The leftmost column gives all ECA neighborhood values in lexicographical

order, and each subsequent column is the output of the neighborhoods for

the specified dynamic or subdynamic. Symbol − indicates a lookup table

element excluded from the respective subdynamic. 129

5.2 Lookup tables for rule 90 (φ90) and the seven nonlinear rules, φα, α ∈
{18, 26, 82, 146, 154, 210, 218}, that also have the Λ0,Σ domain invariant

set. The first five rows correspond to the neighborhoods that belong to

the domain language L(Λ0,Σ). Since all eight rules have Λ0,Σ as a domain,

the output for these five neighborhoods in L(Λ0,Σ) are the same. The

bottom three rows are the neighborhoods not in L(Λ0,Σ). The eight rules

in this table are all possible 23 output assignments for these three remaining

neighborhoods. 130

5.3 Lookup tables for rule 90 (φ90) and rule 126 (φ126) as well as for rule

126 linearized to rule 90 (φ126↔90) and rule 126 restricted to its domain

(φ126|L(Λeven)). Same format as in Table 5.1. 131

5.4 Second-order lookup tables for rule 90 (φ2
90) and rule 22 (φ2

22), as well as for

φ2
22 linearized to φ2

90 (φ2
22↔90) and φ2

22 restricted to its domain (φ2
22|L(Λ22)).

The leftmost column gives all second-order ECA neighborhood values (that

is, all radius-2 neighborhood values) in lexicographical order. Each subse-

quent column is the output of the neighborhoods for the specified dynamic

or subdynamic. The symbol − indicates that lookup table element is ex-

cluded from the respective subdynamic. 136

5.5 First-order lookup table of (A = {0, 1}, R = 2) CA 2614700074 restricted

to its domain Λ1,1,0,Σ. For simplicity, all elements of LUT(φ2614700074) not

in LUT(φ2614700074|L(Λ1,1,0,Σ)) are not shown. 139

xiv

7.1 Single-node performance of the different stages of the DisCo pipeline before and

after optimization . 194

7.2 Load distribution from geometric partitioning in DBSCAN 198

xv

Abstract

A Behavior-Driven Theory of Emergent Pattern and Structure in Complex

Spatiotemporal Systems

Coherent structures form spontaneously in far-from-equilibrium spatiotemporal systems

and are found at all spatial scales in natural phenomena from laboratory hydrodynamic

flows and chemical reactions to ocean and atmosphere dynamics. Phenomenologically,

they appear as key components that organize macroscopic dynamical behaviors. Unlike

their equilibrium and near-equilibrium counterparts, there is no general theory to predict

what patterns and structures may emerge in far-from-equilibrium systems. Each system

behaves differently; details and history matter. The complex behaviors that emerge can-

not be explicitly described mathematically, nor can they be directly deduced from the

governing equations (e.g. what is the mathematical expression for a hurricane, and how

can you derive it from the equations of a general circulation climate model?). It is thus

appealing to bring the instance-based data-driven models of machine learning to bear on

the problem. Supervised learning models have been the most successful, but they re-

quire ground-truth training labels which do not exist for far-from-equilibrium structures.

Unsupervised models that leverage physical principles of self-organization are required.

The work developed in this thesis utilizes a notion of intrinsic computation to con-

struct a physics-based machine learning model, the local causal states, to extract emergent

pattern and structure in complex spatiotemporal systems. As a behavior-driven theory, it

does so without requiring the governing equations or ground-truth training labels. After

motivating the need for history-dependent, instance-based modeling for studying far-from-

equilibrium phenomena, parallels between models of computation and complex dynamical

system will be developed to argue for the use of machine learning models based on intrin-

sic computation. The mathematical foundations in symbolic dynamics and shift spaces is

then given for the local causal states. Spacetime invariant sets are shown to be equivalent

to spacetime symmetries in the local causal states. These behaviors, known as domains,

capture pattern as generalized symmetries. Using this, the local causal states are used to

xvi

give a formal definition of coherent structures as spatially-localized, temporally-persistent

deviations from generalized spacetime symmetries. The utility of the local causal states

in capturing pattern and structure is demonstrated using cellular automata models and

complex fluid flows (using both simulations and observations). The fluid flow results

require high-performance computing; we will briefly describe our distributed implementa-

tion in Python and how we were able to process almost 90TB of data from the CAM5.1

climate model in under 7 minutes end-to-end on 1024 Intel Haswell nodes of the Cori

supercomputer.

xvii

Acknowledgments

Fascination with the topics of chaos, nonlinear dynamics, nonequilibrium thermody-

namics, and complexity lead me to pursue a PhD in physics. I am grateful to my PhD

adviser Professor Jim Crutchfield for the inspiration and guidance he provided that en-

able me to succeed in this goal. His push for me to improve my precision of language and

mathematical sophistication has been particularly invaluable. I could not have hoped for

a more fitting and enjoyable thesis to do for my PhD research. I’d like to thank Profes-

sors Michael Marder and Harry Swinney for introducing me to these topics during my

undergrad, and professor Marder for getting me started with research and programming.

I also thank Professors Richard Scalettar and David Doty for their helpful comments and

revisions for this thesis.

For my qualification examination I used the discovery of extreme weather events in

large climate data sets as a motivating example for my work, and I am still astonished that

I was able to get even preliminary results for such an ambitious pie-in-the-sky goal as part

of my dissertation work. This was made possible through the DisCo collaboration, which

was one of the academic partner projects for the NERSC-Intel Big Data Center. Mr.

Prabhat (now Dr. Prabhat!) at NERSC was instrumental in establishing the Big Data

Center and envisioning what would become Project DisCo. I am grateful to Prabhat for

his mentorship and for introducing me to the exciting world of machine learning. I thank

Karthik Kashinath for his friendship and infectious enthusiasm for data-driven approaches

to dynamical systems. The distributed implementation of local causal state reconstruction

presented in Chapter 7 would not be possible without Nalini Kumar, whom I thank for

her friendship, patience, and for introducing me to high-performance computing. I also

thank our other DisCo collaborators, who helped put all the pieces together to achieve the

results presented in Chapter 7: Vlad Epifanov, Sacha Pavlyk, Frank Schlimbach, Mostofa

Patwary, Sergey Maidanov, and Victor Lee.

My graduate school experience has been greatly enriched by discussion and interac-

tions with Dmitry Shemetov, Greg Wimsatt, Grzegorz Muszynski, Paul Riechers, Alec

Boyd, Cina Aghamohammadi, Sarah Marzen, Alex Jurgens, Mikhael Semaan, Fabio Anza,

xviii

Ariadna Venegas-Li, Sam Loomis, David Gier, Dany Masante, Jeff Emenheiser, Jordan

Snyder, Xincheng Lei, Yao Liu, John Mahoney, Korana Burke, Ryan James, and many

others. I am thankful to you all.

I thank Telluride Sciences Research Center, Institute for Pure and Applied Mathe-

matics (IPAM), and National Energy Research Scientific Computing Center (NERSC)

for their hospitality during visits. Thanks to Intel for their financial support of this work

through the Intel Parallel Computing Center at UC Davis, as part of the NERSC-Intel

Big Data Center.

I thank my father Ray and my brother Eric for their never ending support and encour-

agement. Special thanks to Nastya Salova for being awesome and keeping me sane during

grad school. She has helped me become a better person. I’d also like to thank my cats

Tycho and Kepler for their constant companionship and comfort throughout this jour-

ney. Finally, I must thank my grandparents Ethel and Norman, and my mother Beverly.

Without their emotional and financial support this work would never have happened. I

am forever grateful for all they’ve done for me.

xix

Chapter 1

Pattern and Structure

What does it mean for a natural system to be structured? Through the entropy concept

in statistical mechanics and information theory we have a means of formalizing the notion

of randomness and disorder. But what about pattern and structure? It may be tempting

to simply think of these as order, the opposite of randomness and disorder, as with

the total regularity of a crystalline solid. What we find in nature however is rather

more complicated than this single-dimension perspective. Randomness can be structured;

patterns can arise from chaos. This can be seen, for example, with coherent structures

that form in turbulent fluid flows. The recent images of Jupiter from the Juno spacecraft

provide particularly dramatic examples. An image of Jupiter’s Great Red Spot [7], taken

by Juno, is shown in Figure 1.1.

This Chapter serves as an introduction to the problem of spontaneous self-organization

in far-from-equilibrium systems and gives an overview of the tools developed and used in

this thesis. The historical context and technical details outlined here are meant to provide

more of a personal perspective motivating this work, rather than a comprehensive review.

Sections 1.1 and 1.2 provide contextual background, and the remaining Sections provide

an overview of the technical ideas presented in this thesis.

The terms “organized”, “structured”, and “patterned” are used somewhat loosely

throughout, as one might colloquially use to describe the clouds of Jupiter shown in Fig-

ure 1.1. A more technical discourse on the notion of pattern is given in Section 3.1.6 as a

generalization of exact symmetry. In Chapter 4 we expand this to define spatiotemporal

1

Figure 1.1. Color-enhanced compilation image of Jupiter’s clouds captured by NASA’s
Juno Spacecraft, taken on April 1 2019. While locally turbulent and chaotic at the
smallest scales, there is obvious large-scale organization. A few of the large horizontal
zonal bands can be seen, including the strong jet streams that separate adjacent bands.
Coherent vortices at all scales can be seen throughout, including the largest: Jupiter’s
famous Great Red Spot.

patterns as statistically-regular regions of generalized symmetries, which we refer to as

domains. The definition of domain is then used in Chapter 6 to rigorously define coherent

structures as persistent and localized deviations from these generalized spacetime sym-

metries. The formal definitions of domain patterns and coherent structures are seen as

forms of macroscopic self-organization in the system.

1.1 In Nature

In contrast with much of modern physics, which concentrates on the very small (quantum

mechanics) and the very large (cosmology), pattern and structure exist at the human

scale. Perhaps in part because we experience these phenomena on a daily basis, it is

easy to overlook that such collective organization is just as mysterious and unintuitive

2

as quantum mechanics and cosmology. When Boris Belousov discovered an oscillating

chemical reaction in the early 1950s, he was unable to publish because the established

wisdom at the time deemed this impossible, as it was seen as a violation of the 2nd

Law of thermodynamics, even though he provided the recipe for others to reproduce his

experiment [8]. It was perfectly acceptable for, say, clear chemical reagents to mix and

turn opaque. It was thought impossible for these reagents to apparently un-mix and the

solution turn clear again, as happens with the “chemical clock” discovered by Belousov.

Around the same time, however, Alan Turing showed mathematically that such chemical

oscillations can exist in open systems, for which the 2nd Law does not apply, and could

in fact be derived from simple models of reaction-diffusion systems [9] (the subtleties of

nonequilibrium processes in open systems which cannot be described by states that are

instantaneously in equilibrium were not well understood at this time).

This mysterious and unintuitive phenomenon, now know as pattern formation and

spontaneous self-organization, is not limited to chemical reactions. Patterns and structures

abound in nonequilibrium systems across all spatial scales [10, 1], from galactic structures

to planetary – such as Jupiter’s famous Red Spot [11, 12] and similar climatological

structures on Earth [13] – down to the microscopic scales of snowflakes [14] and bacterial

[15] and crystal growth [16]. Fifty years prior to the chemical oscillations studied by

Belousov and Turing, at the turn of the 20th century, the formal study of pattern formation

and spontaneous self-organization began with Bénard’s work on convective instabilities

in fluids [17], followed soon after by Lord Rayleigh [18] and G.I. Taylor [19], and others

later still [20, 21, 22, 23].

1.1.1 Near Equilibrium

To illustrate the basic concepts of pattern formation, consider the original Rayleigh-

Bénard (RB) convection system, which is simply a box of fluid heated from below. See

Figure 1.2. When the temperature gradient is low, heat is transported up through the

fluid via conduction, and the fluid velocity is everywhere zero. As the temperature gra-

dient is increased it will eventually reach a critical value and a moment of magic occurs.

All of a sudden, and all at once, the fluid conspires to form convective columns in, for

3

example, a hexagonal lattice, as convective transport becomes more favorable than con-

duction. As seen in Figure 1.3, the patterns of the convective columns are clearly visible

to the human eye and so the characteristic length scales of the patterned state is much,

much (about a million times) larger than those of the constituent water molecules. The

thermodynamic mechanism governing the critical point at which convective transport be-

comes more favorable depends on whether the fluid fully fills a closed tank, as depicted in

Figure 1.2, or whether it is a liquid with a free surface open to atmosphere, as is the case

with the convection cells shown in Figure 1.3. See Section 1.6.1 for further discussion.

Figure 1.2. Diagram of the experimental setup for Raleigh-Bénard convection. A box
of fluid is heated from below and cooled from above. Reproduced, with permission,
from Ref. [1].

We will refer to the spontaneous onset of patterns out of equilibrium, like the situation

just described, as nonequilibrium phase transitions [24, 25], due to the many similarities

with the more familiar equilibrium phase transitions. While emergent patterns can form

in equilibrium systems, such as strongly correlated electron materials [26, 27], we will

focus solely on nonequilibrium systems for this thesis. A crucial distinction, described

in more detail below, is the state selection criteria provided by the 2nd Law of Thermo-

dynamics that governs pattern formation in equilibrium. That said, much of the work

presented in this thesis concerns the nature of pattern and structure, regardless of their

physical origins. For instance, macroscopic correlation lengths — the spatial scale of co-

ordination among system constituents — are characteristic of pattern formation in and

out of equilibrium, but arbitrarily large correlation lengths may occur during equilibrium

4

phase transitions which do not produce patterns [28]. Indeed, scale-invariant states with

diverging correlation lengths must be distinguished from patterned states. We call it

patterned exactly because there is some level of intricate organization that can not be

captured by simple quantification of correlation length. Providing a formal mathematical

accounting of this notion of organization is the main goal of this thesis.

Figure 1.3. Close up image of a time lapse view of hexagonal cells in free surface Bénard
convection. Aluminum flakes were used to trace the fluid velocity of the convective
motion; the fluid moves up through the center of the cells and sinks at the edges.
Image used with the permission of The Parabolic Press [2].

How does nonequilibrium pattern formation happen? While it is unknown how such a

large number of molecules can all spontaneously organize collectively into intricate macro-

scopic patterns and structures, there is a lot that we do understand about the physics

taking place, particularly in the near-equilibrium regime where patterns first emerge. We

can understand the onset of patterns using bifurcation theory [29, 1, 30, 31], in close

analogy to second-order equilibrium phase transitions.

Patterns are born out of conflict and compromise. There are two competing forces

at play whenever patterns form: the inexorable pull towards thermodynamic equilibrium

(due to the 2nd Law) and an external push away from equilibrium (gradients in intensive

quantities drive fluxes in extensive quantities). We define a dimensionless bifurcation

parameter that is the ratio of these two competing forces and measures the distance from

5

thermodynamic equilibrium

R ∝ driving

dissipation
. (1.1)

This signifies that driving and dissipation are crucial ingredients for nonequilibrium pat-

tern and structure (which is why they have sometimes been known as dissipative struc-

tures [32, 33, 34], though we will not use that term here). A constant supply of energy,

and potentially other similar quantities, must be continuously pumped into the system

and simultaneously dissipated away to maintain nonequilibrium pattern and structure.

For RB convection, R is the Rayleigh number and is proportional to ∆T
νκ

, where ν is the

kinematic viscosity and κ the thermal diffusivity (additional constants are included to

non-dimensionalize R).

We assume the system is governed at the macroscopic level by some effective field

theory, given as a set of nonlinear partial differential equations [1]

∂tU(x, t) = F
(
U(x, t), ∂xU(x, t), ...;R) . (1.2)

The state of the system is given by U and varies smoothly and continuously in space x

and time t. Time evolution, as given by Equation (1.2), is governed by local interactions

that are applied uniformly in space and time (i.e. do not have explicit space or time

dependence) and depend on external conditions as encapsulated by the bifurcation pa-

rameter R. The local interactions are assumed to extend over a finite distance and thus

are a function of finitely many spatial derivatives of U . For fluid flows, these are the

Navier-Stokes equations, or some approximation thereof.

With fixed, gradient-free boundary conditions we have R = 0 and the system will reach

thermodynamic equilibrium with U uniform in space and time. If the boundary conditions

are fixed with non-zero gradients we have R 6= 0 and the system reaches a nonequilibrium

steady-state. Close to equilibrium, with R small but non-zero, the nonequilibrium steady-

state is known as the base state, which we denote U∗. The base state shares the symmetries

of the boundary conditions, so if the boundary conditions are time-independent then the

base state will also be time independent

∂tU
∗(x, t) = 0 . (1.3)

6

Below a critical value of R, Rc, the base state is stable. All infinitesimal perturbations,

δU(x, t) = Aeσteik·x, exponentially decay. At Rc the growth rate of a perturbation at

wavenumber kc becomes zero, and for R > Rc this perturbation grows. The base state

becomes linearly unstable at Rc and the patterned state with wavenumber kc becomes

the stable nonequilibrium steady-state for R > Rc [1, 35].

In the case of RB convection, R = 0 for zero temperature gradient and the resulting

equilibrium state has a uniform temperature equal to the temperature of the boundary

and fluid velocity zero everywhere. For small R > 0 the base state also has fluid velocity

everywhere zero, but now a linear temperature profile in the vertical direction, as dictated

by the Fourier heat law. The conduction state (the base state) becomes unstable at Rc

and for R > Rc the convection state with wavenumber kc takes over and becomes the

stable patterned state.

These three states, the equilibrium state, the base state, and the patterned state,

characterize nonequilibrium phase transitions that pass through them. The key feature

that distinguishes the three states is symmetry. The equilibrium state is defined by fixed,

uniform boundary conditions that smooth out any gradients in the system, thus making

the equilibrium state uniform in space and time. This is the state of maximal symmetry.

Introduction of non-zero gradients on the boundary give rise to the base state. This

breaks the system symmetry in the direction of the flux driven by the gradients. For RB

convection the temperature gradient of the box induces a vertical heat flux, breaking the

symmetry of the temperature field in the vertical direction. However, the temperature

field in the horizontal direction remains uniform for a fixed vertical position. As the

driving is increased further, and R increases past the critical value Rc, the patterned

state emerges and is characterized by symmetry breaking in directions orthogonal to the

driven fluxes. The hexagonal convection cells in the patterned state of RB convection tile

the horizontal directions. We see that the onset of patterns in a nonequilibrium phase

transition occurs through a sequence of progressively broken symmetries. The concept

of broken symmetry is an integral component of the theory developed here, and we shall

return to this idea several times throughout.

7

As mentioned above, there are some strong analogies between equilibrium phase tran-

sitions and nonequilibrium phase transitions. Both involve a rapid change in qualitative

behavior of the system as some control parameter passes through a critical value. In both

cases, the change in behavior involves breaking symmetry. A selection must be made

when symmetry is broken in both cases, and the selection is dictated by random, micro-

scopic fluctuations. When a spin system cools to the magnetic phase, the system can

either have all the spins align up or all align down. Similarly, when convection sets in for

the RB system, the convection columns have to organize so that adjacent columns flow

in different directions, but which columns flow up and which flow down depends on the

detailed conditions of the system leading up to the instability. This influence of small

fluctuations becomes important in the far-from-equilibrium regime.

From renormalization theory, we understand there is a universality to equilibrium

phase transitions [28]. The specific microscopic details of a system are inconsequential

for determining its critical behavior. There is a similar universality for nonequilibrium

phase transitions due to generic forms of bifurcation that can occur at Rc [29]. For

example, static striped patterns can occur in RB convection and the Belousov-Zhabotinsky

reaction-diffusion system, because the imaginary component of the temporal exponent of

the critical mode is zero for both.

The most significant distinction between the two types of phase transitions is found

in their names. Being in thermodynamic equilibrium, or not, makes a world of difference.

In equilibrium, thermodynamic quantities are always well-defined and crucially the 2nd

Law applies. Measuring entropy or free energy values is so important in equilibrium ther-

modynamics because the 2nd Law provides a selection principle of the unique equilibrium

state in terms of these quantities: the equilibrium state is that which maximizes entropy

or, equivalently, minimizes free energy, subject to boundary constraints. It can not be

stressed enough that there is no thermodynamic selection principle for nonequilibrium

states [36, 37]. Extremum principles based on entropy production have been proposed,

being perhaps the most straightforward nonequilibrium generalization of the 2nd Law,

but it has been shown that extremizing entropy production can not provide a universal

8

selection criteria for nonequilibrium states [38, 39].

Selection of the patterned state in nonequilibrium phase transitions comes not from a

thermodynamic state-selection principle, but as we’ve seen, from analysis of the dynamical

equations of motion. Linear stability analysis shows that a critical mode begins to grow as

the system moves through Rc, and perturbation theory (e.g. amplitude equations [40, 1])

shows how this growing mode saturates to create the patterned state. Which mode grows

and how it saturates is dictated, in this close-to-equilibrium regime, by the geometry of

the boundary conditions.

Notice that equilibrium thermodynamics is a static theory of state and what might

cause one state to change into another state. Time is not a thermodynamic variable.

Nonequilibrium, in contrast, is concerned with process. Even to determine time-independent

nonequilibrium states, we must invoke the dynamical equations of motion. Prigogine de-

scribes it succinctly [41]: equilibrium is about being, while nonequilibrium is about be-

coming. If there is to be a nonequilibrium selection principle, it will be one of process,

not of state. A leading candidate for such a theory employs information theory to define

a time-dependent thermodynamic entropy [39, 42], or path entropy [43], from which to

generalize the 2nd Law: the nonequilibrium state at time t is the final state that results

from the process that maximizes the time-dependent entropy from the initial state at

time t0, subject to macroscopic constraints of the process (e.g. thermal driving). While

this information-theoretic framework, known as the Principle of Maximum Entropy, adds

a satisfying logical foundation to equilibrium statistical mechanics and nicely generalizes

to linear near-equilibrium thermodynamics, it does not make novel thermodynamic pre-

dictions outside of these already-understood regimes. Near-equilibrium thermodynamics

is recovered using linear perturbation theory. Predictions for the far-from-equilibrium

frontier are thus out of reach, as the necessary calculations are intractable. We will see

that this kind of intractability is characteristic of the far-from-equilibrium regime where

we find patterns and structure in the natural world.

9

1.1.2 Far From Equilibrium

Here we use the term nonequilibrium phase transition to refer to the primary bifurcation

that occurs close to equilibrium. As described above, this is when the base state (the

nonequilibrium steady-state closest to equilibrium) first loses stability. The new stable

state that appears after this first instability is what we have referred to as the patterned

state. This state however can also lose stability as R is increased further beyond Rc and

subsequent bifurcations occur. Phenomenologically, the resulting states have a further

reduction in symmetry and exhibit more intricate patterns.

Nonequilibrium phase transitions have been thoroughly studied because they provide

a setting to study the onset of patterns that is amenable to mathematical analysis and

experimental investigation. This is due to simplified boundary conditions and the sim-

plicity of the base state, which is uniform in the orthogonal direction. However, most

of the interesting pattern and structure we observe in the natural world, such as in the

clouds of Jupiter seen above, occur far from equilibrium with R >> Rc. In the framework

of bifurcation theory, we can understand natural pattern and structure as resulting from

a series of many bifurcations that progressively reduce symmetry and increase complex-

ity. In fact, most natural patterns are far enough from equilibrium that all semblance of

symmetry in the observed patterns has been eliminated.

There is no general theory to predict what patterns and structures may emerge far

from equilibrium. As stated by Harry Swinney, “Far beyond the primary instability, each

system behaves differently. Details matter... There is no universality” [35]; and from

Philip Ball, “... the patterns of a river network and of a retinal nerve are both the same

and utterly different. It is not enough to call them both fractal, or even to calculate

a fractal dimension. To explain a river network fully, we must take into account the

complicated realities of sediment transport, of changing meteorological conditions, of the

specific vagaries of the underlying bedrock geology–things that have nothing to do with

nerve cells.” [10]

Thinking of far-from-equilibrium patterns emerging after a sequence of bifurcations

of the near-equilibrium base state gives us a conceptual framework for beginning to un-

10

derstand why details and history matter far from equilibrium. We saw above that when

symmetry is broken during a bifurcation a selection must be made by the system when a

patterned state grows and stabilizes (e.g. directions of convective columns in the RB sys-

tem). Far from Rc, not only must selections be made for individual patterned states, but

the selection of the new stable patterned state after the bifurcation is determined by micro-

scopic fluctuations; unlike nonequilibrium phase transitions, a continuum of patterns may

have positive growth rate when the current state becomes unstable during a bifurcation

far beyond the initial instability. If the system goes through several symmetry-breaking

bifurcations, many such compounding selections will be made. The resulting far-from-

equilibrium state will depend on the details leading to each individual selection, as well

as the history of all selections made.

This is not necessarily how far-from-equilibrium patterns form in nature. We know

the patterns in Jupter’s clouds did not arise from an irrotational ball of homogeneous

gas initially isolated from the Sun, with radiative flux and angular velocity slowly turned

up to their present values. Nonetheless, it is not hard to imagine that the emergence

of the observed patterns in Jupiter’s atmosphere similarly depended heavily on the de-

tails of Jupiter’s formation and the specific history of its atmospheric dynamics following

formation.

In either case, far-from-equilibrium patterns and structures present an enormous and

unique challenge. Equilibrium and nonequilibrium phase transitions provide a nice frame-

work for conceptualizing far-from-equilibrium patterns, but their technical tools break-

down and fail in this regime.

Historically, the primary objective in physics is discovering fundamental laws, given as

mathematical equations. Newtons laws of motion and gravitation, Maxwell’s equations

of electro-magnetism (which unify several physical laws discovered prior), the Navier-

Stokes equations of fluid dynamics, Einstein’s laws of relativity, the standard model of

particle physics. Pattern formation, particularly in fluid dynamics, shows that knowing

the equations governing complex phenomena is insufficient for full understanding. Despite

knowing the equations of fluid dynamics for over a century and intense interest in a pattern

11

forming system like Taylor-Couette flow, the full phase space of possible behaviors for

this system is still poorly understood [35]. Even outside of pattern formation, it has been

observed that knowing the equations of motion is not always sufficient. As Freeman Dyson

said of general relativity, “It often happens that the understanding of the mathematical

nature of an equation is impossible without a detailed understanding of its solutions. The

black hole is a case in point. One could say without exaggeration that Einstein’s equations

of general relativity were understood only at a very superficial level before the discovery

of the black hole.” [44]

For far-from-equilibrium patterns, the situation is even more troubling. Knowledge of

particular solutions of the system can still be insufficient for understanding. If analytic

solutions can be obtained for complex behaviors, the solutions may be too complicated

to provide much insight. This was the case for a solution of the constrained Euler beam

problem that involved pages of elliptic integrals [35]. Numerical solutions from computer

simulations are now an integral part of science that allow for the analysis of complex

systems for which analytic solutions can not be obtained. Having particular numerical

solutions can still not be enough. Fluid turbulence is a prime example. Despite know-

ing the Navier-Stokes equations for over a century and decades of countless numerical

solutions, turbulence remains a persistent mystery.

For the purposes of this thesis, if a particular system behavior can not be deduced

from the equations of motion governing the system, we refer to this behavior as emergent.

We may observe that the governing equations produce some emergent behavior through

simulation, but the current tools of physics can not tell us how the physical principles

encapsulated by the governing equations give rise to the observed behavior. Further, an

emergent behavior might be quite complex and thus difficult to even describe mathemat-

ically. Simple striped patterns that arise out of the primary instability in RB convection

may be easily described with Fourier modes. This makes the linear instability analysis of

this pattern tractable. Consider though the Great Red Spot of Jupiter. It is a dynamic

and irregular structure with diffuse boundaries. Fully describing the Great Red Spot with

Fourier modes is, in practice, infeasible. Section 1.6 gives a more detailed discussion of

12

complexity and emergence.

The work developed in this thesis is an attempt to make progress towards under-

standing natural patterns and structures in the challenging far-from-equilibrium regime.

Giving a formal mathematical accounting of complex pattern and structure, particularly

localized coherent structures, like the Great Red Spot of Jupiter, is the main emphasis.

The tools developed for this purpose will hopefully, in the future, be able to help elucidate

the physical and causal mechanisms that give rise to complex pattern and structure far

from equilibrium.

While there is no general theory for systems far from equilibrium, there are some

basic principles from what little is known about the physics of self-organization that

we will make use of. Knowing the equations of motion or even specific solutions is not

sufficient; they must be supplemented with new analysis tools. Because specific details

for each system matter, the instance-based models of machine learning are appealing for

this task as they learn from, and apply to, specific system instances. In the context of

dynamical systems, we are interested in behavior-driven (sometimes also called data-driven

or equation-free) modeling. Below we will give a brief overview of machine learning and its

relevance for this work, then we will motivate our particular behavior-driven model based

on intrinsic computation — an extension of statistical mechanics that uses computation

theory to capture pattern and structure in dynamical behaviors.

13

1.2 In Data

A new data-driven paradigm is beginning to take shape, centered around machine learn-

ing (ML), which has shown to be useful for scientific applications where the governing

equations are not known and we need to extract insight from noisy or imperfect data.

Perhaps less appreciated is the potential of using ML to study complex systems with well

known equations and high-fidelity simulation data, like cellular automata and fluid flows,

as a means of circumventing the difficulties these systems pose to traditional scientific

inquiry.

Machine learning has been remarkably successful in commercial applications, due to

its unprecedented ability to “find patterns in data”. If our interest is in finding patterns

and structure in natural systems, can we do this by running data from natural systems

through a machine learning algorithm? Unsurprisingly, it is not so easy.

While machine learning has already seen some success in scientific application, par-

ticularly in automated curation of large datasets [45, 46, 47], current ML models and

techniques that do not incorporate physical insights are insufficient for scientific discovery

and understanding [48, 49]. For a data-driven scientific paradigm1 to stand equal alongside

the hypothesis-driven paradigm, new data-driven methods are required that discover and

mathematically describe complex emergent phenomena, uncover the physical and causal

mechanisms underlying these phenomena, and are better able to predict these phenomena

and how they evolve over time.

1.2.1 Machine Learning

Machine learning is a large, rapidly expanding field of study [51, 52]. Here we will try to

give a brief overview of the relevant concepts; the details are largely unimportant for our

development. The goal is to introduce some of the difficulties with scientific ML and give

context for how the work developed in this thesis fits into the ML framework.

As a motivating example, consider the common task in computer vision to decide

1I do not embrace the “End of Theory” thesis [50]. Rather, data-driven science requires a new modality
of “theory” and “modeling” to extract actionable insight and understanding directly from data. This
is in contrast to the use of data just to verify and validate insight and understanding from theoretical
models.

14

whether a given object is present in an image or not. For example, is there a cat in an

RGB image that is 256 pixels by 256 pixels in size? We can formalize this by seeking a

function f : R3×256×256 → {0, 1}, where f outputs a 1 if there is a cat in the input image

and a 0 otherwise. Trying to design such a function by hand is a daunting task. Machine

learning algorithms instead attempt to learn (approximations of) such functions. If we

cannot write down an explicit mathematical expression for complex structures in far-from-

equilibrium systems, perhaps we can design an algorithm to learn such an expression.

But what does it mean for an algorithm to learn? From Ref. [53], “A computer

program is said to learn from experience E with respect to some class of tasks T and

performance measure P, if its performance at tasks in T, as measured by P, improves with

experience E”.

1.2.1.1 Tasks

The most common task in ML, as with the cat-in-an-image example, is classification. That

is, we seek a function that maps a high-dimensional input into some discrete categories

or classes, typically just a handful: f : RN → {1, ..., k}. Rather than just decide simply

whether an object is in an image, we can ask our algorithm to tell us where an object is in

an image. Bounding-box localization is the simplest; as the name suggests the algorithm

tries to return the original image with a tight bounding box around the desired object if

it is present in the image (i.e. find the smallest sub-image such that f on that sub-image

still gives the object class label). The most complicated localization task is segmentation,

which gives a pixel-level identification of the desired object if it is present. Formally,

an image segmentation algorithm learns a function that maps each pixel in the input to

a class label. A binary segmentation for the cat-in-an-image problem would map each

pixel to a class of either cat-pixel or not-cat-pixel. The task of coherent structure

discovery that we will deal with in this thesis can be framed as a spacetime segmentation

problem: given a spacetime field input we would like a pixel-level identification of any

coherent structures present in the field.

Another common task, regression, can be considered as a generalization of classification

with a continuum of categories: f : RN → R. This is most commonly encountered in

15

science applications as curve fitting. There are many other types of tasks in machine

learning which we will not discuss here.

1.2.1.2 Experiences

Most of the current commercial success of machine learning has come in the form of super-

vised learning, where the algorithm learns from ground-truth labels y given in a training

dataset: (x ∈ RN , y ∈ {1, ..., k}). For example, humans have hand-labeled thousands

of images to generate ground-truth training data for image classification learning (e.g.

a human labels a training image 1 if it contains a cat and 0 if it does not) [54]. This

presents an immediate difficulty for scientific applications, where ground-truth often does

not exist. In fact, the whole notion of scientific discovery precludes the notion of a ground-

truth training dataset. Discovery is the act of learning something totally new and often

unexpected.

Discovery in machine learning can only be achieved through unsupervised learning,

where the algorithm learns just from unlabeled inputs x ∈ RN . This then relies on ex-

ploiting some notion of structure in the data. Presently we are interested in discovering

physical structure and pattern in spatiotemporal data. This is a fundamentally unsuper-

vised problem; there is no ground-truth. In essence, we seek to define a ground-truth for

coherent structure segmentation from physical principles.

1.2.1.3 Performance

Let’s briefly return to supervised learning. Consider a parametric classifier model f(x, ~θ)

that gives a class label y for a given input x and fixed set of parameters ~θ. We can

train the model using ground-truth labels in a training dataset by defining a loss func-

tion L
(
f(x, ~θ), y

)
and error rate J(~θ) = E(x,y)∼P̂data

L
(
f(x, ~θ), y

)
. The error rate quan-

tifies how often the model gives the correct label for a given training input. Typi-

cally max likelihood, J(~θ) = E(x,y)∼P̂data
log Pmodel(y|x), or mean-squared-error, J(~θ) =

1
2
E(x,y)∼P̂data

||y− f(x, ~θ)||2, are used. Because P̂data is the empirical distribution from the

training set, J(~θ) is the training error. The model is trained by tuning the parameters ~θ

to minimize training error. Typically J(~θ) is differentiable so that the minimization can

be done through gradient descent.

16

Machine learning is distinct from pure optimization because what we actually care

about in machine learning is minimizing an objective function (e.g. error rate) according

to the data-generating distribution Pdata that P̂data is sampled from. This is known as

generalization – the ability to perform well, after training, on previously unseen data. We

want to fit a model that not only makes training error small, but makes the gap between

training and test error small. Underfitting of an ML model occurs when training error

is too large, and overfitting is when training error is small but the gap between training

error and test error is too large. Generalization performance is often described in terms

of a trade-off between bias and variance. Bias represents erroneous assumptions in the

model that prevent it from finding relevant relations between inputs and outputs, and

thus leads to underfitting. Variance represents the sensitivity of f to small differences in

input that can cause the model to overfit to random fluctuations in the training data. See

Ref. [55] for an in-depth discussion.

How can we train unsupervised algorithms without ground-truth labels to compare

against? More troubling, how can we evaluate the effectiveness of a trained model? This

is an extremely difficult problem and something we will grapple with throughout.

In some unsupervised problems the input data can actually be used to provide labels

for itself and thus give a loss function that can be used to train parametric models. This

is known as self-supervision, and as an example can be used for time series prediction

where the prediction error provides a loss function. Self-supervision however can not be

directly used in this way to train a parametric model to discover pattern and structure in

physical data. (As we will see though, one of the physical insights that will be discussed

further in Section 1.3 allows for something akin to the predictive self-supervision just

discussed. While not done here, this opens the possibility of defining a loss function to

train parametric models like artificial neural networks.) Without any kind of error metric

to optimize, we must rely on physical insights to create nonparametric models.

1.2.2 Representation Learning

Much of the effort in machine learning comes in the form of learning good representations

for the input data [56]. Intuitively, we can imagine that there are some key latent features

17

of a cat (e.g. whiskers, pointy ears, etc.) that makes them easily recognizable in an image.

If an ML algorithm can identify these features, it is much easier to determine if there is

a cat or not.

Let’s state this idea of feature extraction a bit more formally. Consider data points

x ∈ RN that are split into two classes y1 and y2. If one can insert a hyperplane into RN

such that all points in class y1 are on one side of the hyperplane and all points in y2 are on

the other side, these classes and their labeled data points are said to be linearly separable.

Such classification problems are easy, as algorithms like support vector machines [57] exist

that are guaranteed to converge to an optimal classifier for linearly separable data. Most

classification problems are not linearly separable, but if we can find a transformation ϕ(x)

of the data (known as a feature map) such that points in the transformed space (known

as the feature space or latent space) are linearly separable, then the classification task

becomes easy again.

To demonstrate, consider the toy example of binary circle classification in R2 where

points inside the circle of radius R are in class y1 and points outside the circle are y2.

There is no way to draw a straight line (a hyperplane in R2) that separates points in

y1 from points in y2. Let xi = (xi0, x
i
1) denote the ith data point with components xi0

and xi1. If we keep these two components in R2 as features, but add an additional radial

feature, (x0)2 + (x1)2, then data points in the three-dimensional feature space of ϕ(x) =

(x0, x1, x
2
0 + x2

1) can be separated by a hyperplane at R in the third dimension. Points in

class y1 will lie below the plane and points in y2 will be above.

In most real-world problems, an appropriate choice of the feature map ϕ(x) is not so

obvious. Kernel methods are a powerful class of ML models for which the feature map need

not be given explicitly because the model only requires inner products in feature space.

The inner products can be specified via a kernel function k(xi,xj) = 〈ϕ(xi), ϕ(xj)〉.
If k(xi,xj) is a positive definite kernel (i.e. satisfies Mercer’s condition [58]) then it

implicitly defines a feature map. In some cases, as with the Gaussian kernel k(xi,xj) =

exp(− ||xi−xj ||2
2σ2), the implicit feature space is infinite dimensional [59] and thus likely to

linearize the problem.

18

Figure 1.4. Depiction of the binary circle classification problem and its solution using
the “kernel trick”. On the left is the problem in the original observable space. Points
inside the circle are colored red, and points outside colored purple. No hyperplane can
separate these points. On the right are the points in the transformed latent space with
an extra radial dimension. In this space a horizontal plane can be drawn at a height
equal to the circle’s radius that will separate points in the two classes. Credit: Shiyu
Ji [3].

This “kernel trick” tends to work well for relatively simple problems like recognizing

hand-written digits, but more advanced problems like identifying and localizing cats in

images requires much more complicated features than kernel methods are capable of,

even with infinite-dimensional feature spaces. For the circle classification example above

we can see the utility of the kind of algebraic features used in kernel methods. It is

perhaps not surprising that such transformations of a full image are not as effective for

identifying cats in images. The dramatic success of deep learning [60] can largely be

attributed to automated feature learning over a much larger class of complex features.

Convolutional neural networks are particularly effective for computer vision tasks because

of the translationally-invariant localizing features they are able to learn. The successive

layers of a deep neural network learn transformations that extract abstract features like

edges, textures, etc. Like kernel methods though, finding effective features makes the

classification problem linear (or as close to linear as possible); the final layer of most deep

19

learning classifiers is a standard linear classifier that places hyperplanes in the learned

feature space.

For methods like supervised deep learning, the user need not specify in any form what

features the algorithm should try to learn. Given an expressive enough architecture and

enough labeled training data, the network can figure it all out for itself. Representation

learning is a subfield of ML that attempts to more directly specify or control the latent fea-

tures or representations [56]. This is particularly useful in high-dimensional unsupervised

learning problems where relatively few features are desired to help discover “patterns and

structure” in the data. Such methods fall under the heading of dimensionality reduction.

The canonical technique is principle component analysis (PCA) [61], in which the data

is transformed into a linearly uncorrelated basis set by taking the leading eigenvectors of

the data covariance matrix. PCA is often used in computational fluid dynamics (though

typically called Proper Orthogonal Decomposition in that context); for example in re-

duced order modeling where expensive direct numerical simulations of the Navier-Stokes

PDE are replaced with cheaper solutions of a finite number of ODEs that are Galerkin

projections of POD modes [62].

While the features learned by convolutional neural networks are much more effective

for identifying cats in pictures than the features learned by kernel methods, deep neural

networks are inadequate for extracting physically-meaningful pattern and structure from

physical data. Deep neural networks are surely expressive and flexible enough to express

these features, but we emphasize again that ground truth for physical pattern and struc-

ture does not exist. Thus the problem for deep learning is not in expressing the features,

but in how to learn the features. Our quest here is to give a rigorous and principled

definition of pattern and structure in nature from physical principles, and deep learning

will not be of help for this task.

Operator-theoretic methods have risen to prominence as physics-based representation

learning for high-dimensional dynamical systems. Consider a discrete-time dynamical

system,

xt+1 = f(xt) . (1.4)

20

The Koopman operator K [63, 64] gives the dynamics in feature space,

(Kϕ)(x) = ϕ
(
f(x)

)
. (1.5)

Here the features (typically called observables in this context) are scalar functions on the

state space, ϕ : RN → R, i.e. individual components of the feature maps described above.

The Koopman operator acts on the Hilbert space of all possible observables. Analogous

to the kernel trick, the boost to infinite dimensions linearizes the dynamics; K is a linear,

infinite-dimensional operator. Any nonlinear dynamic f can be made linear through K,

but at the price of requiring infinite dimensions.

Finite-dimensional approximations of K have shown to be quite useful [64, 65]. The

popular Dynamic Mode Decomposition [66, 67] is a simple linear method that approxi-

mates the infinite-dimensional Hilbert space with a finite-dimensional subspace spanned

by linear monomials. DMD attempts to find the best linear approximation to f and is

most effective in describing growing or decaying oscillatory modes. Nonlinear generaliza-

tions like Extended Dynamic Mode Decomposition [68] and Time-Lagged Independent

Component Analysis [69] perform regression in a finite-dimensional subspace spanned by

a given library of (potentially nonlinear) observable basis functions to approximate K.

These nonlinear methods can also be used to approximate the Perron-Frobenius operator,

which is the dual of the Koopman operator and evolves distributions over the state space.

Modes of finite-dimensional approximations to the Perron-Frobenius operator (and the

related transfer operator) are used to extract slow modes (metastable states) [70] and

almost-invariant sets [71, 72].

Operator-based methods are the most similar approaches to the physics-based repre-

sentation learning methodology for spatially-extended dynamical systems that we develop

here. While the physical principles we pursue for a general theory of pattern and structure

will take us in a different direction, there are many similarities with operator methods.

However, a detailed technical discussion of these similarities is outside the scope of this

thesis.

To recap, we seek a theory of pattern and structure in far-from-equilibrium physical

systems. Because these are emergent behaviors that can not be deduced from the govern-

21

ing equations we turn to data-driven methods, rather than traditional analytics, to study

structured behaviors directly. That is, we seek a behavior-driven theory of pattern and

structure. Machine learning methods like deep learning are capable of extracting com-

plicated patterns and structure from data, but only if trained on ground-truth examples,

which do not exist for this problem and are in fact what we want to define. Unsupervised

operator-theoretic dimensionality reduction methods come closest to what we seek, and

indeed are capable of capturing physically-meaningful structures in certain cases. The

formal theory we develop captures a more general and abstract notion of pattern and

structure, and because it is a behavior-driven theory it provides an unsupervised repre-

sentation learning method to extract these features directly from spatiotemporal data.

To establish context for this theory we start with dynamics, where we find that non-

linearity is, on the one hand, required for the emergence of complex structures, but on

the other an enormous challenge for traditional mathematical analysis.

22

1.3 In Theory

From the outset of modern dynamical systems theory Poincaré had run up against what

we now call deterministic chaos and realized the predictive limitations for complex dynam-

ical systems [73]. Not only are nonlinear systems generally not solvable, their exponential

sensitivity to initial conditions can make solutions difficult or impossible to even reason-

ably approximate [74]. Initiated by Poincaré, the emphasis for such systems moved to

qualitative analysis, e.g. classifying types of permitted orbits based on their stability and

topological properties [75, 76]. Consider a dynamical system ẋ = F (x), x ∈ M , where

the phase space M is a manifold of dimension n and F : M → Rn is a vector field. Rather

than seek a general solution x(t) for any initial condition x0 ∈ M , we are interested in

qualitative properties of the orbits traced by x(t). Does x(t) approach a fixed point or

more general limit cycle as t → ∞? For what values of x0 ∈ M do the orbits reach this

limit cycle?

When speaking of a system’s behaviors we formally mean its orbits — the trajectories

x(t) traced out by the time-evolution of an initial condition x0. This may seem like unnec-

essary terminology for low-dimensional systems, but it is rather useful in high-dimensional

systems as very high or infinite dimensional spaces are difficult to conceptualize. When

viewing video of a fluid flow it is much easier to track qualitative behavior of the flow,

rather than track the evolution of every point in space over time. It should be noted that

we are capable of tracking qualitative behavior precisely because the states and orbits of

the fluid flow are, in some way, structured.

Qualitative dynamics seeks to answer questions about a system’s behaviors, its allowed

orbits, by analyzing specific solutions (rather than general solutions) of the equations of

motion. For instance, under what conditions is a solution stable to small perturbations?

This is feasible in low dimensions and for certain idealized cases in high dimensions.

For more complex systems this is no longer feasible. We instead seek to use a system’s

behaviors to answer questions about the system [77]. Often in these systems the interest

is in certain properties of the complex behaviors themselves and how the behaviors may

undergo drastic spontaneous change, as with the fluid instabilities studied by Bénard,

23

Rayleigh, and Taylor. In particular, we are interested here in behaviors that have complex

pattern and structure, how these behaviors may spontaneously arise, and how they evolve

over time.

Our study of pattern and structure in a system’s orbits has its foundations in the field of

symbolic dynamics [78], which lies at the interface of dynamical systems and computation

theory. The core physical principle of our physics-based machine learning approach is

broken symmetry. The minimal machine presentations [79, 80, 81] of symbolic dynamics

provide a mathematical formalism to define a notion of pattern as generalized symmetry.

Building on this, our theory defines coherent structures in terms of locally-broken patterns

(generalized symmetries). This development is outlined below. Symbolic dynamics is

discussed further in Section 2.3. Machine presentations are discussed in Chapter 3, with

the algebraic theory of patterns as generalized symmetries given in Section 3.1.6.

A natural simplification for dynamical systems is to discretize time. This can be done,

for example, using Poincaré return maps [73, 82] which measure intersections of continuous

orbits with a subspace of M that is transverse to the flow f . Qualitative behavior of orbits

are persevered by Poincaré maps; (quasi-)periodic orbits of the continuous system lead

to (qusi-)periodic orbits of the return map, etc. However time is discretized, we can

generally consider a discrete-time dynamical system as a compact metric space M but

now with a continuous function f : M → M that simply maps from the phase space

to itself. Orbits are given as the iterates {x0, f(x0), f 2(x0), f 3(x0), ...}. Originating with

Hadamard’s study of geodesic flows on surfaces of negative curvature [83] (contemporary

with Poincaré), symbolic dynamics makes the further simplification of discretizing the

phase space M . Consider a measurement partition g : M → A such that g uniquely

maps each x ∈ M to a symbol in the finite set A. Here the system’s orbits are replaced

with sequences of symbols from A, and the potentially complicated dynamic f is replaced

with a trivial shift dynamic σ that simply moves indices of each symbol in the sequence.

System behaviors are now given as bi-infinite symbol sequences. The conversion of a

continuous dynamical system into sequences of observed measurement symbols is referred

to here as dynamical structure modeling, and is discussed further in Section 2.1.2, with

24

details of phase space discretization through measurement partitions given in Section 2.2.

These symbol sequences are the objects of study of symbolic dynamics, and allow for the

use of computation-theoretic models to formally capture the pattern and structure of the

dynamical evolution of symbols.

The collection of all bi-infinite sequences of symbols from A is known as the full-A shift

and is denoted as AZ. A shift space is a compact shift-invariant subset of AZ, denoted as

X . There are many ways to specify a particular shift space; the most common is through

specification of a set F of forbidden words. The shift space XF ⊆ AZ is the set of all

bi-infinite symbol sequences that do not contain any finite sequences in F . If F is finite

then XF is a shift of finite type, originally coined intrinsic Markov chains as the support

of any Markov chain is a shift of finite type. If F is a regular language [84] then XF is

known as a sofic shift. The class of sofic shifts is the smallest collection of shift spaces

that contains all shifts of finite type and is closed under continuous surjective maps [85].

The notion of forbidden words in system behavior starts us towards a theory of pattern

and structure. If the set of forbidden words for a system has a high computational

complexity then the system itself must be, in some way, highly complex. But how do we

make this operational? How does specification of what can not happen induce structure

in what can happen? This is where we need the notion of a model of system behavior,

and more specifically, computation-theoretic models of algorithm and effective procedure

[86]. One can think of a pattern as being a predictive regularity. Similarly, a model can

be thought of as a compressed representation that predicts a system’s allowed behaviors.

Knowing what is not allowed enables a model to better predict what is allowed. Once

we have a model of a system’s behaviors we can ask how much computational resources

the model needs — the number of bits the model has to store about the process — in

order to make its predictions. There may be many models that optimally predict a given

system’s behaviors. However, there will always be some lower bound on the minimal

computational resources required, and we are thus interested in minimal models. For a

model to optimally predict with minimal resources that model must capture pattern and

structure present in the system’s behaviors.

25

Indicative of the interesting connections between complex dynamical systems and com-

putation theory provided by symbolic dynamics, sofic shifts are those that can be defined

by finite automata models. Every sofic shift X can be presented by a minimal finite

automata that generates exactly the elements of X . One important property to highlight

here is that sofic shifts and their presenting automata have a defining semi-group alge-

bra [85, 87]. Symmetry is perhaps the most important and useful idea in all of physics.

In scientific machine learning, physics is most often incorporated through symmetry con-

straints, using group equivariance [88, 89, 90]. For pattern and structure, symmetry and

its group algebra is too strict. The semi-group algebra of sofic shifts provides a mathe-

matical formalism for capturing pattern and structure as generalized symmetries of the

system.

Though symbolic dynamics originated as a tool for studying dynamical systems through

measurement discretization, the field itself has largely been concerned with the mathemat-

ical properties of abstract shift spaces. In parallel to the study of shift spaces, the early

work in dynamical structure modeling (also called nonlinear modeling) first introduced

the quantitative information measures of Shannon’s theory of communication [91] to dy-

namical systems using discretizing measurement partitions [92, 93, 94, 95, 96, 97, 98]. A

more in-depth historical review can be found in Ref. [99]. Building on these foundations,

a new generation of physicists grappling with the implications of deterministic chaos,

most notably Wolfram [100, 101], Grassberger [102], and Crutchfield [103], first employed

the machine presentations of shift spaces to analyze the complexity of dynamical sys-

tems. Crutchfield and his collaborators used information theory to synthesize symbolic

dynamics and its computation-theoretic models with statistical mechanics to develop an

operational framework of pattern and structure for complex natural systems. This body

of theory is called computational mechanics [104].

1.3.1 Computational Mechanics

To capture pattern and structure in ensembles of behaviors computational mechanics

employs a minimal, but now stochastic, model that optimally predicts the distribution

over behaviors. It does so by relying on a weak notion of causality; the assumption that

26

the system is a channel [105] that communicates its past to its future through the present.

This leads to the causal equivalence relation, which will be described in more detail below

and in Chapter 3;

pasti ∼ε pastj ⇐⇒ Pr(Future|pasti) = Pr(Future|pastj) . (1.6)

The equivalence classes over pasts induced by the causal equivalence relation are known

as the causal states of the system; they are the unique minimal sufficient statistic of the

past for optimally predicting the future, and are analogous to the states of a presenting

automaton for a sofic shift. The idea of internal states of machines being equivalent

histories goes back to the origins of the physics of computation, as outlined in Section 2.1.1.

Notice the causal states and the causal equivalence relation they are built from do not

reference any governing equations of motion. Computational mechanics is a behavior-

driven theory; pattern and structure of a system’s behaviors are discovered directly from

the behaviors themselves. This is in contrast to “symbolic regression”, in which one

attempts to discover the equations of motion by fitting the observed data to some pre-

specified function basis [106, 107, 108, 109]. The machine presentations discovered by

computational mechanics provide a more general and abstract representation of the sys-

tem’s dynamics from which pattern and structure may be extracted. As we discuss more

in Section 1.6, an alternative modeling paradigm like machine presentations is required

for emergent behaviors that can not be deduced from the equations of motion. Hence we

emphasize that our use of behavior-driven models is not because we just don’t know the

governing equations for the systems we are interested in; rather it is that the equations

can not help us understand the complex emergent behaviors we are interested in (and so

discovering the governing equations is similarly not helpful for this work).

Like the use of Koopman modes for dimensionality reduction, the latent causal state

representations are accessed through an infinite-dimensional feature space. For the Koop-

man operator, this is the space of all observables; for causal states it is the joint space of

infinite-length pasts and futures. Similarly, as all dynamics are linearized in the observ-

able feature space of the Koopman operator, so are they linearized in the feature space

of pasts and futures via the shift operator. The linear shift dynamic in the joint feature

27

space of pasts and futures is the data-generating process that gives the data-generating

distribution Pr(Future|past) which defines the causal states.

Most of the development of computational mechanics has been for strictly temporal

systems. Shalizi, along with Hanson and Crutchfield, developed the foundations for com-

putational mechanics in spatiotemporal systems. The key step in moving to spacetime

is to use lightcones as local notions of past and futures, so that two past lightcones `−i

and `−j are causally equivalent if they have the same conditional distribution over future

lightcones;

`−i ∼ε `−j ⇐⇒ Pr(L+|`−i) = Pr(L+|`−j) . (1.7)

The equivalence classes induced by (1.7) are called local causal states [110]. These are

the main objects of interest for this thesis. We will use the local causal states to create

an unsupervised physics-based representation learning method that extracts (potentially

hidden) pattern and structure in spatiotemporal systems.

The ε-function, which generates the causal equivalence classes, is the feature-map

from past lightcones to local causal states; ε : `− 7→ ξ. Segmentation of a spatiotemporal

system is achieved by mapping a spacetime field x to its associated local causal state field

S = ε(x): every local point in spacetime x(r, t) is mapped to its latent local causal state

via its past lightcone ξ = S(r, t) = ε
(
`−(r, t)

)
. Crucially, this ensures the global latent

variable field S maintains the same coordinate geometry of x so that localized structure

in x can be identified via properties of S in the same region.

We discussed in Section 1.2 how deep neural networks are capable of learning compli-

cated and powerful representations of image data when trained on ground-truth labels.

But deep neural networks can also be used for unsupervised representation learning using

the autoencoder framework. Autoencoders are feedforward neural networks that attempt

to learn the identity function through a bottleneck latent space: an input X is encoded

into a latent space Z = ϕ(X), where dim(Z) << dim(X), and then a decoding is learned

from the latent space back to a reconstruction of the input X = ϕ−1(Z). The intuition

behind how autoencoders learn structural representations of their input is quite similar

to that of the local causal states; to optimally decode the input from a minimal encoding,

28

that encoding must capture pattern and structure in the input. Autoencoders however

have not been shown to be capable of capturing the kind of physical pattern and structure

we are interested in here from snapshot images of spatiotemporal systems [111]. Given

the physical insights of computational mechanics, this is not surprising. Autoencoders

used in this way do not take dynamics and time evolution into account.

(X)
(
S = ε(X)

) (
X = ε−1(S)

)

(
S̃ = Φ(S)

) (
X̃ = ε−1(S̃)

)

encode: ε decode: ε−1

Φ

decode: ε−1

I ≈ ε−1ε

Figure 1.5. Local causal states as predictive spacetime autoencoders. An observable
spacetime field X, up to time t (shown as a red horizontal line), is mapped to the local
causal state field S = ε(X). Using, ε−1, a reconstructed spacetime field can be created
X = ε−1(S). With the inferred stochastic dynamic over local causal states, Φ, the
states can be evolved forward in time to produce a forecasted local causal state field
S̃ = Φ(S). The forecasted state field is then mapped to a forecasted observable field

X̃ = ε−1(S̃).

With this said, we can formally connect local causal states with autoencoders. A

stochastic inverse of the ε-function, ε−1, can be defined that reconstructs an observable

spacetime field from a local causal state field. From this, we can view the local causal states

as a spacetime autoencoder; as shown in Figure 1.5 the ε-function encodes an observable

spacetime field x to the compressed latent field S and ε−1 decodes to a reconstructed

observable field x = ε−1(S).

There are several points to note. First, unlike typical neural network autoencoders,

the local causal states are nonparametric models and so rather than using the encoding

and decoding together to train parameters like neural network autoencoders, the ε-map

29

and its inverse are learned directly by approximating the local causal equivalence relation

from data. Second, as already mentioned, a crucial distinction is that the ε-map encoding

is done locally so that the latent space and observable space share a spacetime coordinate

geometry. The latent space of a neural network autoencoder does not share geometry with

its inputs because of how the bottleneck is created. For local causal states approximated

from real-valued spacetime data, the bottleneck comes from having a finite number of

latent local causal states. Lastly, as mentioned, taking temporal evolution into account is

critical. Because of this, viewing local causal states as spacetime autoencoders in this way

is not particularly useful. However, a stochastic dynamic can be defined over the local

causal states using Markov shielding (see Section 3.2.2.3 for Markov shielding). This,

combined with the ε−1 decoding, allows for spacetime forecasting; infer the local causal

states and their dynamics up to the present time, evolve the states forward in time, then

decode to a predicted observable field. This view of the local causal states as predictive

spacetime autoencoders is useful, as it provides an objective metric for optimal (temporal)

prediction through a minimal latent space that can help deal with, and correct for, the

approximations that are necessary for estimating causal equivalence from data. Having

this performance metric also opens the path for self-supervised training of parametric

neural network models (though we do not do so in this thesis).

30

1.4 In Cellular Automata

In the strictly temporal case, a minimal model that optimally predicts the future from

the past captures the structure of the system’s temporal evolution. It is less clear, in the

spatiotemporal case, whether local models that optimally predict future lightcones from

past lightcones at each point in spacetime can capture collective organized structures over

extended regions in space and how they evolve in time to produce spacetime structures.

To investigate the capacity of the local causal states to capture extended spacetime

pattern and structure we start with the simplest mathematical models of pattern forma-

tion. Cellular automata (CA) are fully-discrete spatially-extended dynamical systems.

Space is discretized into a regular lattice, and each site on the lattice takes values from

a discrete alphabet x ∈ A. The spatial lattice evolves in discrete time steps according to

a local update rule; each site xr
t (subscripts denote time, superscripts sites) is updated

according to a local update rule φ that is a deterministic function of the radius R neigh-

borhood of xr
t . Because each site takes discrete values, there is a finite number of possible

neighborhood values. Thus φ is given as a lookup table that specifies the output for each

possible neighborhood. The full spatial lattice is updated by synchronous application of

φ at each site on the lattice. Spacetime fields x of a CA are the orbits of the evolving

spatial lattice. CAs are described in more detail in Section 4.1.

This very simple form for the equations of motion, which can be carried out by hand,

is capable of producing arbitrarily complex behaviors; many cellular automata support

universal computation and thus in principle can be used to reproduce any scientific sim-

ulation. Even in the simple class of elementary cellular automata (ECA), one spatial

dimension with R = 1 and A = {0, 1}, at least one ECA can support universal computa-

tion and many others produce organized pattern and structure that spontaneously emerge

from random initial conditions. As such, cellular automata, and ECAs in particular, have

become flagship models of spontaneous self-organization. Cellular automata are also very

important models of complex systems because of the dual role they play as self-organizing

dynamical systems and models of distributed computation. As we will see in more detail

in Chapter 2, there are many interesting connections between models of computation and

31

complex dynamical systems, and cellular automata comfortably play both roles.

An early indication that local causal states are indeed capable of capturing collective

structure and organization in spacetime was Shalizi et al’s use of the local statistical com-

plexity — the point-wise entropy over local causal states — to outline coherent structures

in cellular automata [112]. The local statistical complexity is used as a diagnostic scalar

field [113] from which coherent structures are visually identified. However, we have found

that local statistical complexity can produce both false negative and false positive identifi-

cation of known coherent structures in CAs. Misidentifications occur due to a mechanism

we have called local causal state contamination.

Here we seek not just an objective method of identifying coherent structures, but a

formal and principled accounting of organized pattern and structure using the local causal

states. To do so, we want to use algebraic and geometric properties of the local causal

state fields S = ε(x), rather than rely on the local statistical complexity. The subjective

nature of coherent structure detection using local statistical complexity allows for some

wiggle room in local causal state reconstruction. For our purposes, we need a more

exact reconstruction technique with convergence guarantees. We created the topological

reconstruction technique that enables exact reconstruction of finite approximations to

the topological variants of the local causal states, with convergence guarantees using the

number of unique (`−, `+) pairs seen during inference [114]. See Section 4.2 for more on

topological reconstruction.

Using topological reconstruction, we show in Chapters 4 and 5 that invariant sets

in the observable CA field x correspond to spacetime symmetries in the corresponding

latent local causal state field S = ε(x) [115, 114]. These spacetime invariant sets and

associated regions in general CA spacetime fields are known as domains [5], in analogy

with equilibrium statistical mechanics. Domains are formally defined in Section 4.4. They

generalize the notion of spacetime pattern associated with regular symmetry. Explicit

symmetry domains, like the hexagonal cells of RB convection, exhibit spacetime symmetry

in the observable field, and hence also in the local causal state field. There are invariant

sets of CAs that have spacetime symmetry in the local causal state field, but not in the

32

observable spacetime field. As we will see, although the observable fields of these hidden

symmetry domains do not posses explicit symmetry, they do have a form of stochastic

symmetry. Interestingly, domains of cellular automata appear to be related to additive

dynamics of the CA, or more generally permutive dynamics [114], as detailed in Chapter 5.

Using domains as a formalization of generalized patterns in spacetime, in Chapter 6

we give a rigorous and principled definition of coherent structures in cellular automata

as spatially localized, temporally persistent non-domain regions in spacetime [115]. This

gives a formal definition to the notion of coherent structures as locally broken symmetries.

Complications due to contamination arise in practice when trying to objectively identify

coherent structures in CAs using this definition. Fortunately, topological reconstruction

allows for a method of correcting for contamination that identifies CA structures that

agrees well with an established method (known as domain particle interaction decompo-

sition [5, 116, 4], described in Section 4.4.1) that filters out spatial regions incompatible

with the invariant set of spatial configurations [115]. A sample coherent structure seg-

mentation of ECA rule 110 using the local causal states is shown in Figure 1.6. The

background domain states have been identified from their spacetime symmetry and all

of these domain states in the local causal state field are mapped to the color white in

the filter. All other non-domain states, which highlight the coherent structures and their

interactions, are colored black in the filter. We emphasize that this kind of visual filter-

ing is only possible due to the shared coordinate geometry of the observable spacetime

field and the local causal state latent field. Other examples are given in more detail in

Chapter 6.

Taken together, these results on cellular automata show that the local causal states,

designed for optimal local prediction over lightcones, can, in a principled way, capture

collective pattern and structure in spacetime. However, cellular automata are idealized

mathematical models. Can these local causal state techniques be extended to the pat-

tern and structure found in natural systems far from equilibrium? As a behavior-driven

model, the local causal states require only spacetime fields, whether they are from cellular

automata or general circulation climate models. The main practical difference between

33

18

(a) Raw spacetime field.

(b) Local causal state domain-nondomain filter.

FIG. 7. ECA 110 structures: (a) A sample field evolved from a
random initial configuration. (b) A local causal state domain-
nondomain filter with domain sites in white and nondomain
in black. Lightcone horizons h≠ = h+ = 3 were used.

from the heightened complexity of its domain. Exactly
how, though, remains an open problem.

C. Hidden stochastic symmetries

Our attention now turns to ECAs with hidden sym-
metries and stochastic domains. These are the so-called
“chaotic” ECAs. Since the structure of an ECA’s domain
heavily dictates the overall behavior, stochastic domains
give rise to stochastic structures and hence, in combi-
nation, to an overall stochastic behavior. To be clear,
since all ECA dynamics are globally deterministic—the
evolution of spatial configurations is deterministic—the
stochasticity here refers to local structures rather than
global configurations. In contrast to explicit symmetry
ECAs whose structures are largely identifiable from the
raw spacetime field, the structures found in stochastic-
domain ECAs are often not at all apparent. In this case
the ability of our methods to facilitate the discovery and
description of such hidden structures is all the more impor-
tant and sometimes even necessary. While the distinction

between stochastic and explicit symmetry domains does
not make a di�erence when determining DPID’s space-
time invariant sets, local causal state inference is relatively
more di�cult with stochastic domains, usually requiring
large lightcone depths and an involved domain-structure
analysis.

Here, we examine ECA 18 in detail, as its stochastic
domain is relatively simple and well understood. An
empirical domain-structure analysis of ECA 18 was first
given in Ref. [105] and then more formally in Refs. [106–
109], which notes the domain’s temporal invariance. It was
not until the FME was introduced in Ref. [50] that this
was rigorously proven and shown to follow within the more
DPID general framework. The distinguishing feature of
ECA 18’s domain observed in the early empirical analysis
was that the lookup table „18 becomes additive when
restricted to domain configurations. Specifically, when
restricted to domain, „18 is equivalent to „90, which is the
sum mod 2 of the outer two bits of the local neighborhood;
xr
t+1 = „90(xr≠1

t xr
txr+1

t) = xr≠1
t + xr+1

t (mod 2).
ECA 18’s structures illustrate additional complications

of local causal state analysis with stochastic symmetry
systems. Nondomain states of ECA 54 and other explicit
symmetry ECAs always indicate a particle or particle
interaction, after transients. This is not the case with
chaotic ECAs, and our formal definition is needed to
identify ECA 18’s coherent structures.

1. ECA 18’s domain

Iterates of a pure domain spacetime field x�18
for the

ECA 18 domain �18 is shown in Fig. 8(a). White and
black cells represent site values 0 and 1, respectively. A
symmetry is not apparent in the spacetime field. One
noticeable pattern, though, is that 1s (black cells) always
appear in isolation, surrounded by 0s on all four sides.
This still does not reveal symmetry, since neither time nor
space shifts match the original field. When scanning along
one dimension, making either timelike or spacelike moves
(vertically or horizontally), one sees that every other site
is always a 0 and the sites in between are wildcards—they
can be either 0 or 1. Making this identification finally
reveals the symmetry in the ECA 18 domain [50].

In contrast to this ad hoc description, the 0-wildcard
pattern is clearly and immediately identified in the local
causal state field S� = ‘(x�), shown in Figure 8(b). State
A occurs on the fixed-0 sites and state B on the wildcard
sites. And, these states occur in a checkerboard symmetry
that tiles the spacetime field. An interesting observation
of this symmetry group is that it has rotational symmetry,
in addition to the time and space translation symmetries.

Figure 1.6. ECA 110 structural segmentation: (a) A sample observable field evolved
from a random initial configuration. (b) A local causal state coherent structure seg-
mentation filter with domain sites in white and non-domain in black.

CAs and climate or fluid simulations is that CAs are discrete-valued fields, which greatly

simplifies reconstruction and local causal state inference. For real-valued reconstruction

more approximations are required and we no longer have convergence guarantees. This

makes model evaluation much more difficult, especially because there is no ground-truth

for the complex structures we are interested in. That being said, the local causal states

still hold great promise for analyzing far-from-equilibrium pattern and structure.

34

1.5 In Complex Fluid Flows

Coherent structures [62, 117] form a “hidden skeleton” of complex fluid flows that heav-

ily dictate material transport [118]. They are responsible for “Lévy flights” which lead

to a probability distribution over tracer particles with a divergent second moment that

can not be accounted for by normal diffusive processes [119]. Understanding these struc-

tures and being able to better discover them in real-world data will improve forecasting

of damaging contaminants in globally significant events; volcanic ash from the Eyjafjal-

lajökull eruption, oil from Deepwater Horizon, and radioactive contamination following

the Fukushima reactor disaster are recent examples. Similarly, extreme weather events

such as atmospheric rivers, cyclones, and blocking events play a crucial role in thermal and

material transport in the global climate system. Detecting, classifying, and characterizing

weather and climate patterns is a fundamental requirement to improve our understanding

of extreme weather and climate events, their formation, and how they may change with

global warming.

More generally, coherent structures in far-from-equilibrium systems can be understood

as key organizing features that heavily dictate the dynamics of the full system. From a

machine learning perspective, they provide a “natural” dimensionality reduction from

the full high-dimensional system to relatively few collective features. They are crucial

to understanding and predicting the full high-dimensional system. And, as with extreme

weather events, the coherent structures are often the features of interest.

While the importance of coherent structures in complex fluid flows is widely under-

stood, there is no accepted definition for what a coherent structure is, exactly, and no

principled method for identifying coherent structures in specific flows. Again, there

is no ground-truth. Recently though, the Lagrangian approach has gained popular-

ity [71, 118, 117]. In this, coherent structures are seen as material surfaces with charac-

teristic deformations induced by the Lagrangian particle flow. Each point of the surface

at some initial time is viewed as a tracer particle, and the Lagrangian evolution of all

tracer particles then acts as a continuous deformation of the surface through time. How-

ever, even in this Lagrangian framework there are many different approaches for specific

35

implementation of these ideas and there is no consensus on which is “correct” [113].

We make no claim that the local causal states will be the “correct” approach to coher-

ent structures in complex fluid flows. However, they do provide a novel and interesting

perspective on this difficult challenge. The algebraic interpretation of patterns as gener-

alized symmetries, which are broken locally by coherent structures, provides an appealing

physical basis for the local causal state approach.

While we are interested in using the local causal states to analyze the same phenomeno-

logical structures as the Lagrangian approaches, the local causal states are inferred from

spacetime fields and thus are an Eulerian method. A frequent objection to (instanta-

neous) Eulerian approaches for coherent structures is that they will depend on the frame

of reference. This is not the case, however, for the local causal states since they are local

models which are constructed from lightcones. Because lightcones are defined purely in

terms of distances, they are invariant under Euclidean isometries and thus independent

of frame-of-reference. In addition to their much greater generality (i.e. they do not re-

quire any notion of Lagrangian flow), the local causal states are a promising approach

due to the formal coherence principle of locally broken symmetry that they provide for

defining coherent structures; although the clean picture of coherent structures on top of

background domains found with cellular automata can get muddied when working with

complex fluid flows. This is due both to the increased complexity of the flow behavior it-

self as well as the additional approximations required for local causal state reconstruction

from real-valued spacetime fields.

In Figure 1.7 we see a demonstration of the local causal states’ ability to extract

coherent structures in a complex fluid flow, the von Kármán vortex street [120]. This

particular instance is vortex shedding from flow around a linear barrier, simulated using

the Lattice Boltzmann algorithm [121]. We emphasize again the behavior-driven aspect

of the local causal states. The behavior of a vortex street can be simulated from two

rather different generative models, Lattice Boltzmann or Navier-Stokes. The local causal

states are indifferent to the generative model; it is the only the generated behavior that

matters. Figure 1.7 (a) shows a snapshot spatial image from the observable vorticity

36

field of the flow and (b) shows the corresponding local causal state field snapshot. The

background flow is mapped to a single local causal state, colored white, signifying a

Euclidean symmetry domain. All other states map to different colors and represent the

coherent vortices and their internal structure. Considering states as only white (domain)

and not white (non-domain) produces a coherent structure segmentation like that of

ECA rule 110 in Figure 1.6.

While the vortices in the above example are pretty evident by eye in the observable

field, there is still no objective ground truth for what defines these objects. This is true for

coherent structures in fluid flows generally. Without any ground truth to compare against,

Ref. [113] compared several leading Lagrangian approaches on three benchmark data sets.

In Section 7.3 we use the two more complex of these data sets to compare local causal

state coherent structures with Lagrangian coherent structures [122]: a pseudo-spectral

direct numerical simulation of two-dimensional turbulence in a doubly-periodic domain

and interpolated video data of the clouds of Jupiter from the Nasa Cassini spacecraft.

In Section 7.3.2 we find that the coherent vortices in the two-dimensional turbulence

data can be identified as coherent structures from the local causal state definition given

for cellular automata. With a particular choice of inference parameters, the background

potential flow gets mapped to a single local causal state, signifying a Euclidean symmetry

domain. The coherent vortices are mapped to a set of localized non-domain states that

remain coherent over time.

Coherent vortices in Jupiter’s atmosphere, such as the Great Red Spot and the String

of Pearls, are identified in Section 7.3.3 with similar sets of coherent states. However,

for Jupiter these states are not necessarily in contrast to some clear background domain.

The question of what are the domain(s) of Jupiter’s atmosphere highlights the contrast

between the clean mathematical universe of cellular automata and the complications of

far-from-equilibrium systems found in nature.

One way to think about the idea of domains in the clouds of Jupiter is to go back to

the picture of sequential bifurcations. The equilibrium and base nonequilibrium states of

Jupiter’s atmosphere would have radial velocity everywhere zero. Here the entire system

37

(a) Vorticity observable field

(b) Local causal state latent field

Figure 1.7. Kármán vortex street structural segmentation: (a) Spatial snapshot of the
vorticity observable field. (b) The corresponding spatial snapshot of the local causal
state field. Each unique color represents a unique local causal state.

is viewed as a domain pattern with Euclidean symmetry. As with Taylor-Couette flow,

we would imagine the patterned state that emerges from the primary bifurcation is one

with horizontal stripes from the onset of convection rolls. At its current state, perhaps the

most distinguishing features of Jupiter are in fact its zonal belts. Imagining that Jupiter

actually did form from such a series of bifurcations, remnants of the symmetries of this

38

first patterned state are still present in the zonal belts. Thus we can view the zonal belts

as the domain symmetries, though the actual symmetries have been long broken and the

dynamics inside each belt is highly, and uniquely, structured and turbulent.

This leaves us with a question for local causal state coherent structure analysis. What

features do we want to capture as locally-broken generalized symmetries? The Great Red

Spot is an obvious structure of interest [12, 11]. If we want to capture it as a coherent

structure using local causal states as done with cellular automata and two-dimensional

turbulence we would hope to find each zonal belt mapped to its own state, signifying the

domain symmetry, then a set of localized non-domain states associated with the Great

Red Spot. However, as we’ve already said the bands are full of other turbulent structures

besides the Great Red Spot. The above analysis would nicely capture the Great Red Spot

at the expense of these other structures. For natural far-from-equilibrium systems it is

not a clear case of capturing the patterns and structures present, but rather a choice must

be made of capturing pattern and structure at a particular level of detail, or that persist

for a particular length of time. As we will see in Section 7.1, the approximations required

for local causal state reconstruction in real-valued fields are a strength, rather than a

weakness. Inference parameters can tune the reconstructed states to capture varying

levels of structural detail and coherence time in a satisfying way.

Having established the utility of local causal states for natural pattern and structure,

there is one far-from-equilibrium system that is of particular interest; and challenge.

1.5.1 Extreme Weather and Climate Change

Extreme weather is one of the main mechanisms through which climate change will di-

rectly impact human society. Life across the globe has survived and thrived by adapting to

its local weather, including extreme events such as strong winds and floods from cyclones,

drought and heat waves from blocking events and large-scale atmospheric oscillations,

and critically-needed precipitation from atmospheric rivers. Driven by an ever-warming

climate, extreme weather events are changing in frequency and intensity at an unprece-

dented pace [123, 124]. We need to understand these events and their driving mechanisms

to enable communities to continue to adapt and thrive.

39

High-resolution, high-fidelity global climate models are an indispensable tool for inves-

tigating climate change. A multitude of climate change scenarios are now being simulated,

each producing hundreds of terabytes of data. Currently, climate change is assessed in

these simulations using summary statistics such as mean global sea surface temperature.

This is inadequate for answering detailed questions about the effects of climate change

on extreme weather events. Due to the sheer size and complexity of these simulated data

sets, it is essential to develop robust and automated methods that can provide the deeper

insights we seek.

Recently, supervised Deep Learning (DL) techniques have been applied to address

this problem [125, 126, 127, 128]. Further progress however has been stymied by two

daunting challenges: reliance on labeled training data and interpretability of trained

models. The DL models used in the above studies are trained using the automated

heuristics of TECA [129] for proximate labels. This is necessary because, simply put, there

currently is no ground truth for pixel-level identification of extreme weather events [130].

While the results in Ref. [125] show that DL can improve upon TECA, the results of

Ref. [128] reach accuracy rates over 97% and thus essentially just reproduce the output of

TECA. The supervised learning paradigm of optimizing objective metrics (e.g. training

and generalization error) breaks down here [49]; TECA is not ground truth and we do

not know how to train a DL model to disagree with TECA in just the right way to get

closer to “ground truth”.

To avoid this issue, a campaign is currently underway to generate expert-labeled train-

ing data [131]. Supervised DL models trained on this data will automate expert-level

curation of large climate data sets for extreme weather detection. In this case there too

will be challenges. Although an improvement over automated heuristics, expert-labeled

data is still not an objective ground truth. Further, while human experts can debate

the subtleties of physical characteristics of extreme weather events, the interpretability

problem [132] prevents us from probing a trained DL model to determine exactly how and

why it identifies (or misidentifies) specific events.

The local causal states present a promising unsupervised alternative to circumvent

40

these challenges of DL-based approaches. While not yet able to cleanly extract extreme

weather events, they show promising results in outlining hurricanes and atmospheric rivers

in the water vapor field of the CAM5.1 general circulation climate model [122].

41

1.6 Complexity, Emergence, and Computation

Quantitative science has relied and flourished on the reductionist hypothesis — that all

systems, no matter how complex, are governed by the same fundamental laws. With

this, however, has often come an erroneous assumption of what Philip Anderson called

“constructionism” — the ability to start from the fundamental laws and reconstruct the

universe [133]. For a sufficiently complex system, strong nonlinear dependence among

system components can make it impossible to deduce emergent behaviors from the gov-

erning equations [134, 135]. Having sophisticated climate models does not mean we fully

understand the physical processes that govern the dynamics of hurricanes produced in

these simulations, and more notoriously, turbulence remains a persistent mystery despite

knowing Navier-Stokes for almost 200 years.

Cellular automata provide perhaps the most striking example of emergent complexity

arising from simple dynamical rules. As we have seen, the dynamics of CAs are given by

local look up tables and can be iteratively computed by hand. Yet, as with the elementary

CA rule 110, certain CAs can support universal computation [136] and can thus produce

arbitrarily complex behaviors (recall that rule 110 is just a particular assignment of a

radius-1 local dynamic over binary strings). Universal computation in rule 110 is achieved

through the dynamics and interactions of emergent coherent structures. This is known

only phenomenologically; it is currently out of reach to derive, starting from the lookup

table (the equations of motion), that rule 110 produces emergent coherent structures with

interactions that can be used to emulate a cyclic Tag machine (which is Turing complete).

Such a derivation may even be impossible.

Complexity and emergence are notoriously tricky concepts and now typically avoided

in the physical sciences and applied mathematics (though that is starting to change [137,

135, 138, 139]). In attempting to study pattern and structure in natural systems however,

some general notions of complexity and emergence are inescapable. While it is not our

goal here to attempt to at last pin down definitions, the example of rule 110 gives us

the opportunity to make some formal statements using the theory of computation. In

this, we will take seriously the physical Church-Turing thesis, described in more detail

42

in Section 2.1.1, and consider the implications of computational intractability and unde-

cidability on physical systems. Rather than using computational considerations to place

bounds on possible physical theories [140], we will examine how computational consider-

ations limit our ability to understand physical phenomena.

One proposed definition of a complex system is one for which nontrivial properties of

its limit set(s) are uncomputable [141]. This adds another level of unpredictability beyond

deterministic chaos; it is not just uncertainty in what the system will do, it is uncertainty

in what the system is even capable of. Another common, but less formal, definition of a

complex system is one with arbitrarily long transient behavior. If the system states that

comprise the limit set are uncomputable, it is impossible to distinguish transient states

from recurrent states, and so the less formal definition is subsumed by the formal. This

definition would classify rule 110 as complex, due to the Halting Problem [142]. Being

Turing complete sets rule 110 apart from the other elementary cellular automata, but

qualitatively rule 110 does not stand out as the only “complex” ECA. In fact, it can be

shown that nontrivial limit sets for cellular automata are generally uncomputable [143].

From this definition, cellular automata, as a class of models, are complex dynamical

systems.

The computational mechanics framework, as will be discussed in more detail in Sec-

tion 3.1, has a measure of complexity based on how information from the past is processed

to best inform what will happen in the future. This is known as the statistical complexity,

and is computed using an invariant asymptotic distribution. As such, it seems at odds

with the definition of a complex system just given; the statistical complexity is a non-

trivial property of a system’s limit set and thus would be uncomputable for a complex

system. It is best to think of statistical complexity as a measure of the complexity of a

behavior, rather than of a system. It may be taken as a given that the systems studied

here – cellular automata, turbulent fluid flows, and climate – are complex systems, in the

sense of having uncomputable limit sets. It would be useful, however, to quantify the level

of complexity in the patterns and structures produced by these systems. This is provided

by the statistical complexity. It is perhaps natural to consider the hexagonal cells in RB

43

convection as a more complex pattern than striped convection cells because the hexagons

break symmetry in two directions while stripes break symmetry in just one direction.

The quantification of pattern complexity by statistical complexity can be thought of as a

generalization of this “degree of symmetry breaking” argument from RB convection.

Emergence is a more difficult subject, and no formal definition will be given here.

Intuitively, we want to say a behavior is emergent if it can not be derived or deduced

from the governing model [144, 134, 145, 135]. However, just because we do not yet know

how to derive a particular behavior does not mean it is necessarily impossible. Thus this

view of emergence is seen more as a statement of human limitations, rather than as a

property of the system of interest. For the purposes of this thesis, the view of emergence

as a statement of human limitation is actually what we are interested in. As described

above in Section 1.1.2, it is often regarded in physics that understanding the fundamental

constituents of a system and the interactions among them is what leads to an under-

standing of the system’s behaviors; “the rest is stamp collecting”, as purportedly said by

Rutherford. What is not always appreciated is that the question of how constituents and

interactions give rise to particular behaviors can also be of fundamental importance [133].

Perhaps less well appreciated is just how difficult this question can be to answer. In fact,

as we now highlight, there are cases where it is provably impossible to derive emergent

behaviors from the governing equations of motion.

We return to cellular automata, where we can again use computation theory to formal-

ize the difficulty in understanding how equations of motion give rise to specific behaviors.

Recall that the limiting behavior of CAs are uncomputable [143], starting from the lookup

tables, which is already a formal limitation on our ability to understand how the dynam-

ical rules specified by CA lookup tables produce CA behaviors. The situation can be

more severe for certain CAs, for which finite-time behavior can also present difficulties.

In particular, it has been shown that for several CAs [146], including rule 110 [147], the

problem of predicting the state of the CA t time steps into the future is P-Complete.

To elaborate, a P-Complete problem is just as hard to solve as any problem that

can be solved in polynomial time with a serial computer. The class of these problems

44

that can be solved in time that is polynomial in the size of the input is the computational

complexity class P [148]. A subclass of P is the class NC of problems that can be solved by

parallel computers in polylogarithmic time. If the time prediction problem of a particular

CA has a closed-form analytic solution, that prediction problem would be computable

in polylogarithmic time by a parallel computer and thus be in NC. It is widely believed,

but not proven, that there are “inherently sequential” problems that are in P but not in

NC. This is analogous to the more famous P vs. NP problem, for which it is also widely

believed, but not proven, that there are problems in NP that are not in P [149]. If NC

6= P, this implies that for a CA with P-Complete time prediction, the most efficient way

to find the future state of the CA is by direct simulation. There can be no closed-form

analytic solution.

As discussed in Ref. [146], the P-Completeness of the Majority-Vote CA has impli-

cations for the predictability of the Ising model. In addition, it has been shown that,

in the infinite-size limit, the macroscopic thermodynamic behavior of the Ising model is

uncomputable from the microscopic interactions [135]. These results for the Ising model

show that physically-relevant models produce behaviors that are formally difficult to un-

derstand from the governing equations. While CAs can be seen as discrete analogues of

partial differential equations (PDEs), it is not clear that the difficulty posed by nonlinear

PDEs can be similarly formalized.

Yet, the difficulty of understanding the emergence of complex behaviors from nonlinear

PDEs is crucial in the pursuit of far-from-equilibrium pattern and structure. This brings

us to the central motivation of the work presented in this thesis: Organized pattern

and structure in the far-from-equilibrium regime are emergent behaviors. Whether this

is a matter of our current inability to derive these behaviors from governing laws, or

whether it will ultimately be a proven difficulty as with the examples above, the immediate

implication is the same: the traditional hypothesis-driven paradigm breaks down for

emergent behaviors, and an alternative, perhaps data-driven, mode of scientific inquiry is

required.

Key to the hypothesis-driven approach is the ability to deduce physical consequences of

45

a model (traditionally parametric equations of motion2) that provide testable predictions.

If the model prediction is not falsified by experiment it provides a mechanistic hypothesis

for the underlying physics that produces the observed phenomenon. For complex systems,

the governing equations alone are insufficient for understanding the mechanisms under-

lying emergent behavior if the behavior can not be deduced from the equations [150].

Simulating particular solutions is similarly insufficient because it may be impossible to

isolate individual mechanistic components in the tangled web of interactions that give rise

to emergent behavior. This also makes it difficult, if not impossible, to test mechanistic

hypotheses of emergent behavior in controlled experiments.

Below we give a short example of how the hypothesis-driven approach has successfully

explained the physical mechanism underlying the near-equilibrium patterns seen in Bénard

convection. We argue that analogous approaches break down far from equilibrium.

1.6.1 A Quick Example: Mechanisms of Instability in Bénard Convection

Above in Section 1.1.1 we discussed the convective instabilities first studied experimen-

tally by Bénard in 1900, then theoretically by Rayleigh in 1916; and many others after.

Recall that when a layer of fluid is heated from below heat is transferred through the

fluid via conduction if the Rayleigh number (the strength of the temperature gradient,

relative to the internal dissipation of the fluid) is low enough. At a critical value Rc

of the Rayleigh number the conduction state becomes unstable and convection becomes

thermodynamically more favorable than conduction. This is the onset of patterns, such

as the Bénard cells shown in Figure 1.3.

As mentioned in Section 1.1.1, the thermodynamic mechanism that determines the

critical value of temperature gradient needed for the conduction state to go unstable

depends on whether the container holding the fluid is sealed on top or not. In fact,

the analysis carried out by Rayleigh assumed a sealed container, while the experiments of

Bénard used an open container; the critical value computed by Rayleigh did not agree with

the value obtained experimentally by Bénard. For closed-surface convection (Rayleigh) the

2We use the term “parametric equations of motion” to indicate there are free parameters (e.g. ther-
mal diffusivity, the coefficient of thermal expansion, and kinematic viscosity for the case of convection
discussed below) that can be tuned to describe a particular physical instantiation or experimental setup.

46

instability is buoyancy driven, whereas for free-surface convection (Bénard) the instability

is driven by surface tension. But how do we know these two physical mechanisms govern

convective instabilities in the two different cases of open vs closed containers?

This well-studied problem of convective instability provides a quintessential success

story of the hypothesis-driven scientific paradigm. First, a physical phenomenon was

carefully observed and measured in experiment by Bénard. Then, a mechanistic hypothe-

sis of buoyancy-driven instability was proposed by Rayleigh, who was able to quantitively

deduce the experimentally-observed behavior (details given below). The behavior deduced

from the mechanistic hypothesis could then be compared with the experimental findings.

In this case, the initial hypothesis was not a good match with experiment. From here

additional experiments are required to at least verify there was no critical error in the

original experiment (even better if more precise measurements are made). If the original

experiment is verified then an additional mechanistic hypothesis is required. In this case,

additional experimental results continued to disagree with Rayleigh’s theoretical analysis,

and so a new mechanistic hypothesis that free-surface convective instability is driven by

surface tension, rather than buoyancy, was proposed by M.J. Block [151]. This new hy-

pothesis was quantified by J.R.A Pearson [152], who performed a linear stability analysis

similar to that of Rayleigh, but this time on a different set of parametric equations cor-

responding to the surface tension hypothesis. After subsequent studies and more precise

modern experiments, the critical value corresponding to the surface tension hypothesis is

found to agree very well with free-surface convection experiments [153].

Let’s clarify the distinction between these two mechanistic hypotheses: buoyancy

driven vs. surface tension driven instability. Of course in both cases the basic laws

of motion and thermodynamics apply. The parametric equations of motion that quan-

tify these hypotheses are built from the Navier-Stokes equation, the heat equation, and

the continuity equation. The key difference comes in the form of constitutive relations

among thermodynamic variables, and how they are incorporated into the equations and

boundary conditions. In particular, the dependence of density and surface tension on

temperature. For Rayleigh’s calculation, he assumed that density varies linearly with

47

temperature and that density variation is only significant in the buoyancy force – this

is known as the Oberbeck-Boussinesq approximation. Rayleigh did not include surface

tension effects. Pearson did the opposite; he did not include density effects, and instead

included surface tension and its dependence on temperature.

We will not perform the linear stability analysis here, which is the derivation of the ob-

served behavior of convective instability with the prediction each hypothesis makes about

Rc that can be compared with experiment. Rayleigh’s analysis of buoyancy driven insta-

bility [18] has been reproduced and elaborated upon by many others, see e.g. Refs. [20,

21, 30]. For the surface tension case, the linear stability analysis of Pearson [152] was

elaborated upon with weakly nonlinear perturbation theory [154, 155]. In both cases,

once the governing equations and conduction steady-state solution are established, small

perturbations in dynamic variables (temperature and pressure in the buoyancy case; tem-

perature and vertical velocity for surface tension) are introduced. Including the small

perturbuations into the equations of motion and linearizing produces the equations gov-

erning the perturbations, from which the conditions under which certain perturbations

first begin to grow, rather than die away, are derived. That is, the critical Rc at which

the conduction state becomes unstable. In both cases, the perturbations that grow first

represent oscillatory solutions, and hence convection rolls.

This linear stability analysis is tractable for idealized near-equilibrium systems, but

not so for far-from-equilibrium systems. Moreover, the growing perturbation at the critical

point in the simplified near-equilibrium cases like the one just discussed can be described

with simple spatial oscillations using Fourier modes. Recall though that the central aim

of this thesis is to provide a mathematical description for complex localized structures like

hurricanes. Even if you could come up with perturbation equations for a pre-hurricane

state of a region in the atmosphere, how would we mathematically represent a hurricane to

show they are perturbations that grow and saturate out of this state? In fact, even using

simplified means to represent the presence of a hurricane, it has been shown that finite-

amplitude instability analysis is unsufficient to describe the formation of hurricanes [13].

Furthermore, how would you test various hypotheses about hurricane formation in care-

48

fully controlled experiments with actual hurricanes?

49

Chapter 2

Mathematical Preliminaries

The main goal of this chapter is to argue that organized pattern and structure can be

mathematically formalized using intrinsic computation. This serves to motivate the use of

the local causal states for far-from-equilibrium systems, as well as provide their technical

mathematical development. We start by reviewing the physics of computation and then

draw parallels between models of computation and complex dynamical systems. The

interface of computation and dynamics provided by symbolic dynamics and shift spaces

is particularly useful for developing a theory of pattern and structure. From there we

will generalize to stochastic processes. This sets us up for the formal theory of intrinsic

computation provided by computational mechanics, presented in Chapter 3.

2.1 Theory of Computation and Complex Dynamical

Systems

It is instructive to turn back the clock to the late 1960’s when the first textbooks on com-

putation came out [86]. Computation had only been formalized three decades prior, in the

pursuit of answering foundational questions at the heart of mathematical logic [156, 157].

Concepts that we take for granted now, like machines and algorithms, had to be explained

from scratch. The discrete nature of computation, with a lack of integrals and derivatives,

also needed to be explained. From a modern perspective, these early explanations of the

math and physics of computation are immediately evocative of complex systems. That

is, the difficulties faced when studying the capabilities and limitations of computing ma-

50

chines are very similar to the difficulties that complex systems present to the traditional

tools of physics, as described above in Section 1.6. For example, “In developing a Theory

of Computation we are trying to deal with systems composed of a great many parts, or

very intricate structures. Classical mathematical methods can do this only in very special

situations, and their limitations are very serious”, and “...the system can be treated as

individually and independently random– this is what happens in Statistical Thermody-

namic theories. But it must be stated, explicitly and emphatically, that this is just what

does not happen when, as in a computation system, the structure has a more organized,

purposeful structure,” from the Preface of Ref. [86].

It is not all that enlightening to view a computing machine as a complex dynamical

system. If one adopts the uncomputability-of-limit-sets definition for complex systems

described in Section 1.6, this follows immediately. Viewing a complex dynamical system

as performing a computation is much more interesting. In Section 1.6 we found the

language of computation theory to be quite helpful in attempting to make more formal

statements about complexity and emergence. In this Chapter and Chapter 3 we go further,

and show that the mathematical formalism of computation is useful for creating a theory

of pattern and structure in complex dynamical systems. Throughout we will see many

deep, perhaps even fundamental, connections between complex dynamical systems and

computing machines.

2.1.1 Physics of Computation

Central to the theory of computation is the idea of an effective procedure, what we now call

an algorithm: a finite number of finite instructions that always terminates after a finite

number of steps and always produces the correct outcome. This idea was formalized by

the λ-calculus of Church [156] and the machines of Turing [157]. The two definitions

were shown to be equivalent, leading to the notion of universal computation: a model

of computation is said to be universal, or Turing-complete, if it can emulate any other

model of computation. The Church-Turing thesis states that any function on the natural

numbers can be calculated through an effective procedure if and only if it can be computed

by a Turing machine. There exist Turing machines, called universal Turing machines, that

51

can emulate all other Turing machines. From the Church-Turing thesis, these can emulate

any model of computation and thus serve as a universal model for all computations. Thus

machine is synonymous with computation; a machine is any formal instantiation of an

algorithm and all algorithms can be carried out via a machine.

When interest in computation shifted from the foundations of mathematics to practical

considerations of actual computing machines it was natural to extended the Church-Turing

thesis to assert that an algorithm can be carried out by a physical machine if and only if

it can be computed by a Turing machine. Thus abstract models of computation are useful

for understanding the physical capabilities and limitations of actual computing machines.

Beyond the immediate practical utility of this physical Church-Turing thesis, there are

arguments for why it is a reasonable assertion to make [158, 159]. Here we will assume

that machines are tethered to the laws of physics, as many did in the early development of

computer science; “Perhaps one could even maintain the view that belief in an arithmetic

statement is equivalent to the belief that certain machines, if properly built, will work.

Thus, I know that the order of summation in addition is irrelevant. I can think of this

as a property of abstract number, or as an empirical generalization from experience with

counting, or as a necessary property of any machine which adds numbers correctly.” [86,

pg.6]

2.1.1.1 Machines and Internal States

What then, is a machine (often also called automaton)? We will follow the development

in Ref. [86, Ch.2]. To start, consider a machine simply as a black box with an input

channel and an output channel. As with cellular automata, we consider time to evolve

in discrete steps and the inputs and outputs to take values from discrete symbol sets.

The input channel S takes values in {s1, . . . , sn} and the output channel R {r1, . . . , rm}.
At each moment t an input signal S(t) is sent from the environment E to the machine

M . Similarly, at each moment the machine selects an output R(t) that is sent to the

environment. To describe the machine’s behavior, we need to specify how its outputs

depend on its inputs. In general, the output R at time t will depend on the history H(t)

up to time t. The history is a record of all the state of affairs concerning M , including

52

all the inputs M has so far received. At time t the machine receives input si and then

responds at time t+ 1 with output rj that depends on the input si as well as the internal

state of affairs inside M . For the “deterministic” machines considered here, the internal

state of M at time t is determined by the history H(t). Thus the behavior of M can be

described in terms of a momentary response function:

R(t+ 1) = F
(
H(t), S(t)

)
. (2.1)

Because of the explicit dependence on the full infinite history, this relation is not

directly of much use. Rather, we would prefer a more direct relation between the input

S(t) and the output R(t + 1). There are infinitely many possible histories, and similar

to far-from-equilibrium systems, the internal state of the machine, and hence the output

R(t+1) is determined by the particular history leading up to time t. If all past events have

separate, independent effects determining the internal state, then the machine requires

infinite memory resources to fully specify its output behavior. It may be the case however

that some histories produce the same behavior in the machine. Distinct histories may be

equivalent with regards to machine behavior.

We define equivalent histories as follows. Imagine that there are two identical copies

of a machine M. At time t machine M1 has history H1(t) and machine M2 has history

H2(t). We say that H1 and H2 are equivalent histories with respect to M if, for every

possible subsequent sequence of inputs S(t), S(t+ 1), S(t+ 2), . . . both M1 and M2 would

yield the same sequence of outputs. That is, there is no way to distinguish machines M1

and M2 by testing them with input sequences and observing the corresponding output

sequences. The simplest class of machines, which is the class we will be concerned with

in this work, are the finite-state machines which can distinguish between a finite number

of classes of possible histories. These classes are the internal states of the machine.

Denote the internal state of a machine M at time t as Q(t), with individual states

given as {q1, . . . , qp}. The definition of internal states as equivalent histories removes the

cumbersome history dependence from the response function of finite-state machines,

R(t+ 1) = F
(
Q(t), S(t)

)
. (2.2)

53

The output at t+ 1 depends on the input and internal state at time t. What determines

the internal state at time t + 1? Because the internal state Q(t) at time t is determined

by the history H(t) and the history H(t + 1) at the next time step differs from H(t) by

the single input S(t), the internal state Q(t + 1) at time t + 1 can only depend on Q(t)

and S(t). We express this in terms of an internal state transition function,

Q(t+ 1) = G
(
Q(t), S(t)

)
. (2.3)

The two functions F and G give a complete and finite description of the machine M and

its behavior.

Note that internal states defined as equivalence classes of histories gives a minimal

description of the machine. Additional internal states can be added that do not change

the behavior of the machine, and are thus in a sense redundant. This will be emphasized

more below, when discussing minimal machine presentations of shift spaces.

2.1.2 Dynamical Structure Modeling

At the surface level it may appear as though we have just shifted symbols around in

going from Equation (2.1) to Equations (2.2) and (2.3). The distinction this change in

symbols represents is enormous. Not only have we gone from a general dependence on

infinite histories to finite internal states, we also gain the dynamical structure of state

transitions. Beyond having a finite representation of the machine’s behavior that we can

actually work with, the internal dynamic specifies how the machine is organized to produce

structured behavior. As we will see in Section 3.1.6, this structural organization can be

represented visually, through machine graphs, as well as algebraically through defining

semi-groups [160, 87, 161]. For our purposes this provides both a formal and practical

mathematics with which to express pattern and structure in complex dynamical systems.

To make the connection with dynamical systems, let’s re-examine the history depen-

dence of machines. Equation (2.1) gives the deterministic dynamical evolution equations

governing machine behavior, their equations of motion. Traditionally, deterministic dy-

namical systems, such as cellular automata and fluid flows, have no history dependence.

The state at time t + 1 is fully determined by the state at time t. The move to internal

54

states as equivalent histories is useful for removing the dependence on infinite histories,

but what if there is no history dependence in the first place?

As we’ve seen, the nonlinear equations of motion that govern complex dynamical

systems can be used to simulate emergent behaviors, but they obfuscate the mechanisms

that give rise to these behaviors. It may be useful then to trade the impenetrability of the

equations of motion for a history-dependent dynamical description amenable to treatment

in terms of internal states and equivalent histories. We outline the basics of this move in

Section 2.2 on measurement theory. In this, a continuous dynamical system is observed

through the output of a finite-precision measurement device. This results in a structured

stochastic process over observed symbol sequences. Symbolic dynamics is the study of

such symbol sequences, and we will see how the move to finite-state machines captures

the pattern and structure of these processes in Section 3.1.6. Historically, the procedure

of studying continuous dynamical systems in terms of measured symbol sequences, shown

in Figure 2.1, was referred to as “nonlinear modeling” [162], although this term is not

commonly used these days and we will instead use dynamical structure modeling to avoid

confusion with uses of the term nonlinear modeling in statistics.

Figure 2.1. Schematic of dynamical structure modeling. A continuous dynamical
system is observed using a finite-precision measuring devices to produce a discrete
structured stochastic process. The set of allowed symbol sequences is presented by
a finite-state machine that captures the structure of the process. Credit: James P.
Crutchfield, with modification.

55

The conceptual use of finite-state machines in dynamical structure modeling is slightly

different from what we have just presented for finite-state machines designed to perform

useful computations. The mathematics of finite-state machines is used to describe the

organization and structure of the dynamics over symbol sequences, without reference to

inputs from an external environment. This is why the term intrinsic computation is used.

(Finite-state machines are most commonly used for the task of language recognition [84],

and you can frame the use of finite-state machines in symbolic dynamics in these terms.

That is, the observed symbol sequence is seen as the input into a machine tasked with

recognizing a particular language. But this is not really what we are interested in. A

given process will have a single language of admissible symbol sequences and thus a single

associated finite-state machine, see Section 3.1.4 below. It is not so much a question of

“does this particular symbol sequence belong to this particular language?” but rather

a question of “what is the language of all possible symbol sequences generated by this

process, and what does that language tell us about the generating process?”)

This very abstract setting is far removed from real physical systems, but allows for

clean results and establishes a firm mathematical foundation. Moving to real-world sys-

tems, we have already seen how system history is important for far-from-equilibrium

systems. For spatially-extended dynamical systems, the global evolution may be deter-

ministic, but the dynamics of localized structures will depend on the history of interactions

with the surrounding environment. Taking into account memory effects and history de-

pendence will be necessary for behavior-driven modeling of far-from-equilibrium pattern

and structure.

It is instructive to review dynamical structure modeling, as it harbors the origins and

foundations of the ideas and tools we will actually use later, namely the local causal states.

However, the local causal state modeling we will use does not fully follow this scheme.

Constructing “good measuring devices”, as described below in Section 2.2, is intractable

for real-world systems [163]. In Chapter 7 we will introduce the approximations necessary

to bypass measurement discretization and directly model continuous systems.

56

2.2 Measurement Theory

Let’s now examine the relationship between continuum models of dynamical systems and

observed symbol sequences that result from finite-precision measurements of the system.

As the first step in dynamical structure modeling, this relates the discrete structured

stochastic process studied next in Section 2.3 with dynamical systems. Further, the con-

cept of generating partitions will provide a cautionary tale for data-driven approaches to

dynamical systems. One must always keep in mind that conclusions drawn from data

streams can be a reflection of not just the underlying system of interest, but also the mea-

surement or observation procedure. There are good ways to measure the system, known as

generating partitions, that faithfully encode dynamical properties in the observed symbol

sequences. In particular, we will review the metric entropy and use it to show how chaos

produces randomness, and that the observed randomness of symbol sequences is faithful

for generating partitions. For a more in-depth technical review of entropy in dynamical

systems, see Ref. [164].

2.2.1 Measurements of a Dynamical System

Consider an ergodic dynamical system ẋ = f(x), x ∈ M , with invariant probability

measure µ. The system will be measured in discrete time intervals δ, yielding a discrete

time dynamic given by the flow map: Φ
(
x(t), δ

)
= x(t) +

∫ t+δ
t

f
(
x(τ)

)
dτ . We will not

be concerned with the details of this temporal discretization, so we will just work with

discrete-time models on a continuous state space:

xn+1 = f(xn) , (2.4)

where x ∈M and f : M →M is now a continuous function from the state space to itself

and there is still an invariant measure µ on f .

Our interest is in the effects of discretizing state space with finite-precision measure-

ments. We formalize this with a measurement function g : M → A that partitions the

state space: Pi ∩ Pj = ∅ and
⋃N
i=0 Pi = M . Each partition element carries a unique

measurement symbol s ∈ A. It is common to set the measurement symbol to be the

index of the corresponding partition element, g(x ∈ Pi) = i and A = {0, . . . , N}, but

57

in general the symbols are arbitrary (given that each partition element carries a unique

symbol). At any given time, the probability of a measurement outputting symbol i is

given by pi =
∫
x∈Pi µ(x)dx.

The ideal, infinite-precision measurement device would be the case where g is the

identity. But for real measurement devices, data storage, and processing, measurements

are finite precision (often very high precision, but still finite). Thus our measurements

can only output a finite number of symbols.

Measurements of the evolution of dynamical system f with instrument g produces

a sequence of symbols s ∈ A. Starting with initial condition x0 ∈ M the instrument

outputs the initial measurement s0 = g(x0). At the next time step we have x1 = f(x0)

and the instruments reads s1 = g(x1) = g (f (x0)). At the nth time step the instrument

reads sn = g(xn) = g
(
fn(x0)

)
. Thus an orbit x0, f(x0), f 2(x0), . . ., of f corresponds to

an infinite sequence of output symbols from the measurement instrument s0, s1, s2, . . . =

g(x0), g
(
f(x0)

)
g
(
f 2(x0)

)
,

Recall that g induces a partition P over M . Similarly g ◦ f also induces a partition

f−1P over M . The elements (f−1P)i of this partition are all the points x ∈M such that

g
(
f(x)

)
∈ Pi. Note that the evolved partitions are given by pre-images of the original

partition under f because we are still partitioning M at the initial time, based on what

symbol is output after one time step under f . Each time step induces a new partition

f−nP whose elements are the points in x ∈M such that g
(
fn(x)

)
∈ Pi.

The evolved partitions are themselves not of particular interest, but rather the dy-

namical refinements of the initial partition P that they produce. For two partitions P

and Q, the partition refinement P ∨ Q = {Pi ∩ Qj : Pi ∈ P and Qj ∈ Q}, is also a

partition. The first dynamical refinement of P under f is given as P ∨ f−1P and the

elements of this partition are sets of points in M that have the same output for g(x) as

well as g
(
f(x)

)
. The partition P ∨ f−1P maps from M to two-symbol sequences s0s1 in

A×A. The full dynamical refinement is P ∨ f−1P ∨ f−2P ∨ f−3P ∨ · · · and maps from

M to infinite-length symbol sequences in A×A×A× · · · .
A generating partition is one for which there is a one-to-one correspondence between

58

an initial condition x0 ∈ M and the infinite-length symbol sequence s0s1s2s3 · · · from

measurements of the orbit of x0, almost everywhere on M . Generating partitions are

“good” measurement devices because arbitrarily high precision measurements of the ini-

tial condition can be recovered with long enough measurement sequences. In general this

need not be the case; two distinct initial conditions may yield the same symbol sequence,

at all lengths, for a “bad” partition. For example, if g is the constant function it will

produce the same symbol sequence for all initial conditions. As we will see below, gen-

erating partitions are also good measurement devices because quantitative properties of

the measured symbol sequences correspond to quantitative properties of the continuous

model. A special case of generating partitions are the Markov partitions for which the

stochastic process of measurement symbols is a Markov process. Note though that not

all systems f admit a Markov partition.

It is mathematically convenient to consider bi-infinite symbol sequences

· · · s−2s−1s0s1s2 · · · ∈ AZ. One can imagine the system f has been evolving for an infinite

time in the past and will continue to evolve for an infinite time in the future, being

measured with g for the full duration. In this setting, the dynamics f : M → M of the

original continuous model correspond to a trivial linear shift dynamic σ : AZ → AZ in

measurement space. The linear shift operator σ simply moves indices in the bi-infinite

symbol sequences. For two symbol sequences x, y ∈ AZ, y = σ(x) ⇐⇒ yi+1 = xi ∀i ∈ Z.

This is the setting for symbolic dynamics, which we will examine in much more detail next

in Section 2.3.

2.2.1.1 Example: Logistic Map

The logistic map is a discrete-time dynamical system defined as

xn+1 = f(xn) = rxn(1− xn) , (2.5)

and is historically important in the study of deterministic chaos [165]. We will use it here,

with r = 4, to demonstrate measurement partitions and their dynamical refinements. The

state space for the logistic map is the unit interval, M = [0, 1].

The binary partition P with Pa = [0, 1
2
], Pb = [1

2
, 1] is shown in Figure 2.2. The

partition boundary at 1
2

is shown with the dashed blue line. The pre-images of the

59

f(x) = 4x(1− x)

xn

xn+1

1

1

0.5

P a b

f−1P a b a

P ∨ f−1P a
a

a
b

b
b

ba

Figure 2.2. Generating partition of the logistic map with r = 4, and its first iterate.

partition boundary, f−1(1
2
) = 1

2
± 1

2
√

2
, shown with red dashed lines, give the partition

boundaries for the first iterate f−1P of P . Recall that f−1P partitions M based on

g
(
f(x0)

)
. We can see that points outside the interval [1

2
− 1

2
√

2
, 1

2
+ 1

2
√

2
] map to values less

than 1
2

under f and points inside the interval map to values greater than 1
2
. The set of

intersections between P and f−1P gives the dynamical refinement P ∨ f−1P which maps

initial conditions in M to the two-symbol sequences they produce. We will not prove it

here, but P is a generating partition of the logistic map [166].

2.2.1.2 Metric Entropy

In dynamical structure modeling, the underlying dynamical system is deterministic, but

when we apply finite-precision measurements, the dynamics of observed symbols is stochas-

tic. The probability of seeing a given symbol at any time is equal to the probabil-

ity of the system being in the partition element corresponding to that symbol label:

Pr(si) =
∫
x∈Pi µ(x)dx. The probability of seeing the two-symbol sequence sisj is given by

the probability of the system being in the corresponding first partition refinement cell:

60

Pr(sisj) =
∫
x∈Pi∩(f−1P)j

µ(x)dx, and similarly for length-L sequences.

The entropy of a partition P (induced by measurement device g) is given by

H(f, P) = −
∑
i

Pr(Pi) log Pr(Pi) . (2.6)

This quantifies the amount of uncertainty in the single-time output of the measurement

device. The Shannon entropy rate,

hµ(f, P) = lim
N→∞

1

N
H

(N∨
n=0

f−n(P)

)
, (2.7)

quantifies the asymptotic symbol uncertainty, given all previously measured symbols.

If P is a Markov partition, the measured process is Markov and the entropy rate de-

pends only on the last previously measured symbol. For a general partition, the stochastic

process of measured symbols can be highly structured and the entropy rate can depend

on symbols measured arbitrarily far back in the past.

Note that the entropy rate is a function of both the dynamical system f and the chosen

partition P . A bad partition may yield a symbol sequence that is not at all faithful to the

system f , and thus the entropy rate for this partition will not tell us anything meaningful

about f . For instance, the constant function g that is the trivial partition P = M will

yield an entropy rate of 0 (every measured symbol is the same, so there is never any

uncertainty).

To remove the dependence on the chosen partition, we take the supremum over all

possible partitions

hµ(f) = sup
P

hµ(f, P) . (2.8)

This is the metric entropy of f [94], also known as the Kolmogorov-Sinai entropy. It can

be shown that this supremum is achieved for generating partitions: hµ(f, P) = hµ(f) if

P is a generating partition.

With some assumptions on the measure µ, the metric entropy is equal to the sum of

the positive Lyapunov exponents of f [167],

hµ(f) =
∑
λi>0

λi . (2.9)

61

For general measures, the metric entropy is bounded by the sum: hµ(f) ≤∑λi>0 λi [168].

Positive Lyapunov exponents measure the divergence rate of nearby orbits under f and

as such serve as a kind of measure of chaos. Pesin’s relation, Equation (2.9), shows how

this spreading of orbits leads to randomness in measured symbol sequences. But again,

this relation only holds for generating partitions.

62

2.3 Symbolic Dynamics

Measurement theory shows how to produce a discrete structured process from a continuous

dynamical system. In the context of dynamical structure modeling, we can consider bi-

infinite processes that result from taking measurements of a dynamical system that has

been running for an infinite amount of time in the past and will continue evolving for

an infinite amount of time in the future. The introduction of an entropy rate for these

processes already alludes to non-trivial history dependence. But this is a measure of

randomness, not of structure. Before moving into the formal theory of structure provided

by computational mechanics in the next Chapter, here we give some basic definitions

and properties of these discrete processes, both the metric (stochastic processes) and

topological (shift spaces) variants. The use of finite-state machines first arose in symbolic

dynamics through the study of minimal presentations of sofic shifts [79, 80, 81]. The

computational mechanics literature [103, 169, 104] has largely focused on the metric case,

employing minimal probabilistic machines, known as hidden Markov models, to study

structure in stochastic processes. The two cases are closely related, and we will detail

both for completeness and because both will be useful in the full development of the local

causal states and their applications.

2.3.1 Shift Spaces

Consider an indexed bi-infinite sequence of symbols from a finite alphabet A, denoted by

x: = (xi)i∈Z

x: = · · · x−2x−1x0x1 · · · .

We denote a contiguous chain of l symbols as x0:l = x0x1 · · ·xl−1. Left indices are inclusive;

right, exclusive. We suppress indices that are infinite. The full A-shift is the set of all

bi-infinite sequences of symbols from A, and is denoted by

AZ = {(xi)i∈Z|xi ∈ A for all i ∈ Z} .

Each sequence x: ∈ AZ is called a point of the full shift. A block, or word, over A is a

finite sequence of symbols from A: w = x[i,j] = xixi+1 · · ·xj. For two finite words u and

v we can concatenate them together to form a new word uv.

63

The shift map σ on the full shift AZ maps a point x: to the point y: = σ(x:) whose

ith coordinate is yi = xi+1 ∀ i (i.e. shifts every element in x: one place to the left). The

shift map is one-to-one and onto, so the inverse σ−1 exists and shifts the sequence one

place to the right. k composition of σ with itself shifts sequences k places to the left, and

similarly k compositions of σ−1 shifts the sequence k places to the right.

A shift space (or subshift, or simply shift) is a compact, shift-invariant subset of AZ.

The topology is given by the metric d(x:, y:) = 2−k if x: 6= y: and k is maximal so that

x[−k,k] = y[−k,k], and is zero otherwise. Shift spaces, denoted as X , are commonly specified

by sets of forbidden words. If x: ∈ AZ and w is a block over A, we say that w occurs in x:

if there are indices i and j so that w = x[i,j]. Let F be a collection of forbidden words over

A. For any such F , define XF to be the subset of sequences in AZ which do not contain

any words in F . A shift space is a subset X of a full shift AZ such that X = XF for some

collection F of forbidden words over A. Since forbidden words in F are coordinate-free,

it follows that they specify a shift-invariant subset of AZ. Compactness, or closure, is less

evident, but it can be shown to always hold.

Let X be a shift space, and let Bn(X) denote the set of all length n words in X . The

language of X is the collection of all allowed words in X , B(X) =
⋃∞
n=0 Bn(X). This

is very similar to the use of language in computation theory [84]. Sets of finite strings

recognized by finite-state machines are known as regular languages. However, there are

two distinguishing properties of the languages of shift spaces. Let X be a shift space and

L = B(X) be its language. If w ∈ L, then

(a) every subblock of w belongs to L, and

(b) there are nonempty blocks u and v in L such that uwv ∈ L.

The two properties, (a) and (b), characterize the languages of shift spaces. That is, if L

is a collection of blocks over A, then L = B(X) for some shift space X if and only if L

satisfies (a) and (b). Moreover, the language of a shift space determines the shift space.

In fact, for any shift space, X = XF for F = Bc(X). Thus two shift spaces are equal if

and only if they have the same language.

64

A shift space X is irreducible if for every ordered pair of blocks u, v ∈ B(X) there is

a block w ∈ B(X) so that uwv ∈ B(X).

Making a more direct connection with computation theory, a shift space whose lan-

guage is a regular language is known as a sofic shift. (Note that not all regular languages

can be the language of a shift space. Those that can, i.e. that satisfy properties (a)

and (b) above, are known as factorial, prolongable regular languages. The finite-state

machines of these languages have all states as accept states. The finite-state machines of

irreducible sofic shifts additionally have all states as start states.) The sofic shifts are all

those that can be represented by a finite-state machine, and thus will be our objects of

interest. The simplest set of shift spaces are the shifts of finite type which are specified by

a finite set of forbidden words F . The set of sofic shifts is the smallest set that contains

all shifts of finite type and is closed under surjective mappings [85].

Consider a transformation from a sequence x: = · · · x−1x0x1 · · · over A to a new

sequence y: = · · · y−1y0y1 · · · over another alphabet U as follows. To compute the ith

coordinate yi of the transformed sequence, we use a function φ that depends on the

window of coordinates of x: from i−m to i + n. The mapping φ : Bm+n+1(X) → U is a

fixed block map, called an (m+ n+ 1)- block map, from allowed (m+ n+ 1)-blocks in X
to symbols in U

yi = φ(xi−mxi−m+1 · · ·xi+n) = φ(x[i−m,i+n]) . (2.10)

Let X be a shift space over A, and φ : Bm+n+1(X) → U be a block map. Then the

map Φ : X → UZ defined as y: = Φ(x:) with yi given by Equation (2.10) is called a sliding

block code with memory m and anticipation n induced by φ. We denote the formation of

Φ from φ by Φ = φ
[−m,n]
∞ . If Y is a shift space contained in UZ and Φ(X) ⊆ Y , we write

Φ : X → Y . If Φ is surjective (onto) it is called a factor map. If it is injective (one-to-one)

it is called an embedding of X into Y . If Φ is bijective (one-to-one and onto) it is called

a conjugacy.

One of the most important results in symbolic dynamics is the Curtis-Hedlund-Lyndon

Theorem, which will be useful for our studies of cellular automata. Let (X , σx) and (Y , σy)
be shift dynamical systems, and Φ : X → Y a (not necessarily continuous) mapping.

65

Then Φ is a sliding block code if and only if it commutes with the shift operators [170],

Φ ◦ σx = σy ◦ Φ.

For an in-depth review of shift spaces, see Ref. [78]

2.3.2 Stochastic Processes

In the framework of dynamical structure modeling, the set of possible symbol sequences

that result from discrete measurements of a continuous dynamical system form a shift

space. If the dynamical system is ergodic, or measurements are taken from a single

ergodic component (i.e. an invariant set), then the resulting shift space is irreducible and

its invariant measure allows us to additionally assign probabilities to measured symbol

sequences. Thus the shift space gives the set of all possible symbol sequences we can

measure, while the stochastic process gives the probabilities of the symbol sequences.

A general stochastic process P is the distribution of all a system’s behaviors or realiza-

tions · · ·x−2x−1x0x1 · · · as specified by their joint probabilities Pr(· · ·X−2X−1X0X1 · · ·).
Xt is the random variable for the outcome of the measurement at time t, taking values

xt from a finite set A of all possible events. The support of the process (the set of all

sequences with non-zero probability) is known as the process language L(P). This is the

set of all finite and infinite strings that can be realized by the process P . We consider

only stationary processes for which Pr
(
Xt:t+l

)
= Pr

(
X0:l

)
for all t and l.

A stationary stochastic process over a shift space X is an assignment of a shift-invariant

probability measure µ(w) to the words w of B(X) such that each word satisfies prefix and

suffix marginalization:

µ(w) =
∑

{a:aw∈B(X)}
µ(aw)

µ(w) =
∑

{a:wa∈B(X)}
µ(wa)

Xi:j is the random variable distributed as µ(xi:j), xi:j ∈ B(X). Compactly, one can

denote a stationary process generated this way as P = µ(X). The process language of

P is equal to the language of X , B(X) = L(P). Forbidden words of X are measure

66

zero in P , and all allowed words have some finite probability. For more details on the

measure-theoretic relations between shift spaces and stochastic processes, see Refs. [171]

and [172].

67

2.4 Spatiotemporal Processes

So far we have considered the dynamical evolution of strictly temporal systems, with

a single degree of freedom. Now though, we are interested in dynamical systems that

have spatial extent, with some spatial configuration that is evolving in time. We give the

necessary background for these spatiotemporal processes.

2.4.1 Topology of Configurations

The state x of a spatiotemporal system specifies the values xr at sites r of a lattice L.

Assuming values lie in the finite set A, a configuration x ∈ AL is the collection of values

over the lattice sites.

A spatiotemporal process, in contrast to a purely temporal one, generates a sequence

· · · x−1x0x1 · · · consisting of the series of spatial fields xt. (Subscripts denote time; su-

perscripts sites.) A realization of a spatiotemporal process is known as a spacetime field

x ∈ AL×Z, consisting of a time series x0, x1, . . . of spatial configurations xt ∈ AL. AL×Z

is the orbit space of the process; that is, time is added onto the system’s state space.

The associated spacetime field random variable is X. A spacetime point xr
t ∈ A is the

value of the spacetime field at coordinates (r, t)—that is, at location r ∈ L at time t. The

associated random variable at that point is Xr
t . To illustrate, consider points xr

t from a

spacetime field for a 1-D infinite lattice:

...
...

...

· · · x1
−1 x−1

0 x−1
1 · · ·

· · · x0
−1 x0

0 x0
1 · · ·

· · · x1
−1 x1

0 x1
1 · · ·

...
...

...

Being interested in spatiotemporal systems that exhibit spatial translation symmetries,

we narrow consideration to regular spatial lattices with topology L = Zd. (As needed,

the lattice will be infinite or periodic along each dimension.)

The collection of all spatial sites within radius R of a site xr, including xr itself, is

68

known as the site’s neighborhood η(xr):

η(xr) = {xr′ : ||r− r′|| ≤ R; r, r′ ∈ L} . (2.11)

The neighborhood specification depends on the form of the lattice distance metric chosen.

The two most common neighborhoods for regular lattice configurations are the Moore and

von Neumann neighborhoods, defined by the Chebyshev and Manhattan distances in L,

respectively.

2.4.2 Dynamics

Rather than generalize dynamical structure modeling to measurements of continuous spa-

tiotemporal systems, for simplicity we now consider discrete-time dynamics over a discrete

lattice system.

The most general form of lattice dynamics is through a global evolution operator Φ :

AZd → AZd that maps full lattice configurations at time t to configurations at t+ 1:

xt+1 = Φ(xt) (2.12)

A local dynamic uses a local evolution operator φ that updates individual sites based

on their local neighborhoods:

xr
t+1 = φ

(
η(xr

t)
)

(2.13)

The list of all neighborhoods η and their corresponding outputs φ(η) is known as the

lookup table. Local dynamics are used to model the notion of local interactions in physical

systems.

Global update Φ of a local dynamic is achieved by applying φ in parallel to all neigh-

borhoods on the lattice. For one-dimensional spatial lattices given as shift spaces, this

global update is a sliding block code. Cellular automata [173, 174] are examples of dis-

crete lattice systems with local update rules that we will study, along with their symbolic

dynamics, in Chapters 4, 5, and 6.

69

2.4.3 Shift Spaces in Spacetime

Local dynamics over infinite or periodic lattice systems leads very naturally to the exten-

sion of shift spaces to d + 1 dimensions [175, 176, 177, 78, 178] by virtue of the Curtis-

Hedlund-Lyndon theorem [170].

A full-A shift is now the collection of all spacetime fields of symbols from A:

AZd+1

= {xr
t , (r, t) ∈ Zd+1|xr

t ∈ A for all (r, t) ∈ Zd+1}

The shift map is now indexed by the direction vector of the shift. Equivalently, one

can think of each dimension of Zd+1 as having its own shift operator for shifts along that

dimension, where shifts along different dimensions commute. Let σp denote the temporal

shift operator that shifts a spacetime field x p steps along the time dimension. This

translates a point xr
t in the spacetime field as: σp(x)rt = xrt+p. Similarly, let σsn denote

the spatial shift operator that shifts a spacetime field x by sn steps along the nth spatial

dimension. This translates a spacetime point xr
t as: σsn(x)rt = xr

′
t , where r′n = rn + sn.

A d + 1 dimensional shift space X (again also referred to as subshift or just shift) is

a closed (under the Cantor metric), shift-invariant subset of AZd+1
:

X = σn(X) ∀ n ∈ Zd+1

As with temporal shifts, we can equivalently define shift spaces based on lists of

“forbidden motifs”. A shape is a finite subset F ⊂ Zd+1. A motif f on shape F is a

particular realization of symbols from A over F , f : F → AF . Given a list F of forbidden

motifs, we can define a shift space as:

X = XF = {x ∈ AZd+1 |σn(x)F /∈ F ∀n ∈ Zd+1 , ∀F} (2.14)

We say that a motif f on shape F occurs or is admissible in a shift space X if there is a

field x ∈ X such that the field restricted to shape F has motif f ; xF = f .

There is no loss of generality in defining a d + 1 dimensional shift space to specify

all motifs in F over a fixed shape F ′. Usually F ′ is taken to be a d + 1 dimensional

hypercube. This is the easiest way to generalize the notion of words. “Words” of length

70

l here are d+ 1 hypercubes of side length l. The set of all such words, or equivalently the

set of all motifs, gives the language of a spacetime shift space.

Unlike their low-dimensional counterparts, high-dimensional shift spaces (such as

spacetime shift spaces) are still largely shrouded in mystery. Many results from the

low-dimensional case turn out to be undecidable for high-dimensional shifts. For exam-

ple, given a finite list of motifs F , it is undecidable if the high-dimensional shift of finite

type X = XF is nonempty [179, 180].

2.4.4 Spacetime Stochastic Processes

From a spacetime shift space we can create a spacetime stochastic process by assigning

a shift-invariant measure over the admissible motifs of the shift space that satisfies the

analogue of prefix and suffix marginalization. Points in the spacetime field now become

random variables Xr
t ∼ µ(xr

t). The spacetime stochastic process then is the joint distri-

bution over this spacetime field of random variables.

Creating a spacetime process in this way guarantees the process has the generalized

notion of stationarity (i.e. µ(f) is independent of where xF = f is found in spacetime).

Also, the temporal process over spatial configurations is guaranteed to be stationary from

this construction.

It should be noted that this is an abstract generalization from the temporal setting.

While a cellular automaton may well be described by a d + 1 shift space, the problem

of measures and how they are propagated by CAs is much trickier. Since a CA uses a

local update rule that is applied uniformly in time and space, the set of motifs which may

occur in the generated spacetime field is (asymptotically) independent of where you look

in the field. However, the density of motifs may change over time. Typical CA behavior

is, in fact, non-stationary in this way [100].

71

Chapter 3

Computational Mechanics

Having set up structured processes and how they can result from measurements of dy-

namical systems in Chapter 2, we now introduce the use of computational models, i.e.

machines, to formally capture the structure of structured processes. Meant to evoke

a computation-theoretic extension of statistical mechanics, this framework is known as

computational mechanics [104].

A machine representation of a process is known as a presentation. We will start in the

more general setting of presentations for stochastic processes (their support is always a

shift space), since this will allow us to formalize the intrinsic randomness of a process, as

well as its intrinsic structure. However, as structure is largely a topological property, we

will also introduce machine presentations of shift spaces.

3.1 Temporal Presentations

The canonical presentation computational mechanics uses for a given stochastic process

is a form of hidden Markov model (HMM) [181]: the ε-machine, which consists of a set Ξ

of causal states and a transition dynamic T over the causal states [169]. ε-Machines sat-

isfy three conditions: irreducibility, unifilarity, and probabilistically distinct states [182].

Irreducibility implies that the associated state-transition graph is strongly connected.

Unifilarity, perhaps the most distinguishing feature, means for each state ξ ∈ Ξ and

each observed symbol x ∈ A there is at most one outgoing transition from ξ labeled

x. Critically, unifilarity enables one to directly calculate various process quantities, such

72

as conditional mutual informations, using properties of the hidden (causal) states. No-

tably, many of these quantities cannot be directly calculated using the states of general

(nonunifilar) HMMs. Finally, an HMM has probabilistically distinct states when, for every

pair of states ξ and ξ′, there exists a word w such that the probability of observing w from

each state is distinct: Pr(w|ξ) 6= Pr(w|ξ′). An HMM satisfying these three properties is

an ε-machine.

We note that the scope of computational mechanics does extend beyond the ε-machine,

depending on what questions you ask of a process. The ε-machine is the canonical pre-

sentation of a process in computational mechanics as it is often easily constructed and

can tell you a lot about a process. It is centered around the task optimal prediction of

the future from the past. That is, getting the correct conditional distribution over the

future given the past. Other tasks, such as minimal (potentially nonunifilar) generation

of a process, may require a different presentation [183].

3.1.1 Causal States and the Causal Equivalence Relation

The set of causal states of the ε-machine

Ξt = X:t/ ∼ε (3.1)

is the partition over the space of all pasts defined via the causal equivalence relation:

x:t ∼ε x′:t ⇐⇒ Pr(Xt:|X:t = x:t) = Pr(Xt:|X:t = x′:t) . (3.2)

In words, the causal equivalence relation says that two pasts are considered causally

equivalent if they make the same prediction over futures. The distributions over futures

(predictions) are known as future morphs. Each causal state ξ ∈ Ξ is an element of the

coarsest partition of a process’s pasts such that every x:0 ∈ ξ has the same future morph

Pr(X0:|·). Due to stationarity, each past has a well defined future morph, and thus every

past has an associated causal state. The ε-function ε(x:t) is the map that takes pasts

to their causal states ε : X:0 → ξ and thus generates the partition defined by the causal

equivalence relation. The causal states are the unique minimal sufficient statistic of the

past to predict the future [169]. Causal equivalence and optimal prediction will be the

springboard for generalizing to spatiotemporal systems.

73

Notice that causal equivalence is essentially a stochastic generalization of the equiva-

lent histories definition of finite-state machines given in Section 2.1.1. Recall though that

the use of machines in dynamical structure modeling is for intrinsic computation, with

no reference to an external environment providing input; histories of past behavior of the

system are equivalent if they lead to the same future behavior of the system. Thus the

causal states can be thought of as the internal memory states of intrinsic computation for

a process.

3.1.2 Causal State Transitions

The causal equivalence relation provides a natural unifilar dynamic over the causal states.

At time t the ε-function maps the past X:t to its causal state ξt. At the next time step the

new updated past is X:t+1 = X:tXt, which the ε-function maps uniquely to causal state

ξt+1. Thus there is at most one causal state ξt+1 that the causal state ξt can transition to

upon seeing Xt. This guarantees the ε-machine is unifilar.

Moreover, this gives us the transition dynamic. One can think of ξt as an encapsulation

of the past X:t and ξt+1 as an encapsulation of the the past X:t+1 = X:tXt. These two

pasts differ only by the observed symbol Xt; thus to get the full summary ξt+1 one just

needs the past X:t as summarized by ξt and the observed symbol Xt. The probability of

this transition occurring is just the probability of seeing the observed symbol Xt given

the ε-machine was in state ξt at time t. All such transitions are given mathematically

as a symbol-labeled transition matrix T (x) which has elements that give the probability of

transitioning from state ξ to ξ′ on the symbol x:

T
(x)
ξξ′ ≡ Pr(Xt = x, ξt+1 = ξ′|ξt = ξ) . (3.3)

The overall internal state dynamics is governed by the stochastic matrix T =
∑

x T
(x).

Its unique left eigenvector π, associated with eigenvalue 1, gives the asymptotic state

probability Pr(ξ). By extension, the transition matrix giving the probability of a word

74

w = x0x1 · · ·x`−1 of length ` is the product of transition matrices of each symbol in w:

T (w) ≡
∏
xi∈w

T (xi)

= T (x0)T (x1) · · ·T (x`−1) .

(3.4)

The set of causal states together with the set of symbol-labeled transition matrices

gives the ε-machine. Defining the ε-machine in this way, using the causal equivalence rela-

tion, is equivalent to the first definition of an ε-machine machine given above as a hidden

Markov model with the three properties of irreducibility, unifilarity, and probabilistically

distinct states [182].

3.1.3 Basic Measures

The statistical complexity of a process [103] is the average amount of information about the

past that must be stored to predict the future as well as possible. Since the causal states

are minimal sufficient statistics for this future prediction, the complexity of a process

is also the amount of information needed to specify its causal state [169]. We can thus

calculate the statistical complexity of a process using the process’s ε-machine:

Cµ(P) ≡ H[Ξ]

= −
∑
ξ∈Ξ

Pr(ξ) log2 Pr(ξ) ,
(3.5)

where Pr(ξ) is the asymptotic state probability defined above.

Complexity of a process is to be contrasted with the intrinsic randomness of a process,

as these two notions are often conflated. Statistical complexity is the uncertainty in the

causal states of the process, while the entropy rate of the process is the uncertainty in

observed symbols:

hµ(P) = lim
L→∞

H[Xt:t+L]

L
= lim

L→∞
H[Xt|Xt−L:t] (3.6)

For stationary processes this quantity is the same for all t. The last expression in Equa-

tion (3.6) let’s us calculate hµ using the ε-machine for the process:

hµ(P) = −
∑
ξ∈Ξ

Pr(ξ)
∑

x∈A,ξ′∈Ξ

T
(x)
ξξ′ log2 T

(x)
ξξ′ (3.7)

75

It should be noted that these and other information-theoretic measures of processes

are independent of the computational mechanics formalism [184, 185]. However, since

ε-machines are mathematical representations of processes, these information measures

can be computed using the machine, as demonstrated above. In fact, this ability to

calculate many information quantities from the ε-machine makes it a particularly useful

representation of a process. For more details on information theory and ε-machines, see

[186, 187, 188, 189].

Recall that the entropy rate of a process is equal to the metric entropy only if the

measurement partition is generating. In the dynamical structure modeling framework,

the ε-machine is constructed directly from the measured process and as such is a reflection

of the underlying dynamical system as well as how it is measured. The ε in ε-machine

symbolizes this dependence on the measurement partition.

3.1.4 Topological Machines

Since shift spaces deal only with what words are allowed or not allowed, rather than

distributions over those words, shift spaces are presented by labeled graphs (i.e. finite-

state machines) instead of HMMs. These are graphs G(E, V) where every edge e ∈ E of

the graph carries a label L(e) from the alphabet A. Let W = ...e−1e0e1... be a bi-infinite

walk on G and L∞(W) = ...L(e−1)L(e0)L(e1)... be the label of the walk. The set of all

labels of bi-infinite walks on G is denoted by XG = {L∞(W) : W ∈ G} = L∞(G). A

labeled graph presents a shift X iff XG = B(X) [78].

A presenting graph G of a shift X is said to unifilar or right-resolving if for every

vertex v ∈ V and symbol x ∈ A, there is at most one outgoing edge e from v labeled

with the symbol x. As shown by Fischer [79, 80], an irreducible sofic shift X always has a

unique, minimal, unifilar presenting graph which is strongly connected. This presentation

is referred to as the (right) Fischer cover of X .

A related presentation of a shift space X is the future cover or Krieger cover of X
[182]. The future or follower set FX (x:i) of a left-infinite sequence (past) x:i in X is the

collection of all right-infinite sequences (futures) xi: such that x: = x:ixi: ∈ X . Define an

76

equivalence relation ∼K on the set of left-infinite pasts in X as:

x:i ∼K x:j ⇐⇒ FX (x:i) = FX (x:j) (3.8)

where x: ∈ X , and i and j are arbitrary indices that may or may not be equal. Rela-

tion (3.8) can be thought of as a topological causal equivalence relation, and the follower

sets as topological morphs.

The Krieger cover of X is the directed, edge-labeled graph G whose vertices are equiv-

alence classes of pasts xi: under the relation ∼K . There is a directed edge in G from vertex

v to vertex v′ labeled with symbol x, if for some past xi: ∈ v the past x:i+1 = x:ix ∈ v′.
As with the ε-machine and causal equivalence, construction by topological equivalence

guarantees the Kreiger cover is unifilar.

The Kreiger cover is not necessarily irreducible, but it will always have a single re-

current, irreducible component that is isomorphic to the Fisher cover. As we will not be

concerned with synchronization and the transient structure of Kreiger covers, we will refer

to general “topological machines” in what follows, by which we mean the Fisher cover

or, equivalently, the recurrent component of the Kreiger cover. We note though that our

reconstruction algorithm for topological machines, see Section 4.2, utilizes the topological

equivalence relation that defines the Kreiger cover.

For these topological machines the symbol-labeled transition matrices are replaced by

adjacency matrices with binary entries to indicate whether the transition on that symbol

is allowed or not. Statistical complexity and entropy rate are replaced by their topological

counterparts, which can often be calculated by simply assuming a uniform distribution

over states and transitions in Equations (3.5) and (3.7) (in general, distributions which

maximize the entropy rate must be used). The topological complexity measures the

amount of memory required to specify the language of X and the topological entropy

measures the growth rate of allowed symbol sequences in X .

3.1.5 An Example: The Even Shift

To briefly illustrate the strictly-temporal concepts just reviewed we now go through a

canonical example of the Even Shift and the Even Process, with the associated topological

77

and ε-machines. The Even Shift [85] is a subshift of the Full Binary Shift AZ with

A = {0, 1}. It is named the Even Shift because only even blocks of 1s bounded by 0s

are allowed. Thus the forbidden words are odd blocks of 1s bounded by 0s. There is a

countable number of such forbidden words, so the Even Shift is not of finite type, but it is

sofic since it can be presented by a finite-state machine, as shown in Figure 3.1 (a). This

is the topological machine presentation of the Even Shift.

A B0

1

1

(a)

A B0:1/2

1:1/2

1:1

(b)

Figure 3.1. (a) Topological machine presentation of the Even Shift. (b) ε-machine
presentation of the Even Process

To give context, note that the Full Binary Shift is presented by a machine with a single

state that has two self-loops, one for each of the binary symbols. Recall the Full Binary

Shift is the set of all binary strings, and is defined by F as the empty set; no words are

forbidden. The Even Shift, in contrast, has infinitely many forbidden words. However,

just a single additional state is required in its topological machine presentation to specify

all these forbidden words. And, the machine graph provides a semantic interpretation

for the Even Shift. Think of transitions between states in the machines as allowed con-

catenations of symbols onto allowed words. Starting in state A with the empty word, we

can concatenate both a 1 and a 0, as these are allowed transitions leaving state A. If we

concatenate a 0 we return to state A and can repeat. If we concatenate a 1, however, we

78

move to state B and from there we can only concatenate another 1 for the next symbol.

This shows how the machine is organized to ensure that only pairs of 1s are ever produced,

guaranteeing there will be no forbidden blocks of an odd number of 1s bounded by 0s.

A class of Even processes can be formed by applying a shift-invariant measure over the

Even Shift. This is most commonly done by adding fixed probabilities to the transitions

of the topological machine, resulting in the ε-machine for that process. Constructing

a stationary process from a shift in this way guarantees the machine presentations will

be topologically equivalent. Said another way, the support of the stochastic process

will be equal to the shift. We note though that going the other direction can be more

complicated. If one starts with a stationary stochastic process and then defines a shift

as the support of that process, the topological machine of that shift is not necessarily

topologically equivalent to the ε-machine of the starting process.

The Even Process typically refers to an assignment of uniform probability to the

transitions of state A. As with the topological machine of the Even Shift, the semantics

of the Even Process are easy to understand from the ε-machine, shown in Figure 3.1

(b). Starting in state A, the process is just flipping a fair coin, except that when a 1 is

produced, the next symbol produced is guaranteed to also be a 1, then it goes back to a

fair coin. We can see how this is a structured stochastic process, and how the ε-machine

fully captures that structure. In the same way the finite presentation of the topological

machine accounts for an infinite number of forbidden words, the finite presentation of

the ε-machine captures the infinite Markov order of the Even Process. With strings of

1s the “phase” (whether that string is even or odd in length) must be remembered, and

as strings of 1s may be arbitrarily long in the Even Process a Markov chain presentation

would need to be infinite Markov order to keep track of that phase.

3.1.6 Algebraic Theory of Patterns as Generalized Symmetries

Unlike the use of group algebra to formalize perfect symmetry, there is no universally

accepted formalism for pattern and structure. There is no way to rigorously show that

machine presentations are the “correct” mathematical formalism. An argument must be

made for this. We have given some arguments at the beginning of this chapter to justify the

79

introduction of machines. Ref. [169] gives a more thorough discourse on the general notion

of pattern; “some object O has a pattern P — O has a pattern ‘represented’, ‘described’,

‘captured’, and so on by P — if and only if we can use P to predict or compress O”.

Further, they argue that the machine presentations of computational mechanics are the

proper objects O to capture the pattern P in a process P , as they satisfy five desiderata

for pattern:

1. Algebraic, giving us an explicit breakdown or decomposition of pattern into its parts;

2. Computational, showing how the process stores and uses information;

3. Calculable, analytically or by systematic approximation;

4. Causal, telling us how instances of the pattern are actually produced; and

5. Naturally stochastic, not merely tolerant of noise but explicitly formulated in terms

of ensembles.

Our approach here has been different from that of Ref. [169] in that we have argued for

the use of machines from the start, and in so doing have encompassed, to some degree, all

of the above points under the umbrella of computation. Let us summarize and elaborate

upon these points in our context, and show how machines tie them all together.

As emphasized in the quote above, and as we emphasized in the previous Chapter,

Section 1.3.1, pattern derives from optimal prediction with minimal resources. This is the

computational aspect of Ref. [169]. The Kolmogorov-Chaitin complexity [190, 191, 192]

is discussed as a particular computational approach to pattern. In this, the pattern of

an individual object is captured by the shortest program, typically given as a universal

Turing machine, that exactly reproduces the object. The length of this shortest program

is the Kolmogorov-Chaitin complexity of the object. This measure is maximal for random

sequences, and as such captures “degree of randomness” rather than “degree of organiza-

tion”. Moreover, the quantity is generally not computable, due to the halting problem.

Thus, while Kolmogorov-Chaitin complexity clearly satisfies the computational aspect of

pattern, it is not calculable nor naturally stochastic. In fact, if we wish to distinguish

80

structure from randomness, as we do in this work, then Kolmogorov-Chaitin complexity is

a clear example of why pattern must be formulated in terms of ensembles. A finite-state

machine presentation is a program, and from causal equivalence we want the shortest

such program that optimally predicts. However, this is optimal prediction of ensemble

behavior, rather than individual sequences. Take for instance the Full Binary Shift. For

a generic sequence x: ∈ AZ its symbols are entirely independent and so no program can

compress it. However, the topological machine presentation has just a single state. As an

ensemble, the Full Shift is minimally complex; nothing is forbidden and all concatenations

of 0s and 1s are allowed. This is a short description. It is maximally random though, so

any individual sequence must be fully described, symbol by symbol.

The organizational semantics of machines, as described in the Even Shift example

above in Section 3.1.5, captures the causal aspect of Ref. [169]. Machine graphs show, in

a visually interpretable manner, how the allowed symbol concatenations are structured to

produce the allowed sequences of the shift space. Allowed concatenations lead us to the

strongest argument for the use of machines to formalize pattern; the algebraic argument.

As mentioned before, finite-state machines (and thus sofic shifts) have a defining semi-

group algebra [160, 85, 87, 161]. Recall that a group is a set of elements closed under an

associative, invertible binary operation with an identity element. A semi-group generalizes

this by dropping the requirements for invertibility and identity element. The elements of

a machine’s semi-group G(M) are words (symbol blocks) and the binary operation is word

concatenation. Crucially, there is an absorbing semi-group element e ∈ G(M) such that

we = ew = e for all words w ∈ G(M). This element defines the algebra of a particular

machine through the following; for any two words u and v in the language of the machine

L(M) and their concatenation w = uv, if w ∈ L(M) than uv 6= e is an element of G(M),

and if w is not in L(M) than uv = e in G(M). Thus the semi-group algebra of a machine

sends two allowed words to the absorbing element e if and only if their concatenation

produces a word forbidden by the language of the machine. We can relate the semi-group

of a machine to its machine graph through the generators of G(M). The generators are

the single-symbol concatenations, along with e. The single-symbol concatenations are

81

the labelled edges of the machine graph; its state transitions. Any “missing” edge that

could be drawn between two states, including a state to itself, that is not a copy of an

existing edge, is an implicit transition that leads an absorbing “forbidden words state”.

All concatenations that lead to the forbidden word state map to e in G(M).

An example for the Even Shift is shown in Figure 3.2. The forbidden state F cycles

on the absorbing element e to depict that all transitions leading to F produce forbidden

words and thus map to e. Recall that the minimal machine presentation shown here is

best understood as a generative model; starting from any state and following transitions

produces words in the language of the Even Shift (as long as they don’t lead to F). Non-

asymptotic machines for both left and right concatenations that can be used to recognize

sequences from the Even Shift are given in Ref. [87].

The Even Shift is described by the following semi-group relations [87]:

010 = e

02 = 0

13 = 1

012 = 120 = 0 .

The smallest forbidden pattern of ‘an odd number of 1s bounded by 0s’ is 010. This is

the irreducible forbidden pattern; thus the main defining relation of the Even Shift is

010 = e. The relations 13 = 1 and 012 = 120 = 0 can be used to reduce longer sequences

of odd-length blocks of 1s bounded by 0s to 010; e.g. 0111110 = 012130 = 010 = e.

Finally, there are no restrictions on sequences of 0s in the Even Shift, which gives the

relation 02 = 0.

To close our arguments for the use of machines to formalize pattern and structure, let’s

re-examine exact symmetry through this lens. There is an appealing logic to the algebraic

perspective. Groups capture symmetry; semi-groups generalize groups; machines are

defined by semi-groups; so machines capture pattern as generalized symmetry. Ref. [169]

introduced an identity element, the null symbol, to their machine algebra in an attempt

to formalize this appeal. Only semi-groups with an identity, called monoids, can contain

82

Figure 3.2. Minimal machine presentation of the Even Shift that includes a “forbidden
word state” F . All transitions that lead to this state produce forbidden words and
thus the associated concatenations map to the absorbing semi-group element e in the
machine algebra G(M).

proper groups as sub-groups. However, the binary operation of machine semi-groups is

string concatenation, and the inverse of string concatenation is string splitting, which can

not be performed an arbitrary number of times for finite strings. Thus it can not be that

a machine’s semi-group can contain a symmetry group as a proper sub-group in this way.

That being said, we can still view the semi-group algebra of machines as generalizing

the group algebra of symmetries, in the one-dimensional case, in the following way: all

translation-invariant strings, σp(x:) = x:, define a shift space and thus can be presented by

a machine. Translation-invariant strings are produced by semi-groups with the following

asymptotic property1: for all allowed words w, there is one and only one generator x ∈
A 6= e such that wx 6= e. That is, for every word there is one and only one symbol that can

be concatenated to produce an allowed word. For the machine graph, this means for every

state there is one and only one transition leading to it and one and only one transition

leaving it. From this point of view, we see exact symmetry as a highly restrictive property.

This generalization also adds a computational perspective, as described by desidera-

tum 2. above, to symmetry groups. One may not initially think of symmetry groups as

“storing and processing” information. The machine presentation of translation invariance

makes this computational aspect of symmetry groups explicit. To elaborate, recall that a

1A translation-invariant string s can be described in terms of a minimal block b such that s = · · · bbb · · · .
This is an asymptotic property because the word w must be larger than b for it to hold.

83

symmetry group is the group of all transformations that leaves an object unchanged. The

quotient group of a symmetry thus contains all the transformations that do change an

object, but sequentially lead to an overall transformation that brings the object back to

itself. One can think of the elements of the quotient group of a symmetry as being memory

states, or more accurately as the transitions between memory states. They capture the

contextual information required for a regular pattern. The group relations specify how

these pieces fit together to create the particular pattern. In the one-dimensional case of

a periodic tiling, the generator and defining relation for the quotient group is a counter

that tracks the phase of the periodic pattern. This can be regarded as memory because

the starting point must be stored when traversing the pattern to specify when it repeats.

As an example, consider the shift of strings with the form:

· · · 111000111000111000111000111000111000111000111000111 · · · ,

with the repeating pattern of three 1s followed by three 0s (or vice versa). The minimal

machine presentation of this shift is shown in Figure 3.3. This pattern requires six unit

shifts to return back to itself, and thus the machine has six internal states, reflecting the

quotient group of this symmetry. To ask whether a 1 is in the middle of a block of 1s,

or on the right end of a block, is equivalent to asking whether that 1 was generated from

state B or state C. It is in this way that the internal states act as a counter tracking the

phase of the repeating pattern.

Figure 3.3. Minimal machine presentation of the shift space of translation-invariant
strings · · · 111000111000111 · · · .

84

3.2 Spatiotemporal Presentations

Moving to systems with spatial dimensions introduces many conceptual and technical

difficulties for generalizing computational mechanics. The global approach, outlined be-

low, is the most straightforward way to apply computational mechanics to spatiotemporal

systems, though it is essentially intractable in practice. The work of Hanson and Crutch-

field [5, 193, 194, 116, 4], described further in Section 4.4.1, is an attempt at handling a

global, configurational type approach in a manageable way. Instead of focusing on how

all possible configurations evolve, focus on special sets of homogeneous, dynamically in-

variant configurations. While grounded in solid dynamical systems principles and highly

successful in 1D cellular automata, this method has its own difficulties and shortcom-

ings. Most notably in practical application of the method to higher dimensional systems

(though still theoretically sound in any dimension).

It turns out to be quite fruitful to take a local, rather than global, perspective when

moving to the spatially-extended setting. That is, instead of seeking a presentation for

the global dynamic, try to find presentations for each site in spacetime that encode the

rules for local transitions in time and space. Such a local spatiotemporal computational

mechanics however is not so straightforward. At present, this local theory is incomplete.

As mentioned for computational mechanics in its original temporal setting, there is not

a single machine presentation for a process which answers all questions about that pro-

cess. This situation is even worse for local spatiotemporal computational mechanics. For

instance, the ε-machine is the presentation for optimal prediction of the future of a pro-

cess, given the past. In the time series case, there is only one notion of past and future.

But there may be different notions of a local future which one may want to predict in

a spatiotemporal system. There can thus be a multitude of different local presentations

for a spatiotemporal process [195]. Not just answers to different questions, but also there

are now different ways to ask the same question in spatiotemporal settings (e.g. not just

prediction vs generation, but now also what do you want to predict or generate).

First we outline the global approach and why it is infeasible in practice. Then we give

a detailed review of the standard local approach, the local causal states, as first given in

85

Ref. [110]. Notice we will be using just the states, and not a full machine (i.e. states and

their transitions). Similar to the intractability of high-dimensional shift spaces, regular

languages and finite-state machines do not have straightforward generalizations to higher

dimensions [196]. Though we do not give the details here, the transition structure of the

local causal states outlined in Ref. [110] does not yield consistent presentations of their

associated spacetime shifts [195]. Despite this, we will see in the following Chapters that

the local causal states are nonetheless capable of capturing complex pattern and structure

in spacetime.

3.2.1 Global ε-Machine

The most obvious way to tackle spatiotemporal systems with computation mechanics is

to treat the system as a time series of evolving configurations. We can thus reduce the

problem to the familiar time series setting of computational mechanics, only now with

an alphabet size exponential in the size of the spatial lattice. While this can be done

in theory, one quickly sees that this approach is intractable for all practical purposes.

Not only would you need an immense amount of computation power and data to process

in order to reconstruct a global machine, but even if you could get a result it would

present structure in the dynamics at the full configuration level. Most often in spatially-

extended systems there is interest in localized structures in space and how they evolve in

time. Global causal states would only be able to code for full configurations. It would be

difficult to access information on a particular localized structure since this structure may

appear in various configurational contexts and it is only the full configurations that are

being represented with this global spacetime ε-machine.

3.2.2 Local Causal States

The causal equivalence relation is the core of computational mechanics, and this remains

the case when moving to spatiotemporal systems. What we need are notions of past and

future in the spatiotemporal setting. The global machine uses the same notion of pasts

and futures as the temporal setting but with full spatial configurations rather than a

single observed symbol.

86

Since the global approach is intractable, we instead take a local approach. We seek

not pasts and futures of the full spatial configuration, but rather local pasts and futures

for each site on the spatial lattice. This is the opposite extreme from the global approach

and, as we will see, has many advantages. Chief among them being tractability; the

huge space of configurations is replaced by a smaller (though still high dimensional) space

of local pasts and futures as discussed below. This approach also allows for clear and

interpretable representations of localized structures that emerge in the spatial lattice.

Since the single lattice site representations can be composed together to form larger sized

representations (including the full spatial lattice), as discussed below, this approach can

uniformly capture pattern and structure at all scales in the system.

3.2.2.1 Local Analogues

The simplest local approach is to look at the time series produced by the evolution of

each site on the lattice

. . . ,xr
−1,x

r
0,x

r
0, . . .

This approach though ignores the explicit interactions between the sites, which is exactly

what we are interested in as it is these interactions that produce complex patterns and

structures in space and time.

Thus we want to take into account not just the pasts and futures of the individual

lattice sites, but also the spacetime points that they could affect and could be affected

by through local interactions. For systems that evolve according to a homogeneous local

dynamic, influence can only propagate at a finite speed through the lattice, and this

naturally leads to the use of lightcones as local pasts and futures.

Formally, the past lightcone L− of a spacetime random variable Xr
t is the set of all

random variables at previous times that could possibly influence it. That is:

L−(r, t) ≡
{
Xr′
t′ : t′ ≤ t and ||r′ − r|| ≤ c(t− t′)

}
, (3.9)

where c is the finite speed of information propagation in the system. Similarly, the future

lightcone L+ is given as all the random variables at subsequent times that could possibly

87

be influenced by Xr
t :

L+(r, t) ≡
{
Xr′
t′ : t′ > t and ||r′ − r|| ≤ c(t′ − t)

}
. (3.10)

We include the present random variable Xr
t in its past lightcone, but not its future light-

cone. An illustration for one-space and time (1 + 1D) fields on a lattice with nearest-

neighbor (or radius-1) interactions is shown in Fig 3.4. We use L− to denote the random

variable for past lightcones with realizations `−; similarly, L+ those with realizations `+

for future lightcones.

Present t = t0

Past t < t0

Future t > t0

Xr0
t0

L−(r0, t0)

L+(r0, t0)

r0

t 0

Space

T
im

e

Figure 3.4. Lightcone random variable templates: Past lightcone L−(r0, t0) and future
lightcone L+(r0, t0) for present spacetime point Xr0

t0
in a 1 + 1 D field with nearest-

neighbor (or radius-1) interactions.

An aspect of past lightcones that highlights their importance and further justifies their

use as local pasts is their relation to the governing local dynamics through higher-order

lookup tables. The nth-order lookup table φn maps the radius r = n · c neighborhood of a

site to that site’s value n time-steps in the future. Said another way, a spacetime point

xr
t+n is completely determined by the radius R = n · c neighborhood n time-steps in the

past according to φn
(
ηn·c(xr

t

))
. To fill out the elements of φn, apply φ to all points of ηn·c

to produce η(n−1)·c and so on until η0 = x is reached. This is what we call the lookup table

cascade, the elements of which are finite-depth past lightcones.

The choice of lightcone representations for both local pasts and futures is ultimately a

weak-causality argument; influence and information propagate locally through a spacetime

88

site from its past lightcone to its future lightcone. By definition no spacetime site outside

of the past lightcone of xr
t can causally influence xr

t . Nor can xr
t causally influence any

spacetime point outside of its future lightcone.

3.2.2.2 Local Causal Equivalence Relation

Having established the use of lightcones as local pasts and futures, generalizing the causal

equivalence relation to spacetime is now straightforward. Two past lightcones are causally

equivalent if they have the same distribution over future lightcones:

`−i ∼ε `−j ⇐⇒ Pr
(
L+|`−i

)
= Pr

(
L+|`−j

)
. (3.11)

This local causal equivalence relation over lightcones implements an intuitive notion of

optimal local prediction [110]. At some point xr
t in spacetime, given knowledge of all

past spacetime points that could possibly affect xr
t—i.e., its past lightcone `−(r, t)—what

might happen at all subsequent spacetime points that could be affected by xr
t—i.e., its

future lightcone `+(r, t)?

The equivalence relation induces a set Ξ of local causal states ξ. A functional version

of the equivalence relation is helpful, as in the pure temporal setting, as it directly maps

a given past lightcone `− to the equivalence class [`−] of which it is a member:

ε(`−) = [`−]

= {`−′ : `− ∼ε `−
′}

or, even more directly, to the associated local causal state:

ε(`−) = ξ`− .

3.2.2.3 Properties

Closely tracking the standard development of temporal computational mechanics [169], a

set of results for spatiotemporal processes parallels those of temporal causal states [110],

which we summarize here.

• Local Causal States Are Minimal Sufficient Statistics

89

The starting point for this path of generalizing computational mechanics is again

optimal (local) prediction. Formally, the notion of optimal prediction here means

getting the correct conditional distribution Pr(L+|`−). That is, the local causal

states are minimal sufficient statistics of past lightcones for optimal prediction of

future lightcones.

• Local Causal States are Unique

In fact, the local causal states are the unique minimal sufficient statistics for this

task of optimal local prediction.

• Patch Composition

A patch is a connected subset of the spatial configuration at a particular time.

These patches have past and future lightcones, similarly defined as all points in

spacetime which can affect or be affected by that patch. The patch lightcones

are just the unions of the single-site lightcones for all spatial sites in the patch.

Optimal patch prediction then is getting the correct conditional distribution over

future patch lightcones, given the past patch lightcone. Optimal patch predictors

are the minimal sufficient statistics for optimal patch prediction, and are uniquely

determined by the composition of all the local causal states within the patch.

• Global Prediction

Consider the full spatial configuration as the largest possible patch for the system.

Optimal prediction of this patch is then optimal prediction of the evolution of the

full system. The minimal sufficient statistic for this global prediction are the config-

urational causal states, which are the states of the global ε-machine described above.

Thus the global causal state at any time is uniquely determined by the collection of

all local causal states in the spatial lattice at that time.

• Markov Properties

The parents of the local causal state at (r, t) are the local causal states at all points

at time t − 1 which are inside the past lightcone `−(r, t). That is, the local causal

90

states at all points inside the depth-1 past lightcone at (r, t). The local causal state

at (r, t) is independent of the configuration in its past lightcone, `−(r, t), given its

parent states. Similarly, the local state at a point (r, t) is independent of the local

causal states of points in its past lightcone, given its parents. This is known as

Markov shielding.

It is conjectured that the spacetime field of local causal states is a Markov random

field.

3.2.2.4 Causal state filtering

As in purely-temporal computational mechanics, the local causal equivalence relation

Equation (3.11) induces a partition over the space of (infinite) past lightcones, with the

local causal states being the equivalence classes. We will use the same notation for local

causal states as was used for temporal causal states above, as there will be no overlap

later: Ξ is the set of local causal states defined by the local causal equivalence partition,

ξ denotes the random variable for a local causal state, and ξ for a specific causal state

realization. The local ε-function ε(`−) maps past lightcones to their local causal states

ε : `− 7→ ξ, based on their conditional distribution over future lightcones.

For spatiotemporal systems, a first step to discover emergent patterns applies the

local ε-function to an entire spacetime field to produce an associated local causal state

field S = ε(x). Each point in the local causal state field is a local causal state Sr
t =

ε
(
`−(xr

t)
)

= ξ ∈ Ξ.

The central strategy here is to extract a spatiotemporal process’ pattern and structure

from the local causal state field. The transformation S = ε(x) of a particular spacetime

field realization x is known as causal state filtering and is implemented as follows. For

every spacetime coordinate (r, t):

1. At xr
t determine its past lightcone L−(r, t) = `−;

2. Form its local predictive distribution Pr(L+|`−);

3. Determine the unique local causal state ξ ∈ Ξ to which it leads; and

4. Label the local causal state field at point (r, t) with ξ: Sr
t = ξ.

91

Notice the values assigned to S in step 4 are simply the labels for the corresponding

local causal states. Thus, the local causal state field is a semantic field, as its values are

not measures of any quantity, but rather labels for equivalence classes of local dynamical

behaviors as in the measurement semantics introduced in Ref. [197].

Though the local causal states are not a full machine presentations, they gain immense

utility through causal filtering. Because observable spacetime fields are transformed lo-

cally, at each point in spacetime, the resulting local causal state field shares the same

coordinate geometry of the observable field. This means pattern and structure of arbi-

trary shapes and sizes in the observable field can be defined through properties of the

corresponding regions in the latent local causal state field. As we will see in Section 4.4.2,

this includes algebraic properties that generalize exact symmetries in higher dimensions

in an analogous manner described above, in Section 3.1.6, to machine presentations of

temporal processes. The local causal states do not have a semi-group algebra generated

by “word” concatenations, but the geometry of local causal state fields afforded by causal

filtering provides relations among the local causal states that allow for algebras generated

by spacetime shifts. As we will see in Chapters 4 and 5, the local causal states can capture

quotient groups of generalized spacetime symmetries.

Causal filtering – through the shared coordinate geometry of x and S and the space-

time algebra over the local causal states– is the main theoretical contribution of this

thesis. The applications to coherent structures in Chapters 6 and 7 are made possible

using the shared coordinate geometry. Moreover, the spacetime algebra of local causal

states provides the formal physical basis of coherent structures as locally broken (gener-

alized) symmetries. Similarly, the analysis of CA patterns in Chapters 4 and 5, and their

connection to spacetime invariant sets, is made possible only through causal filtering.

92

Chapter 4

Cellular Automata: Domain

Patterns

We are ultimately interested in far-from-equilibrium pattern and structure in natural

systems. In Chapter 1 we discussed the difficulties far-from-equilibrium systems pose for

the traditional tools of physics. Emergent behaviors can not be deduced from governing

equations nor isolated in carefully controlled experiments, making it seemingly impossible

to test potential mechanistic hypotheses underlying these behaviors. Thus, in Chapter 3

we introduced the local causal states as a behavior-driven approach based on intrinsic

computation, developed in Chapter 2, to circumvent these issues. There are three looming

hurdles that prevent us from jumping straight in and applying the local causal states

to natural systems. One is an imminently practical concern that we will return to next

Chapter in Sections 7.1 and 7.2: the algorithmic and computational challenges of inferring

the local causal states (what we call local causal state reconstruction) for natural systems.

The other two issues are conceptual.

First, in Section 3.1.6 we argued for machine presentations as the appropriate math-

ematical formalism to capture pattern as generalized symmetry. However, machines can

not be easily generalized to higher dimensions and as we saw in Section 3.2.2 the lo-

cal causal state approach we will use, based on causal state filtering, does not utilize

state transitions. Thus it remains to be seen whether the local causal states are useful

for capturing pattern in higher dimensions in the way machines capture pattern in one

93

dimension.

Second, we again emphasize that there is no general theory, no ground-truth, for what

actually constitutes an “organized structure” in far-from-equilibrium systems. Even if we

do apply the local causal states to a natural system, how will we know whether they are

telling us anything meaningful about the system? There are certainly many “know it

when you see it” cases, like the Great Red Spot of Jupiter, but we would like to be more

principled and systematic than that. Ideally, we would like to construct a physical theory

of self-organization in far-from-equilibrium systems, based on the local causal states, that

defines a ground-truth.

As a first step towards this lofty goal, we need to start in a simpler setting. Before we

can use the local causal states to learn about natural systems, we need to learn more about

the local causal states and their ability to capture pattern and structure in spacetime.

Cellular automata will be our proving ground. They are fully discrete and thus more

immediately amenable to computation-theoretic approaches like the local causal states.

For the one-dimensional cellular automata that we will use, their spatial configurations

can be studied using the tools and machine presentations of symbolic dynamics, thanks

to the Curtis-Hedlund-Lyndon theorem (see Section 2.3).

Crutchfield and Hanson introduced a principled analysis of CA patterns and structures

[103, 5, 193, 194, 116, 198, 4]. They defined domain patterns as dynamically invariant

sets of spatially statistically stationary configurations with finite memory. This led to

formal methods for proving that domains were spacetime shift-invariant and so domi-

nant patterns for a given CA. Having identified these significant patterns, they created

spatial transducers that decomposed a CA spacetime field into domains and nondomain

structures, such as particles and particle interactions [199]. We refer to this analysis of

CA structures as the domain-particle-interaction decomposition (DPID). The following

extends DPID but, for the first time, uses local causal states to define domains and co-

herent structures. In this, domains are given by spacetime regions where the associated

local causal states have time and space translation symmetries. Formally, this defines

domain patterns as generalized spacetime symmetries. The local causal state extension is

94

crucial, as the dependence of DPID analysis on finite-state machines greatly complicates

its application to natural systems.

Our exploration of the patterns and structures produced by cellular automata, as de-

scribed by the local causal states, proceeds as follows. In Section 4.1 we review cellular

automata. Then the topological reconstruction technique for inferring local causal states

from discrete-valued spacetime fields is given in Section 4.2, and the automata-theoretic

perspective of the global dynamics of CAs, the key ingredient of DPID, is given in Sec-

tion 4.3. These two Sections establish the analysis tools that will be used in what follows.

This sets us up to define the key notion of cellular automata domains in Section 4.4, which

formalizes pattern in spatiotemporal systems as generalized spacetime symmetries. We

then take a brief detour in Chapter 5 to relate domains to particular dynamical properties

of cellular automata. Finally, in Chapter 6 we use domains to formalize coherent struc-

tures in cellular automata as localized deviations from generalized symmetries. Taken

together, the results demonstrated in these Chapter show that the local causal states can

capture meaningful spacetime pattern and structure in a principled manner.

95

4.1 Cellular Automata

A cellular automaton (CA) is a a fully-discrete spatially-extended dynamical system with

a regular spatial lattice in d dimensions L = Zd, consisting of local variables taking values

from a discrete alphabetA and evolving in discrete time steps according to a local dynamic

φ. Time evolution of the value at a site on a CA’s lattice depends only on values at sites

within a given radius R. The collection of all sites within radius R of a point xr
t , including

xr
t itself, is known as the point’s neighborhood η(xr

t):

η(xr
t) = {xr′

t : ||r− r′|| ≤ R; r, r′ ∈ L} .

The neighborhood specification depends on the form of the lattice distance metric chosen.

The two most common neighborhoods for regular lattice configurations are the Moore and

von Neumann neighborhoods, defined by the Chebyshev and Manhattan distances on L,

respectively.

The local evolution of a spacetime point is given by:

xr
t+1 = φ

(
η(xr

t)
)
,

and the global evolution Φ : AL → AL of the spatial field is given by:

xt+1 = Φ(xt) . (4.1)

For example, this might apply φ in parallel, simultaneously to all neighborhoods on the

lattice. Although, other local update schemes are encountered.

As noted, CAs are fully discrete dynamical systems. They evolve an initial spatial

configuration x0 ∈ AL according to Eq. (4.1)’s dynamic. This generates an orbit x0:t =

{x0,x1, . . .xt−1} ∈ AL×Z. Usefully, dynamical systems theory classifies a number of orbit

types. Most basically, a periodic orbit repeats in time:

xt+p = Φp(xt)

= xt , (4.2)

where p is its period—the smallest integer for which this holds. A fixed point has p = 1

and a limit cycle has finite p > 1. An aperiodic orbit has no finite p; a behavior that can

occur only on infinite lattices.

96

Since CA states are spatial configurations an orbit x0:t is a spacetime field. These

orbits constitute the spatiotemporal processes of interest in this Chapter. Visualizing CA

orbits as spacetime fields reveals the fascinating patterns and localized structures that

CAs produce and how the patterns and structures evolve and interact over time.

4.1.1 Elementary Cellular Automata

The parameters (A, R) define a CA class. One simple but nontrivial class is that of the

so-called elementary cellular automata (ECAs) [100] with a binary local alphabet A =

{0, 1} and radius R = 1 local interactions η(xrt) = xr−1
t xrtx

r+1
t . Due to their definitional

simplicity and wide study, we mostly explore ECAs in our examples.

A local update rule φ is generally specified through a lookup table, which enumerates

all possible neighborhood configurations η and their outputs φ(η). The lookup table for

ECAs is given as:

η Oη = φ(η)

1 1 1 O7

1 1 0 O6

1 0 1 O5

1 0 0 O4

0 1 1 O3

0 1 0 O2

0 0 1 O1

0 0 0 O0

,

where each output Oη = φ(η) ∈ A and the ηs are listed in lexicographical order. There are

28 = 256 possible ECA lookup tables, as specified by the possible strings of output bits:

O7O6O5O4O3O2O1O0. A specific ECA lookup table is often referred to as an ECA rule

with a rule number given as the binary integer o7o6o5o4o3o2o1o0 ∈ [0, 255]. For example,

ECA 172’s lookup table has output bit string 10101100.

4.2 Topological Reconstruction

Being a behavior-driven technique, the local causal states are reconstructed from space-

time field realizations, rather than calculated from a system’s equations of motion. As

97

the results presented in Sections 4.4 and 5 below rely on symmetries in local causal state

fields, it is important to know whether one has a faithful local causal state reconstruction

or not.

Using the local causal equivalence relation as given in Eq. (3.11) presents a chal-

lenge since the conditional distributions over lightcones must be inferred from finite re-

alizations. To circumvent this, we instead use topological reconstruction. This replaces

probabilistic morphs morphP(`−i) = Pr
(
L+|`−i

)
with topological morphs morphT (`−i) =

{all `+
j occurring with `−i }, which are the supports of the probabilistic morphs. Thus,

two past lightcones are topologically (causally) equivalent if they lead to the same set of

future lightcones. Contrast this with being probabilistically (causally) equivalent, if they

have the same distribution over future lightcones.

Topological reconstruction is particularly convenient for fully-discrete systems such as

CAs, since the topological morphs for finite-depth lightcones can be exactly reconstructed

and the condition for topological equivalence is exact. (That is, are the topological morph

sets the same or not?) Moreover, the number of unique past lightcone-future lightcone

pairs seen in spacetime field data is monotone increasing, providing a measure of con-

vergence for identifying topological morphs. In short, finite-depth approximations to the

topological local causal states can be exactly reconstructed with confidence.

For concreteness, the topological reconstruction of local causal states in what follows

uses past and future lightcone depths of 3 for explicit symmetry domains and past light-

cone depth 8 and future lightcone depth 3 for hidden symmetry domains. (Domain types

are defined in Section 4.4.3.)

4.3 Automata-Theoretic CA Evolution

Rather than study how a CA evolves individual configurations, it is particularly informa-

tive to investigate how CAs evolve sets of configurations [5, 199]. This allows for discovery

of structures in the state space of a CA induced by Φ.

For cellular automata in one spatial dimension, configurations x ∈ AZ are strings over

the alphabet A. Sets of strings recognized by finite state machines are called regular

98

languages. Any regular language L has a unique minimal finite-state machine M(L)

that recognizes or generates it [84]. These automata are useful since they give a finite

representation of a typically infinite set of regular-language configurations.

As described in more detail in Section 2.3, not all regular languages are appropriate as

sets of spatial configurations for cellular automata; we consider only sets that are subword

closed and prolongable in the sense that every word in the language can be extended to

the left and the right to obtain a longer word in the language. In automata theory these

are known as factorial, prolongable regular languages. In symbolic dynamics [78] these

are the languages of sofic shifts—closed, shift-invariant subsets of AZ that are described

by finite-state machines. The language L of a sofic shift X ⊆ AZ, a sofic language, is the

collection of all words that occur in points x ∈ X . (See Section 2.3 for details of sofic

languages; sometimes called process languages in the computational mechanics literature.)

Every state of the machine M(L) for a sofic language L is both a start and end state.

For the remainder of our development any language L always refers to a sofic language,

and the machine M(L) refers to the unique minimal deterministic finite-state machine

presentation of that language.

To explore how a CA evolves languages we establish a dynamic that evolves machines.

This is accomplished via finite-state transducers. Transducers are a particular type of

input-output machine that maps strings to strings [200]. This is exactly what a (one-

dimensional) CA’s global dynamic Φ does [101]. As a mapping from a configuration xt at

time t to one xt+1 at time t+ 1, Φ is also a map on a configuration set Lt from one time

to the next Lt+1:

Lt+1 = Φ(Lt) . (4.3)

The global dynamic Φ can be represented as a finite-state transducer TΦ that evolves

a set of configurations represented by a finite-state machine. This is the finite machine

evolution (FME) operator [5]. Its operation composes the CA transducer TΦ and finite-

state machine M(Lt) to get the machine Mt+1 = M(Lt+1) describing the set Lt+1 of

99

spatial configurations at the next time step:

Mt+1 = min
(
TΦ ◦M(Lt)

)
. (4.4)

Here, min(M) is the automata-theoretic procedure that minimizes the number of states

in machine M . While not entirely necessary for language evolution, the minimization

step is helpful when monitoring the complexity of Lt. The net result is that Eq. (4.4) is

the automata-theoretic version of Eq. (4.3)’s set evolution dynamic. Analyzing how the

FME operator evolves configuration sets of different kinds is a key tool in understanding

CA emergent patterns.

4.4 CA Domains

Modern physics evolved to use group theory to formalize the concept of symmetry [201].

The successes in doing so are legion in twentieth-century fundamental physics. When

applied to emergent patterns, though, group-theoretic descriptions formally describe only

their exact symmetries. This is too restrictive for more general notions—naturally occur-

ring patterns and structures that are an amalgam of strict symmetry and randomness.

Thus, one appeals to semi-group theory [202, 87] to describe partial symmetries. This use

of semigroup algebra is fundamental to automata as developed in early computation the-

ory [203, 204]. In this, different classes of automata or “machines” formalize the concept

of pattern; see Section 3.1.6. Through the connection with semi-group theory, pattern

captured by machines can be seen as a system’s generalized symmetries. The variety

of computational model classes [84] then becomes an inspiration for understanding emer-

gent natural patterns [203]. Alluding to condensed matter physics, we will refer to regions

with this generalized symmetry as domains. They are the background organizations above

which coherent structures are defined; see Chapter 6.

Below we give two distinct domain definitions; one in terms of dynamically-invariant

sets, the other in terms of local causal state symmetries. For both, a formal notion of

domain is used to discover and describe these and other emergent spacetime structures

that form in CA spacetime fields.

100

4.4.0.1 Structure From Broken Symmetries

Structure is often described as arising from broken symmetries [133, 33, 10, 205, 206, 29,

30, 207]. Though key to our development, broken symmetry is a more broadly unifying

mechanism in physics. Care, therefore, is required to precisely distinguish the nature

of broken symmetries we are interested in. Specifically, our formalism seeks to capture

coherent structures as temporally-persistent, spatially-localized broken symmetries.

Drawing contrasts will help delineate this notion of coherent structure from others

associated with broken symmetries. Equilibrium phase transitions also arise via broken

symmetries. There, the degree of breaking is quantified by an order parameter that

vanishes in the symmetric state. A transition occurs when the symmetry is broken and

the order parameter is no longer zero [206].

This, however, does not imply the existence of coherent structures. When the order

parameter is global and not a function of space, symmetry is broken globally, not locally.

And so, the resulting state may still possess additional global symmetries. For example,

when liquids freeze into crystalline solids, continuous translational symmetry is replaced

by a discrete translational symmetry of the crystal lattice—a global symmetry.

Similarly, the primary bifurcation exhibited in nonequilibrium phase transitions occurs

when the translational invariance of an initial homogeneous field breaks [29, 30]. It is

often the case, though, as in equilibrium, that this is a continuous-to-discrete symmetry

breaking, since the cellular patterns that emerge have a discrete lattice symmetry. To

be concrete, this occurs in the conduction-convection transition in Rayleigh-Bénard flow.

The convection state just above the critical Rayleigh number consists of convection cells

patterned in a lattice [17, 20]. In the language used here, the above patterns arise as a

change of domain structure, not the formation of coherent structures. Coherent structures,

such as topological defects [29, 208], form at higher Rayleigh numbers when the discrete

cellular symmetries are locally broken.

Describing domains, their use as a baseline for coherent structures, and how their own

structural alterations arise from global symmetry breaking transitions delineates what

our coherent structures are not. To make positive headway, we move on to a direct

101

formulation, starting with how they first appeared in the original DPID and then turning

to express them via local causal states. After establishing domain formalism, and taking

a detour connecting domain behaviors to CA subdynamics in Section 5, we will return

to the task of defining coherent structures and providing examples of CA structures in

Section 6.

4.4.1 DPID Patterns: Spacetime Invariant Sets

Domains of one-dimensional cellular automata were defined in DPID pattern analysis

[5, 193, 194, 116, 4] as sets of spatially (and statistically) homogeneous configurations

that are invariant under a CA dynamic Φ.

Presently, we find it useful to restate and reinterpret these results using symbolic

dynamics [78]. Recall from Section 2.3 that a shift space, or simply a shift, X ⊆ AZ is

a compact, shift-invariant subset of the full-A shift AZ. A point x = · · ·x−2x−1x0x1 · · ·
in a shift space is an indexed bi-infinite string of symbols in A and the shift operator σ

increments the indices of points by one; if y = σ(x) for x ∈ X , then yi = xi+1 and by

definition y ∈ X . As the name suggests, a sliding block code Φ : X → Y maps points from

one shift space to another using a sliding-window function φ: yi = φ(xi−m:i+n), where

x ∈ X , y ∈ Y . We are particularly interested in surjective codes, also known as factor

maps. The notational overlap with CA dynamics is intentional: CAs are uniform sliding

block codes (m = n = R) that commute with σ [170].

We now give the spacetime invariant set definition of CA domains using this symbolic

dynamics formalism. We consider sets of CA configurations given as shift spaces, and

these are invariant sets of the CA if the CA dynamic Φ is a factor map from that shift

space to itself.

Definition 1. Consider a CA Φ and a set Λ = {Λ1,Λ2, . . . ,Λp̂} of shift spaces Λi ⊆ AZ.

Together, this set of shifts is a domain of Φ if the following hold:

1. Spatial invariance: Each Λi ∈ Λ is an irreducible sofic shift. That is, the set of

strings in each Λi is generated by a strongly-connected finite-state machine M(Λi).

2. Temporal invariance: Φ : Λi → Λi+1(mod p̂) is a factor map from Λi to Λi+1(mod p̂).

102

Thus, Φp̂ : Λi → Λi is a factor from Λi to itself, for all Λi ∈ Λ.

Each distinct Λi is a temporal phase of the domain and the number p̂ of temporal phases

is the recurrence time of the domain—the minimum number of time steps required for Φ

to map a temporal phase back to itself. The size s of the minimal cycle in M(Λi) is the

spatial period of Λi. For all known examples, the spatial period of each Λi in a given Λ is

the same; thus, making s the spatial period of the domain.

An ambiguity arises here between Λ’s recurrence time p̂ and its temporal period p.

For a certain class of CA domain (those with explicit symmetries, see Section 4.4.3) , the

domain states x ∈ Λ are periodic orbits of the CA, with orbit period equal to the domain

period: x = Φp(x). It is less clear how to define the temporal period for domains in general

using this formalism. The temporal period appears to be related more to the spacetime

shift spaces of domain orbits that results from evolving domain spatial shift spaces under

Φ. The spacetime shift spaces of hidden symmetry domains are more complicated objects

than those of explicit symmetry domains. Notably, at present, beyond particular cases it

is not known how to generally relate the domain spatial shifts to their resulting spacetime

shifts.

Given a CA Φ, there are no general analytic solutions to Φp̂(Λi) = Λi. However, given

a candidate shift X it is computationally straightforward to find the factor Y of X under

Φ using the FME operator. That is, we want to restrict the function-domain of Φ to

X and then find the set Y of images y = Φ(x) for all pre-images x ∈ X so that Φ is a

surjective map from X to Y . This is exactly what the FME operator does. If X is an

irreducible sofic shift and X = Φp̂(X) for some p̂, then X is a domain temporal phase of

Φ. Since the FME evolves machines, we technically look for M(X) = Φp̂
(
M (X)

)
, where

equality here is given by machine isomorphism 1. If p̂ > 1, the other temporal phases can

be found using Λi+1(mod p̂) = Φ(Λi).

1Crutchfield and McTague implemented an efficient, but exhaustive search algorithm to solve the
invariant equation using the enumerated library of machines of Ref. [209]. Reference [210] analyzed ECA
22 using the approach.

103

4.4.1.1 DPID Transducer Filters

Once a CA’s domains Λ0,Λ1, . . . are discovered, they can be used to create a domain

transducer τ that identifies which of configuration x’s sites are in which domain and

which are not in any domain [199]. For a given 1+1 dimension spacetime field x, each of

its spatial configurations x = xt are scanned by the transducer, with output Tt = τ(x).

Although the transducer maps strings to strings, the full spacetime field can be filtered

with τ by collecting the outputs of each configuration in time order to produce the domain

transducer filter field of x: T = τ(x).

Sites xrt “participating” in domain Λi are labeled i in the transducer field. That is:

T rt = τ(xt)
r = i .

Other sites are similarly labeled by the particular way in which they deviate from do-

main(s). One or several sites, for example, can indicate transitions from one domain

temporal phase or domain type to another. If that happens in a way that is localized

across space, one refers to those sites as participating in a CA particle. Particle interac-

tions can also be similarly identified. Reference [5] describes how this is carried out.

In general, a stack automaton is needed to perform this domain-filtering task, but it

may be efficiently approximated using a finite-state transducer [199].

This filter allows us not only to formally define CA domains, the transducer allows

for site-by-site identification of domain regions and thus also sites participating in non-

domain patterns. In this way and in a principled manner, one finds localized deviations

from domains. In Section 6 we will use these as candidate coherent structures.

Originally, this was called cellular automata computational mechanics. Since then,

other approaches to spatiotemporal computational mechanics developed, such as local

causal states. We now refer to the above as DPID pattern analysis.

4.4.2 Local Causal State Symmetries

DPID pattern analysis formulates domains directly in terms of how a system’s dynamic

evolves spatial configurations. That is, domains are sets of structurally homogeneous

spatial configurations that are invariant under Φ. While this is appealing in many ways,

104

the FME can not be applied to more complex spatiotemporal systems, such as turbulent

fluid flows. But, the local causal states can.

Just as the causal states help discover structure from a temporal process, we would

like to use the local causal states to discover pattern and structure directly from spacetime

fields. To do so, we start with a precise formulation of domains in terms of local causal

states [115, 114]. Since local causal states apply in arbitrary spatial dimensions, the fol-

lowing addresses general d-dimensional cellular automata. In this, index n ∈ {1, 2, . . . , d}
identifies a particular spatial coordinate.

A simple but useful lesson from DPID is that domains are special (invariant) subsets of

CA configurations. More formally, they are subshifts of the full shift, which is the set of all

possible configurations. Since they are deterministically generated, a CA’s spacetime field

is entirely specified by the rule φ, the initial condition x0, and the boundary conditions.

Here, in analyzing a CA’s behavior, φ is fixed and we only consider periodic boundary

conditions. This means for a given CA rule, the spacetime field is entirely determined by

x0. If it belongs to a domain—x0 ∈ Λi—all subsequent configurations of the spacetime

field will, by definition, also be in the domain—xt = Φt(x0) ∈ Λi. In this sense a domain

Λ ⊆ AL is a subset of a CA’s allowed behaviors: Λ ⊆ Φt(AL), t = 1, 2, 3, More

formally, the domain spacetime fields that result from evolution of domain configurations

form a spacetime subshift of the spacetime full shift, which is the set of all possible

spacetime fields that CA can produce.

Lacking prior knowledge, if one wants to use local causal states to discover a CA’s

patterns, their reconstruction should be performed on all of a CA’s spacetime behavior

Φt(AL). This gives a complete sampling of spacetime field realizations and so adequate

statistics for good local causal state inference. Doing so leaves one with the full set of

local causal states associated with a CA. Since domains are a subset of a CA’s behavior,

they must be described by some special subset of the associated local causal states. What

are the defining properties of this subset of states which define them as one or another

domain?

The answer is quite natural. The defining properties of local causal states associated

105

with domains are expressed in terms of symmetries. For one-dimensional CAs these

are time and space translation symmetries. In general, alternative symmetries may be

considered as well, such as rotations, as appropriate to other settings. Such symmetries

are directly accessed through causal filtering.

Consider a spatiotemporal process X, the set Ξ of local causal states induced by the

local causal equivalence relation ∼ε over X, and the local causal state field S = ε(x) over

the spacetime field realization x. Let σp denote the temporal shift operator that shifts

a spacetime field x p steps along the time dimension. This translates a point xr
t in the

spacetime field as: σp(x)r
t = xr

t+p. Similarly, let σsn denote the spatial shift operator that

shifts a spacetime field x by sn steps along the nth spatial dimension. This translates a

spacetime point xr
t as: σsn(x)rt = xr

′
t , where r′n = rn + sn.

Definition 2. A pure domain field xΛ is a spacetime field such that σp and the set of

spatial shifts {σsn} applied to SΛ = ε(xΛ) form a symmetry group [201]. The generators

of the symmetry group consist of the following translations:

1. Temporal invariance: For some finite time shift p the domain causal state field is

invariant:

σp(SΛ) = SΛ , (4.5)

and:

2. Spatial invariance: For some finite spatial shift sn in each spatial coordinate n the

domain causal state field is invariant:

σsn(SΛ) = SΛ . (4.6)

The symmetry group is completed by including these translations’ inverses, compositions,

and the identity null-shift σ0(x)rt = xr
t . The set ΞΛ ⊆ Ξ is Λ’s domain local causal states :

ΞΛ = {
(
SΛ

)r
t

: t ∈ Z, r ∈ L}.
A domain Λ of X is the set of all spacetime field realizations xΛ such that SΛ = ε(xΛ)

contains only local causal states from ΞΛ and has the defining spacetime symmetries. The

set Λ is a spacetime shift space—a closed, spacetime-shift invariant subset of AZ×L.

106

Note that the spacetime shift space property is a necessity, as two distinct domains

may have the same local causal state symmetries. As an example, below in Section 5.1

we will see that particular CA rules, called additive CAs, produce only domain behavior.

And, their domains all have the same local causal state symmetries. However, they

are still distinct domains as the collective set of all their spacetime fields is not closed

under spacetime shifts. (The easiest way to see this is to realize that elements of the

CA lookup table, together with their updated site values, form spacetime motifs, as

described in Section 2.4.3, and thus different CA rules produce distinct shifts of finite

type with different lists F of forbidden motifs.) Therefore, local causal state symmetries

are characteristic of domain spacetime shift spaces, but do not fully specify these shift

spaces.

The smallest integer p for which the temporal invariance of Eq. (4.5) is satisfied is Λ’s

temporal period. The smallest s for which Eq. (4.6)’s spatial invariance holds is Λ’s spatial

period.

The domain’s recurrence time p̂ is the smallest time shift that brings SΛ back to itself

when also combined with finite spatial shifts. That is, σjσp̂(SΛ) = SΛ for some finite space

shift σj. If p̂ > 1, this implies there are distinct tilings of the spatial lattice at intervening

times between recurrences. The distinct tilings then correspond to Λ’s temporal phases :

Λ = {Λ1,Λ2, . . . ,Λp̂}. For systems with a single spatial dimension, like the CAs we

consider here, the spatial symmetry tilings are simply (SΛ)t = · · ·w · w · w · · · = w∞,

where w = (SΛ)i:i+st . Each domain phase Λi corresponds to a unique tiling wi.

Consider a contiguous region RΛ ⊂ L×Z in S = ε(x) for spacetime field x for which

all points Sr
t in the region are domain local causal states: Sr

t ∈ ΞΛ , (r, t) ∈ RΛ. The

space and time shift operators over the region obey the symmetry groups of pure domain

fields. Such regions, over both x and S = ε(x), are domain regions.

While Definitions 1 and 2 are independent definitions of CA domain that even differ

in what mathematical objects are identified as domains, we have found a strong empirical

correspondence between these two definitions, as demonstrated throughout the rest of

this chapter. We formalize this correspondence as follows.

107

Consider a CA Φ and two domain sets Λ1 and Λ2. Λ1 is a set of spatial shifts that satisfy

Definition 1 for Φ: each Λ1
i ∈ Λ1 is an irreducible sofic shift such that Φp̂(Λ1

i) = Λ1
i . Since

Λ1 is a set of shift spaces that are themselves sets of spatial configurations xΛ1 , we can

simply think of Λ1 as the set of all configurations in the collection {xΛ1 : xΛ1 ∈ Λ1
i ∈ Λ1}

of invariant spatial shifts. Λ2 is a spacetime shift space that satisfies Definition 2 for

Φ: for each spacetime field orbit xΛ2 ∈ Λ2 the local causal-state field SΛ2 = ε(xΛ2) is

comprised of states from ΞΛ2 and is time- and space- translation invariant: σp(SΛ2) = SΛ2

and σs(SΛ2) = SΛ2 . We conjecture the following bijective relationship between Λ1 and

Λ2.

Conjecture 1. For each configuration xΛ1 ∈ Λ1, its orbit under Φ is in Λ2 and each space-

time field xΛ2 ∈ Λ2 is the orbit, under Φ, of a configuration in Λ1. That is, first, for all

xΛ1 ∈ Λ1, there is xΛ2 ∈ Λ2 such that xΛ2 = {xΛ1 ,Φ(xΛ1),Φ2(xΛ1),Φ3(xΛ1), . . .}. And, sec-

ond, for all xΛ2 ∈ Λ2 there is xΛ1 ∈ Λ1 such that xΛ2 = {xΛ1 ,Φ(xΛ1),Φ2(xΛ1),Φ3(xΛ1), . . .}.

Taking this conjecture to be true, the following uses Λ and “domain” to refer both to

sets of invariant spatial shifts (Λ1) and the set of orbits of those spatial shifts (Λ2). We

will see this relationship between domain definitions in all examples given in this Section,

with two particularly detailed examples given in Sections 6.2.1 and 6.3.1.

4.4.3 Domain Classification: Explicit vs Hidden Symmetry

CA domains fall into one of two classes: explicit symmetry or hidden symmetry. In the

local causal state formulation, a domain Λ has explicit symmetry if the time and space

shift operators σp and σs—that generate the domain symmetry group over SΛ = ε(xΛ)—

also generate that same symmetry group over xΛ. That is, σp(xΛ) = xΛ and σs(xΛ) = xΛ.

From this, we see the following.

Lemma 1. Every explicit symmetry domain configuration xΛ ∈ Λ of a CA Φ generates

a periodic orbit of that CA, with the orbit period equal to the domain temporal period.

Proof. This follows since time shifts of the spacetime field are essentially equivalent to

applying the CA dynamic Φ: xt+p = σp(x)t and xt+p = Φp(xt). Thus, if xΛ is any spatial

108

configuration of a domain spacetime field—xΛ = (xΛ)t, for any t—then Φp(xΛ) = xΛ if

and only if σp(xΛ) = xΛ.

A hidden symmetry domain is one for which the time and space shift operators, which

generate the domain symmetry group over SΛ, do not generate a symmetry group over

xΛ: σp(xΛ) 6= xΛ or σs(xΛ) 6= xΛ or both.

Domain classification for the invariant-set formulation is similar. A domain Λ has

explicit symmetry if its spatial configurations xΛ are not just shift invariant but also

translation invariant, so that y = σs(xΛ) = xΛ, for all xΛ ∈ Λ. If Λ has hidden symmetry it

is still shift invariant: y = σs(xΛ) ∈ Λ, but it is not translation invariant: y = σs(xΛ) 6= xΛ.

From the machine presentation, Λ is a hidden symmetry domain if M(Λ) has any local

branching in transitions between states; see Section 3.1.6. That is, if there is any state in

M(Λ) such that there is more than one transition leaving that state, then Λ has hidden

symmetry.

Notably, hidden symmetry domains are associated with a level of stochasticity in their

observable spacetime fields. We occasionally refer to these as stochastic domains. The

algebraic formulation just given highlights the notion of hidden symmetry domains as

patterns that generalize the exact spacetime symmetries of explicit symmetry domains.

Example domains from each category are shown in Figure 4.1. ECA 110 is given as

the explicit symmetry example; a sample spacetime field xΛ110
of its domain is shown

in Figure 4.1(a). The associated local causal state field SΛ110
is shown in Figure 4.1(c).

Each unique color corresponds to a unique local causal state. The local causal state

field clearly displays the domain’s translation symmetries. ECA 110’s domain has spatial

period s = 14 and temporal period p = 7. These are gleaned by direct inspection of

the spacetime diagram. Pick any color in SΛ110
and one must go through 13 other colors

moving through space to return to the original color and, likewise, 6 other colors in time

before returning. One can also see that at every time step SΛ110
has a single spatial tiling

w of the 14 states. Thus, the recurrence time is p̂ = 1. Finally, notice from Figure 4.1(a)

that spatial configurations of xΛ110
are periodic orbits of Φ110, with orbit period equal to

the domain period, p = 7.

109

13

(a) Explicit symmetry domain field x�110
. (b) Hidden symmetry domain field x�22

.

(c) Explicit symmetry state field S�110
= ‘(x�110

). (d) Hidden symmetry state field S�22
= ‘(x�22

).

FIG. 2. Pure domain spacetime fields for explicit symmetry and hidden symmetry domains shown in (a) and (b) for ECA 110
and ECA 22, respectively. Associated local causal state fields fully display these symmetries in (c) and (d), with each unique
color corresponding to a unique local causal state. For ECA 110, lightcone horizons h≠ = h+ = 3 were used and for rule 22
h≠ = 10 and h+ = 4.

from the raw spacetime field. However, the causal state
field S�22

is immediately revealing. Domain translation
symmetries are clear. The domain is period 4 in both
space and time: p = s = 4. There are eight unique local
causal states in S�22

and, as the spatial period is 4, the
eight states come in two distinct spatial tilings w1 and w2,
each consisting of 4 states. And so, the recurrence time for
ECA 22 is ‚p = 2. Shortly, we examine hidden symmetries
in more detail to illustrate how the local causal states
lend a new semantics that exposes stochastic symmetries.

Having given concrete demonstrations of the new local
causal state formulation of domains and their classification
in CAs, we move on to more detailed examples that have
been thoroughly studied from the DPID perspective. In
doing so, we will see the strong correspondence between
the two approaches, in terms of both domains as well as
the coherent structures which form atop the domains.

B. Explicit symmetries

We start with a detailed look at ECA 54, whose domains
and structures were worked out in detail via DPID [55].
ECA 54 was said to support “artificial particle physics”
and this emergent “physics” was specified by the complete
catalog of all its particles and their interactions. Here,
we analyze the domain and structures using local causal
states and compare. Since the particles (structures) are
defined as deviations from a domain that has explicit
symmetries, the resulting higher-level particle dynamics
themselves are completely deterministic. As we will see
later, this is not the case for hidden symmetry systems;
stochastic domains give rise to stochastic structures.

1. ECA 54’s domain

A pure-domain spacetime field x� of ECA 54 is shown
in Fig. 3(a). As can be seen, it has explicit symmetries

Figure 4.1. Pure domain spacetime fields for explicit symmetry and hidden symmetry
domains shown in (a) and (b) for ECA 110 and ECA 22, respectively. Associated
local causal state fields fully display these symmetries in (c) and (d), with each unique
color corresponding to a unique local causal state. For ECA 110, lightcone horizons
h− = h+ = 3 were used and for rule 22 h− = 10 and h+ = 4.

For a prototype hidden symmetry domain, ECA 22 is used. Crutchfield and McTague

used DPID analysis to discover this ECA’s domain in an unpublished work [210] that

we used here to produce the domain spacetime field xΛ22
shown in Figure 4.1(b). The

associated causal state field SΛ22
is shown in Figure 4.1(d). Unlike ECA 110’s domain,

it is not clear from xΛ22
what the domain symmetries are. It is not even clear there are

symmetries present from the observable spacetime field. However, the causal state field

SΛ22
is immediately revealing. Domain translation symmetries are clear. The domain is

period 4 in both space and time: p = s = 4. There are eight unique local causal states

in SΛ22
and, as the spatial period is 4, the eight states come in two distinct spatial tilings

w1 and w2, each consisting of 4 states. And so, the recurrence time for ECA 22 is p̂ = 2.

Shortly, we examine hidden symmetries in more detail to illustrate how the local causal

110

states lend a new semantics that illuminates stochastic symmetries.

Figure 4.1 shows how the local causal states, through causal filtering, capture patterns

in spacetime as generalized symmetries. For observable spacetime fields with space and

time translation symmetries, i.e. explicit symmetry domains like Λ110, the local causal

states capture the quotient groups of these spacetime symmetries. An observable field

that is not space or time translation invariant may still posses a generalized symmetry,

i.e. a pattern, if the corresponding local causal state field has space and time transla-

tion symmetries. Because the local causal states are still translation invariant, they still

capture the quotient groups and internal organization of these generalized symmetries.

111

Chapter 5

Cellular Automata: Domain

Subdynamics

Early systematic studies of cellular automata focused largely on phenomenology [211, 212,

213, 214] and algebraic properties of additive cellular automata [215, 216]. Analysis was

possible due to the linear superposition exhibited by additive CAs. One challenge was

to extend the analytic techniques appropriate for linear CAs to nonlinear CAs, which

produce much richer and more physically-relevant behaviors.

The first identification of what we now call a CA domain came from the observation

that the nonlinear rule 18, when evolving certain configurations, emulates the linear rule

90 [217]. As described in more detail below, we now know that the set of configurations

over which rule 18 is equivalent to rule 90 is in fact the domain of rule 18. Thus, in the

case of the nonlinear rule 18, its domain represents a subset of behavior that is actually

linear.

This approach was elaborated upon by Refs. [216, 100] and expanded upon by Ref.

[218], which proved nonlinear rules 126 and 146 can be reduced to the linear rule 90. The

latter also showed, under certain conditions, that more general orbits of the nonlinear rules

can be mapped to orbits of rule 90, then mapped back; further extending the use of linear

analytics on nonlinear rules. Reference [219] considered additional algebraic structures to

generalize additive CAs into a larger set of quasilinear CAs that do not obey superposition,

but whose spacetime evolutions can still be predicted in less time then general nonlinear

112

CAs. More recently, Ref. [220] defined a special set of quasiadditive spatial configurations

for the nonlinear rule 22 that emulate rule 146 at all even time steps. (Ref. [218] had

already established that rule 146 emulates linear rule 90.)

In this Chapter we utilize the tools just developed in Chapter 4 to further investigate

connections between domain behaviors of CAs and the local update rules that produce

these behaviors. We will demonstrate that all of the results just mentioned of linear be-

haviors embedded in nonlinear CAs are examples of domains. In particular, we will show

that all of the above cases actually correspond to lookup table vacancies that result from

invariant (proper) subshifts of the linear ECA rule 90. In addition, we will show that the

exact symmetries of explicit symmetry domains relate them to the linear dynamic of the

identity rule, ECA 204. We also give a counterexample demonstrating that domain be-

haviors are not always created by additive subdynamics. First though, we define additive

CA dynamics and introduce the formalism of CA subdynamics.

5.1 Additive CAs

A CA is additive if the output φ(η) may be written as a linear combination of the neigh-

borhood entries:

xrt+1 = φ
(
η(xrt)

)
=

R∑
i=−R

aix
i
t (mod |A|) , (5.1)

where ai ∈ A.

CAs are referred to as linear if they obey a linear superposition principle. For any N

radius-R neighborhood configurations ηi, the local update rule φ satisfies:

N∑
i=1

φ(ηi) = φ

(
N∑
i=1

ηi

)
, (5.2)

where
∑

denotes addition modulo |A| over each site in the neighborhoods [215, 218].

Additivity and linearity are distinct properties. For CAs with an alphabet A that has

a prime ring structure, including the binary-alphabet CAs considered here, additivity

and linearity are equivalent (each implies the other) [221]. And so, we use both terms

interchangeably.

113

Linear superposition enables powerful analytic techniques. For example, representing

spatial configurations via characteristic polynomials gives a linear time-evolution via mul-

tiplication of a second polynomial representing Φ [215]. Or, one can employ the ergodic

theorem for commuting transformations together with Fourier analysis [216]. Similarly,

ergodic theory interprets additive CAs as endomorphisms of a compact Abelian group,

which have been thoroughly investigated [222].

For general one-dimensional CAs with alphabet A and neighborhood radius R, there

are |A||A|2R+1
update rules. However, only |A|2R+1 are linear. Though there are cases

where nonlinear rules may be mapped onto linear rules [218], the analytic tools just

described apply to a vanishingly small subset of CA rules; hence the interest in extensions

to a wider class of CAs.

In our analysis we examine the powers of the lookup table, also called higher-order

lookup tables. The nth-order lookup table φn maps the radius n · R neighborhood of a

site to that site’s value n time steps in the future. Said another way, a spacetime point

xrt+n is completely determined by the radius n ·R neighborhood n time-steps in the past

according to:

xrt+n = φn
(
ηn(xrt)

)
.

5.2 CA Subdynamics

Laying the groundwork for a CA’s subdynamics requires clarity on what is meant by the

CA dynamic itself. The global dynamic Φ is implemented through synchronous, parallel

application of the local dynamic φ. And so, Φ and φ are closely related, but they should

not be conflated. In what follows, dynamic refers to φ and, more specifically, to its lookup

table. However, since φ is the building block of Φ, restrictions on φ induce restrictions on

Φ. Specifically, these constrain the configurations that we consider evolving under Φ.

A subdynamic of φ then is determined by a subset of elements from its lookup table.

(This need not be a proper subset, we consider the full dynamic φ to be a subdynamic.) To

formalize this we must recast φ’s lookup table (LUT) as a set. We do this by considering

elements of the set LUT(φ) as tuples of neighborhood values and their outputs under φ:

114

LUT(φ) ≡ {
(
η, φ(η)

)
: for all η ∈ A2R+1}. We also need to consider higher-order lookup

tables. The generalization to LUT(φn) is straightforward:

LUT(φn) ≡ {
(
ηn, φn(ηn)) : for all ηn ∈ A2nR+1} ,

where the ηn runs through all length 2nR + 1 words in A.

We consider two methods for removing elements from LUT(φn) to create a subdynamic

of φn. The first is related to additive dynamics.

5.2.1 Lookup Table Linearizations

Recall that an additive local dynamic may be written in the form of Equation (5.1). For

each xi, i ∈ {−R,−R + 1, . . . , R − 1, R}, in neighborhood η there is a coefficient ai ∈ A
such that the output of φ for that neighborhood is given by Equation (5.1). Every linear

rule then is specified by a length 2R + 1 vector a of these coefficients. For example,

ECA rule 90 is given by a90 = (1, 0, 1), since xit+1 = φ90(xi−1
t xitx

i+1
t) = 1xi−1

t + 0xi +

1xi+1
t (mod 2).

For a linear rule given as a coefficient vector, the vector o = aNT gives the lookup table

outputs, where N is the matrix of neighborhood values, each row of N is a neighborhood

η, and these are given in lexicographical order. Thus, we can refer to linear rules via their

coefficient vector a, which will allow us to easily enumerate every additive CA in a given

class.

Consider an arbitrary lookup table LUT(φα) and an additive lookup table LUT(φβ)

in the same CA class.

Definition 3. Construct the φβ-linearization of φα, denoted φα↔β, by removing elements

(η, φα(η)) from LUT(φα) if and only if φα(η) 6= φβ(η). That is, we only keep elements in

LUT(φα) that are also in LUT(φβ).

Being linear, φβ has a coefficient vector aβ, which is now also associated with φα↔β.

For each element (η, φα↔β(η)) ∈ LUT(φα↔β) the output φα↔β(η) is given by aβ ·η, treating

the neighborhood η as a vector and the dot product sum is performed mod |A|. β may

be given as a CA rule number or as a coefficient vector; e.g., LUT(φ18↔90) is the same as

LUT(φ18↔(1,0,1)).

115

Generalizing to higher-order lookup tables, LUT(φnα↔β) denotes keeping only elements

in LUT(φnα) if and only if φnα(ηn) = φnβ(ηn). At higher powers, there may be linearizations

that are not powers of a linear rule in the CA class. For example, take φα to be an

ECA—CA class (A = {0, 1}, R = 1). At the second power, we may want a linearization

with coefficient vector a = (0, 1, 1, 1, 1), which is not the second power of a linear ECA.

However, we still want this as a possible linearization of LUT(φ2
α). In such cases, the

coefficient vector will be used for β: LUT(φ2
α↔(0,1,1,1,1)).

Notice that the construction of LUT(φα↔β) is symmetric between LUT(φα) and LUT(φβ)

(via set intersection), and so LUT(φα↔β) = LUT(φβ↔α). That being said, LUT(φα↔β)

linearizes φα to φβ, while the opposite is not true; LUT(φβ↔α) does not nonlinearize φβ.

Any subset of an additive lookup table is necessarily also additive.

5.2.2 Language-Restricted Lookup Tables

Lookup table linearization, as described, is a procedure for defining a particular CA

subdynamic by focusing purely on the lookup table for that CA. Such a subdynamic may

not be realizable on a nontrivial set of spatial configurations, though. For example, ECA

rule 204 is the identity rule, which is linear with coefficient vector a204 = (0, 1, 0). If we

reduce rule 18 to rule 204, the only neighborhoods in LUT(φ18↔204) are 000 and 101. The

only configurations (longer than 3) with only these neighborhoods are all-0 configurations.

The motivation for the second subdynamic-construction method derives directly from

the configurational consistency lacking in the φ18↔204 example. While lookup table

linearization subdynamics are constructed by considering the outputs φα(η), language-

restricted subdynamics are constructed employing the neighborhoods η themselves.

Consider a sofic language L (Section 4.3), its machine M(L), and an arbitrary CA

rule φα.

Definition 4. Construct the L-restriction of φα, denoted φα|L, by removing elements

(η, φα(η)) from LUT(φα) if and only if η /∈ L.

That is, consider each neighborhood η as a length 2R + 1 word and only keep the

neighborhoods that belong to the language L. Operationally, if η ∈ L, there exists a path

116

in M(L) such that concatenation of output symbols along that path give the word η.

This easily generalizes to higher powers of LUT(φα), as we can consider the neighbor-

hoods ηn as words of length 2nR + 1, keeping elements (ηn, φnα(ηn)) in LUT(φnα) if and

only if ηn ∈ L.

5.3 Domain-Restricted Lookup Tables and Their Lin-

earizations

When a CA lookup table is restricted to one of its domain languages, temporal consistency

is then added to the configurational consistency of the language-restricted subdynamics.

Surprisingly, restricting a nonlinear CA to a domain can result in an additive subdy-

namic, thus embedding realizable linear behavior in a generally nonlinear system. More

surprising, we demonstrate below that every example of an ECA domain found in the

literature corresponds to an additive subdynamic. This correspondence between domains

and additive subdynamics does not hold generally, however, as we demonstrate with a

counterexample from the CA class (A = {0, 1}, R = 2).

In the absence of a general correspondence, why is it that so many ECA domains do

embed an additive subdynamic? It may be that domain-restricted lookup tables generally

do correspond to permutive subdynamics, rather than additive subdynamics. These are

the partially permutive CAs of Ref. [223]. Permutive CAs are a superset of additive

CAs (all additive CAs are permutive, but not all permutive CAs are additive). Further

investigations are required to show whether or not CA domains generally embed permutive

subdynamics. Even if there is such a general correspondence with permutive subdynamics,

there still remains the question of why so many ECA domains have not just a permutive

subdynamic, but an additive subdynamic. Given the historical interest in embeddings of

linear behaviors in nonlinear CAs, we address this particular question in the remainder

of Chapter 5.

Embedding of linear behavior in a nonlinear CA is certainly an interesting property

of the nonlinear CA, but the mechanism for this behavior is actually best understood

through the linear CA that the nonlinear CA emulates over its domain. We will start by

117

showing that, for binary-alphabet CAs, additive dynamics produce only domain behavior.

That is, the full binary shift AZ is invariant under evolution of an additive CA Φβ. If any

proper subshift X ⊂ AZ is also invariant under an additive Φβ, it is by definition linear

(for prime ring alphabet CAs). When a proper subshift is invariant under an additive Φβ

it specifies an additive subdynamic. This leaves vacancies in the full lookup table that

can be filled in to produce a non-additive lookup table that supports the domain additive

subdynamic. We find invariant proper subshifts of the well-studied additive ECA rule 90

to be the mechanism that generates additive subdynamics in the known cases of linear

behavior embedded in nonlinear ECAs.

Before beginning, a few comments about implementing the analysis tools are in order.

ECA lookup tables and their subdynamics are easily analyzed by hand, but higher powers

of the lookup tables quickly become unmanageable. Fortunately, the subdynamic formal-

ism just developed lends itself to automation. In the following, this was implemented in

Python, allowing for exact symbolic exploration of higher-order lookup-table lineariza-

tions. For example, given the set LUT(φnα|L) we can enumerate all possible 2nR + 1

linearizations a to check whether LUT(φnα|L) ⊆ LUT(φnα↔a). If so, φnα linearizes to a over

language L.

Similarly, topological reconstruction (see Section 4.2) of the local causal states for

each example was also implemented in Python. Since the local causal state labels in

causal filtering are arbitrary, we use a simple, but arbitrary alphabetical labeling. To

avoid confusion, we emphasize that for different CAs there is no connection between

states labeled the same. For instance, we give causal filterings of ECAs 90 and 150 in

Figure 5.1, and in each of these there are local causal states labeled A. There is no

relation, however, between state A of rule 90 and state A of rule 150.

5.4 Additive CAs Produce Only Domains

We start with linear CAs and find that all behaviors they produce are domains. From

the invariant set perspective of domain, we state this formally.

Theorem 1. Every nonzero linear CA Φβ with A = {0, 1} is a factor map from the full-A

118

shift to itself:

Φβ : AZ → AZ .

Proof sketch Using linear superposition, Equation (5.2), and additivity, Equation (5.1),

a right inverse Φ̃β can be constructed for any linear Φβ so that Φ̃β

(
Φβ (x)

)
= x, for all

x ∈ AZ. See the Appendix in Section 5.9.1 for the detailed proof.

From Theorem 1 we see that every orbit under Φβ lies in the domain invariant set since

the invariant set is the set AZ of all spatial configurations. This means Φβ induces no

spatial restrictions on its images. Though we must note this result is for bi-infinite spatial

configurations x ∈ AZ. If a linear CA evolves configurations using other global topologies

(most commonly a finite ring topology) then it may not be surjective. For example, finite

spatial configurations with an odd number of sites with value 1 are not reachable by the

linear ECA Φ90; there is no y such that x = Φ90(y) for finite x with an odd number of 1s

[215]. Such unreachable states are also known as Garden of Eden states.

What is the local causal state signature of additive CAs that only produce domain

behaviors? The answer is remarkably simple. When spacetime fields are filtered with

the local causal-equivalence relation, there is only a single local causal state. That is, for

every spacetime field x produced by Φβ, the associated local causal state field S = ε(x)

consists of a single state. Thus, the filtered field has trivial time and space translation

symmetries. Moreover, since there is only one local causal state, this symmetry can never

be broken. And so, all spacetime fields of Φβ are necessarily pure domain fields.

Figure 5.1 displays spacetime fields x generated by rule 90, a90 = (1, 0, 1), and rule

150, a150 = (1, 1, 1), with the associated local causal state field S = ε(x) superimposed

on top. The white and black squares are the site values 0 and 1, respectively, of the CA

spacetime field. While the blue letters denote the local causal states for each site in the

field. Such diagrams, with the local causal state field S = ε(x) superimposed over its

associated CA spacetime field x, are called local causal state overlay diagrams.

119

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Space

20

22

24

26

28

30

32

34

36

38

T
im

e

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

(a) Rule 90 spacetime field and associated local causal states.

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Space

20

22

24

26

28

30

32

34

36

38

T
im

e

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

(b) Rule 150 spacetime field and associated local causal states.

A0 1

(c) Machine M(AZ) of domain Λ = AZ for φ = 90 and φ = 150.

Figure 5.1. Causally-filtered spacetime fields of (a) rule 90 and (b) rule 150, evolved
from random initial conditions. White and black squares represent 0 and 1 CA site
values, respectively. While blue letters are the associated local causal state label for
that site. (c) Their domains Λ90 = AZ and Λ150 = AZ are described by the single-state
machine M(AZ).

120

5.4.1 Causal asymmetry of Rule 60

While AZ is invariant under the additive rule 60, the local causal state analysis reveals

an interesting subtlety. Using standard lightcones, as depicted in Figure 3.4, local causal

state inference was run over rule 60 using topological reconstruction. The resulting causal

filtering is shown in the overlay diagram of Figure 5.2(a). As can be seen, there are

multiple causal states (cf. rules 90 and 150 above with one) and there are no obvious

spacetime translation symmetries in S .

This occurs since rule 60 breaks the causal symmetry assumption implicit in standard

lightcones. Since rule 60, a60 = (1, 1, 0), is the sum mod 2 of the center and left bit in

the radius-1 neighborhood the right neighbor is irrelevant to the dynamic. One takes this

left-skewed causal asymmetry into account by modifying the lightcone shape used in local

causal equivalence. The new, seemingly appropriate lightcone is depicted in Figrue. 5.2(c).

Applying local causal state filtering using these half-lightcones yields the overlay diagram

of Figure 5.2(b): A single local causal state is revealed. Thus, taking into account the

causal asymmetry, local causal state analysis in fact demonstrates that rule 60 produces

only pure-domain fields. This holds similarly for rule 102, a102 = (0, 1, 1), when the

mirror-symmetry right-skewed half-lightcones are used.

Since it demonstrates the consequences (and power) of the weak-causality argument

for using lightcones as local pasts and futures, the result here is significant. Tracking weak-

causality—how information locally propagates through points in spacetime—is necessary

for relating emergent behavior to properties of the system that generated the behavior.

Here, we know rule 60 is additive and we know AZ is invariant under Φ60, so we know

it should have a single local causal state. However, a single local causal state is properly

inferred only if we account for rule 60’s inherent causal asymmetry.

5.5 Explicit Symmetry Domains

Before moving on to the main results concerning invariant subshifts of ECA Rule 90, let’s

quickly look at explicit symmetry domains through the lens of additive subdynamics.

Lemma 1 established that explicit symmetry domains are periodic orbits of their CA.

121

Present t = t0

Past t < t0

Future t > t0

r0

t 0

Space

T
im

e

(c) Half-lightcones for left-skewed causal asymmetry.

(b) Local causal state field of rule 60 using half-lightcones.

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Space

20

22

24

26

28

30

32

34

36

38

T
im

e

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

(a) Local causal state field of rule 60 using full lightcones.

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Space

20

22

24

26

28

30

32

34

36

38

T
im

e

E C F H B D D E C F F F F F H A C F F H A G A G B E C F F H A
H A C H A C F H A C F F F F H B E C F H B D D D E G A C F H B
H B E G B E C H B E C F F F H A G A C H A C F F H B D E C H A
H A G B E G A G A G A C F F H B D D E G B E C F H A C H A G B
H B D E G B D D D D D E C F H A C F H B E G A C H B E G B D E
H A C H B E C F F F F H A C H B E C H A G B D E G A G B E C H
G B E G A G A C F F F H B E G A G A G B D E C H B D D E G A G
D E G B D D D E C F F H A G B D D D D E C H A G A C F H B D D
C H B E C F F H A C F H B D E C F F F H A G B D D E C H A C F
E G A G A C F H B E C H A C H A C F F H B D E C F H A G B E C
H B D D D E C H A G A G B E G B E C F H A C H A C H B D E G A
G A C F F H A G B D D D E G B E G A C H B E G B E G A C H B D
D D E C F H B D E C F F H B E G B D E G A G B E G B D E G A C
F F H A C H A C H A C F H A G B E C H B D D E G B E C H B D E
F F H B E G B E G B E C H B D E G A G A C F H B E G A G A C H
C F H A G B E G B E G A G A C H B D D D E C H A G B D D D E G
A C H B D E G B E G B D D D E G A C F F H A G B D E C F F H B
D E G A C H B E G B E C F F H B D E C F H B D E C H A C F H A
F H B D E G A G B E G A C F H A C H A C H A C H A G B E C H B

Figure 5.2. Filtered spacetime field of rule 60, evolved from random initial conditions.
White and black squares represent 0 and 1 site values, respectively. Colored letters
denote the associated local causal state label for a site. (a) The result of using full
lightcones, as depicted in Figure 3.4, for local causal state filtering. (b) Local causal
state filtering appropriate to the left-skewed causal asymmetry of rule 60, using half-
lightcones depicted in (c). This filtering recovers the single-state, trivially symmetric,
local causal state field expected for additive CAs.

122

Due to this, explicit symmetry domains linearize to the identity rule, which for ECAs is

rule 204, a204 = (0, 1, 0). For general A = {0, 1} CAs we denote the identity rule as aI,

whose coefficient vector has a single 1 for the center bit and all other elements 0.

Consider a CA Φα with an explicit symmetry domain Λα with temporal period p.

Theorem 2. The lookup table of φα, restricted to the domain Λα, linearizes to the

identity rule at integer multiples of the domain temporal period p; that is:

LUT(φnpα|L(Λα)) ⊆ LUT(φnpα↔aI
) ,

for n = 1, 2, 3,

Proof. From Lemma 1, any configuration xΛα in the domain produces a periodic orbit of

φα, with orbit period p: Φp
α(xΛα) = xΛα . Since the full configuration returns after p time

steps, so do all the individual sites of the configuration: (xΛα)r0t0+p = (xΛα)r0t0 . Moreover,

(xΛα)r0t0+np = (xΛα)r0t0 , for n = 1, 2, 3, Thus:

(xΛα)r0t0+np = φnpα
(
ηnp((xΛα)r0t0)

)
= (xΛα)r0t0

= aI ·
(
ηnp((xΛα)r0t0)

)
.

This is an equivalent statement to LUT(φnpα|L(Λα)) ⊆ LUT(φnpα↔aI
).

�

For φα with an explicit symmetry domain Λα, more linearizations are possible, based

on the spacetime symmetries of Λα. If Λα’s recurrence time is smaller than its temporal

period p, it takes fewer time translations than p to return all sites to themselves if also

paired with spatial translations. As the local causal states fully capture the spatiotemporal

symmetries of Λα, they are particularly convenient for expressing this.

Consider the local causal state field S = ε(x) of a pure-domain field x. From the

definition of domain, Sr0t0+p = Sr0t0 . And, for an explicit symmetry domain this means

xr0t0+p = xr0t0 , for all (r0, t0), which provides the connection to the identity rule aI stated

above. From the definition of recurrence time, we have Sr0+δ
t0+p̂ = Sr0t0 , for some spatial

123

translation δ. For explicit symmetry domains this again implies the same invariance for

x. There may be other spacetime translation symmetry generators such that Sr0+j
t0+i = Sr0t0 .

If Sr0t0 lies within the past lightcone of Sr0+j
t0+i , there is a linearization of LUT(φα|Λα) at the

ith power, with linear coefficient vector a = (a−iR, a−iR+1, . . . , a−1, a0, a1, . . . , aiR−1, aiR)

such that only aj = 1 and all other coefficients are zero.

For example, Λ110 has recurrence time p̂ = 1, temporal period p = 7, and spatial period

s = 14, as can be seen in Figure 5.3(c). Thus, we know LUT(φ7
110|L(Λ110)) ⊆ LUT(φ7

110↔204).

However, we also see in Figure 5.3(c) that Sr0−2
t0−3 = Sr0t0 . If we pick any site in the field,

it will have some local causal state label; e.g., A. Shifting up three sites and left two

will always take one to same local causal state label. Exact symbolic calculations showed

that LUT(φ3
110|L(Λ110)) linearizes to a = (0, 1, 0, 0, 0, 0, 0). Similarly, Sr0+2

t0−4 = Sr0t0 and

LUT(φ4
110|L(Λ110)) linearizes to a = (0, 0, 0, 0, 0, 0, 1, 0, 0).

There may be yet further linearizations. These again derive from Λα’s symmetries, but

the resulting linearizations are not related to the identity rule. Let’s start with an example.

Consider again rule 110 and its domain, as shown in Figure 5.3(c). We find several

linearizations of LUT(φ7
110|L(Λ110)), including aI = (0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0), the

identity rule discussed at the section’s beginning. Another linearization we find at the 7th

power is a = (0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1). To understand this one, and others like

it, it is again useful to refer to spacetime diagrams of Λα (Λ110 in this case).

A linearization a means a spacetime point xrt ∈ Λα is 0 if ηn(xrt) · a is even and xrt is

1 if the dot product is odd, where we treat the neighborhood as a vector. This must be

satisfied at every spacetime point in a pure domain field xΛα
. If:

xr0t0 = ηn(xr0t0)
(mod 2)· a , (5.3)

then for an explicit symmetry domain:

xr0+js
t0+ip = ηn(xr0+js

t0+ip)
(mod 2)· a

for i, j ∈ Z. Thus, there is only a relatively small number of neighborhoods ηn(xrt)

in spacetime fields of explicit symmetry domains that must satisfy Equation (5.3). Said

124

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Space

20

22

24

26

28

30

32

34

36

38

Ti
m

e

B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

(a) Domain of rule 58 with associated local causal states.

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Space

20

22

24

26

28

30

32

34

36

38

Ti
m

e

B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
H E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G H
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
H E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G H
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
H E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G H
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
H E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G H
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
H E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B

(b) Domain of rule 54 with associated local causal states.

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Space

20

22

24

26

28

30

32

34

36

38

Ti
m

e

H I J K L M N A B C D E F G H I J K L M N A B C D E F G H I J
L M N A B C D E F G H I J K L M N A B C D E F G H I J K L M N
B C D E F G H I J K L M N A B C D E F G H I J K L M N A B C D
F G H I J K L M N A B C D E F G H I J K L M N A B C D E F G H
J K L M N A B C D E F G H I J K L M N A B C D E F G H I J K L
N A B C D E F G H I J K L M N A B C D E F G H I J K L M N A B
D E F G H I J K L M N A B C D E F G H I J K L M N A B C D E F
H I J K L M N A B C D E F G H I J K L M N A B C D E F G H I J
L M N A B C D E F G H I J K L M N A B C D E F G H I J K L M N
B C D E F G H I J K L M N A B C D E F G H I J K L M N A B C D
F G H I J K L M N A B C D E F G H I J K L M N A B C D E F G H
J K L M N A B C D E F G H I J K L M N A B C D E F G H I J K L
N A B C D E F G H I J K L M N A B C D E F G H I J K L M N A B
D E F G H I J K L M N A B C D E F G H I J K L M N A B C D E F
H I J K L M N A B C D E F G H I J K L M N A B C D E F G H I J
L M N A B C D E F G H I J K L M N A B C D E F G H I J K L M N
B C D E F G H I J K L M N A B C D E F G H I J K L M N A B C D
F G H I J K L M N A B C D E F G H I J K L M N A B C D E F G H
J K L M N A B C D E F G H I J K L M N A B C D E F G H I J K L

(c) Domain of rule 110 with associated local causal states.

Figure 5.3. Filtered spacetime fields from the explicit symmetry domains of rules 58
(a), 54 (b), and 110 (c), with the associated local causal states superimposed on top.

125

another way, the languages of explicit symmetry domains are very restrictive. This means

there are relatively few entries in LUT(φnα|L(Λα)) that must obey additivity.

To further illustrate this linearization type, contrast the explicit symmetry domains

shown in Figure 5.3: (a) the rule 58 domain Λ58 with characteristics p̂ = 1, p = 2, and

s = 2; and (b) the rule 54 domain Λ54 with characteristics p̂ = 2, p = 4, and s = 4. Now,

compare their linearizations at the 4th power, this being a multiple of the temporal period

p for both domains.

The 4th power reveals more linearizations for Λ58 than for Λ54 not related to the identity

rule—those with more than one nonzero element in the coefficient vector a. Specifically,

there are 29 linearizations for Λ54 and 123 for Λ58. This is expected, as Λ58 is generated

by smaller translations s and p than Λ54 (i.e. Λ58 has more symmetries than Λ54). This

means at a given power n, there are fewer distinct neighborhoods ηn in Λ58 than in Λ54,

and so there can be more linearizations a that can satisfy Equation (5.3) everywhere in

the field.

Before moving on to hidden symmetry domains, in closing we should highlight the

role of spacetime symmetries for linearizations of explicit symmetry domains. Notice

that the domain’s spatial languages themselves were never directly needed. Rather, the

symmetries of the spacetime field orbits and their orbit period (i.e., the domain temporal

period) that were key. This reflects the local causal-state perspective of domain, as in

Definition 2, coming into play.

5.6 Hidden Symmetry Domains and ECA Rule 90

In contrast, as we now show, linearizations of hidden symmetry domains are based on

the domain spatial languages and their recurrence times, as in Definition 1. Moreover,

unlike explicit symmetry domains, we find that not every hidden symmetry domain has a

linearization. After going through detailed examples of ECA domains, we will close with

an R = 2 CA that has a “nonlinear” domain.

126

A B

0
1

0
(a) Finite-state machine M(Λ18) of invariant set language Λ18.

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Space

20

22

24

26

28

30

32

34

36

38

Ti
m

e

B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

(b) Sample spacetime field xΛ18
of Λ18 and associated local causal state field SΛ18

= ε(xΛ18
).

Figure 5.4. (a) Finite-state machine M(Λ18) for the invariant set language L(Λ18) of
the rule 18 domain. (b) Filtered spacetime field xΛ18

(white and black squares) of the
rule 18 domain Λ18 with the associated local causal state field SΛ18

= ε(xΛ18
) (green

and orange letters) superimposed.

127

5.6.0.1 Rule 18

We start by examining in detail the original observations [217, 218, 5] concerning the

domain in the nonadditive CA rule 18 and the domain’s linearization to rule 90, a90 =

(1, 0, 1). In words, φ90 updates lattice sites according to the sum mod 2 of that site’s left

and right neighbors:

xrt+1 = φ90

(
η(xrt)

)
= xr−1

t + xr+1
t (mod 2) .

Table 5.1 gives rule 90’s lookup table.

Rule 18 is not additive, as can be seen from its lookup table also given in Table 5.1.

However, there are special behaviors produced by rule 18 that were originally noted due

to the equivalence between these behaviors of rule 18 and rule 90. More importantly,

they suggested that a nonlinear rule is capable of producing linear behaviors. From Refs.

[5, 193, 194, 116, 4], we know the special behaviors of rule 18 that emulate rule 90 are, in

fact, rule 18’s domain behaviors.

Rule 18’s domain is the set of spatial configurations that is invariant under Φ18 and

their spacetime field orbits. This invariant set is the single sofic shift Λ18 = {X(0,Σ)},
where Σ represents wildcard-sites that can be either 0 or 1. Its domain language is

L(Λ18) = (0Σ)∗+ (Σ0)∗. The set’s finite-state machine M(Λ18) is shown in Figure 5.4(a).

Since the machine states lie in a single recurrent component, i.e., it has a single temporal

phase, the recurrence time of Λ18 is p̂ = 1. Its spatial period is s = 2, since this is the

size of the minimal cycle of M(Λ18).

Evolving spatial configurations x ∈ Λ18 creates spacetime fields—their orbits xΛ18
.

Applying the causal equivalence relation over these fields yields two local causal states,

corresponding to the fixed-0 and wildcard sites. A sample spacetime field xΛ18
of Λ18 and

its causal filtering SΛ18
= ε(xΛ18

) are shown as a local causal state overlay diagram in

Figure 5.4 (b). State A corresponds to the fixed-0 sites and state B the wildcard states.

These states appear in a checkerboard tiling in the field, displaying the defining spacetime

symmetry of Λ18. At each time step the same two states tile the spatial lattice, giving

128

η φ90(η) φ18(η) φ18↔90(η) φ18|L(Λ18)(η)

1 1 1 0 0 0 −
1 1 0 1 0 − −
1 0 1 0 0 0 0

1 0 0 1 1 1 1

0 1 1 1 0 − −
0 1 0 0 0 0 0

0 0 1 1 1 1 1

0 0 0 0 0 0 0

Table 5.1. Lookup tables for rule 90 (φ90) and rule 18 (φ18) as well as for rule 18
linearized to rule 90 (φ18↔90) and rule 18 restricted to its domain (φ18|L(Λ18)). The
leftmost column gives all ECA neighborhood values in lexicographical order, and each
subsequent column is the output of the neighborhoods for the specified dynamic or
subdynamic. Symbol − indicates a lookup table element excluded from the respective
subdynamic.

the recurrence time p̂ = 1. The spatial period s = 2 and temporal period p = 2 are found

from SΛ18
’s space and time translation invariance.

Having defined and described rule 18’s domain Λ18 allows us to explain its lineariza-

tion to rule 90: Keeping only elements of LUT(φ18) that are also in LUT(φ90) gives the

linearization LUT(φ18↔90) of rule 18 to rule 90. This is shown in Table 5.1. In contrast,

keeping only elements of LUT(φ18) if the neighborhood ηi of that element belongs to the

0-Σ language of Λ18 gives the restriction LUT(φ18|L(Λ18)) of φ18 to its domain. As shown

in Table 5.1, this subdynamic excludes the neighborhoods η ∈ {111, 110, 011}. Table 5.1

shows that the only two elements that differ between LUT(φ90) and LUT(φ18) have neigh-

borhoods η ∈ {110, 011}. Thus, LUT(φ18|L(Λ18)) ⊂ LUT(φ18↔90). Moreover, as Λ18 is a

stochastic domain with recurrence time p̂ = 1, we find that rule 18 restricted to its domain

linearizes to rule 90 at all powers of the lookup tables:

LUT(φn18|L(Λ18)) ⊆ LUT(φn18↔90) ,

for n = 1, 2, 3,

129

η φ90 φ18 φ26 φ82 φ146 φ154 φ210 φ218

1 0 1 0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 1 1 1 1

1 1 0 1 0 0 1 0 0 1 1

0 1 1 1 0 1 0 0 1 0 1

Table 5.2. Lookup tables for rule 90 (φ90) and the seven nonlinear rules, φα, α ∈
{18, 26, 82, 146, 154, 210, 218}, that also have the Λ0,Σ domain invariant set. The first
five rows correspond to the neighborhoods that belong to the domain language L(Λ0,Σ).
Since all eight rules have Λ0,Σ as a domain, the output for these five neighborhoods in
L(Λ0,Σ) are the same. The bottom three rows are the neighborhoods not in L(Λ0,Σ).
The eight rules in this table are all possible 23 output assignments for these three
remaining neighborhoods.

5.6.1 Invariant Subshifts of Rule 90

Historically the 0-Σ domain was of interest because the nonlinear rule 18 exhibits linear

behavior over Λ0,Σ, since it emulates the linear rule 90 over Λ0,Σ. However, we now know

that Λ0,Σ is an invariant set of rule 18 and LUT(φ18|L(Λ0,Σ)) ⊂ LUT(φ18↔90). This means

Λ0,Σ is also an invariant set of rule 90.

Since LUT(φ90) is additive, so is LUT(φ90|L(Λ0,Σ)). And, as described above, there are

three neighborhoods η ∈ {111, 110, 011} in LUT(φ90) that are not in LUT(φ90|L(Λ0,Σ)). So,

starting from LUT(φ90|L(Λ0,Σ)), which is additive, there are three unconstrained outputs,

one for each η ∈ {111, 110, 011}, to fill in to create an ECA lookup table that has Λ0,Σ

as a linear invariant set. This is shown graphically in Table 5.2. The neighborhoods are

ordered there so that the top five neighborhoods are those in L(Λ0,Σ) and the bottom

three are those that are not.

Rule 18 is just one of seven nonlinear rules that have Λ0,Σ as an invariant set that

linearizes to rule 90: LUT(φnα|L(Λ0,Σ)) ⊆ LUT(φnα↔90), for n = 1, 2, 3, . . . and

α ∈ {18, 26, 82, 146, 154, 210, 218}. Though Rule 146 emulating rule 90 over Λ0,Σ was

pointed out in Ref. [218], to our knowledge the analysis here is the first identification of

130

η φ90(η) φ126(η) φ126↔90(η) φ126|L(Λeven)(η)

1 1 1 0 0 0 0

1 1 0 1 1 1 1

1 0 1 0 1 − −
1 0 0 1 1 1 1

0 1 1 1 1 1 1

0 1 0 0 1 − −
0 0 1 1 1 1 1

0 0 0 0 0 0 0

Table 5.3. Lookup tables for rule 90 (φ90) and rule 126 (φ126) as well as for rule 126
linearized to rule 90 (φ126↔90) and rule 126 restricted to its domain (φ126|L(Λeven)).
Same format as in Table 5.1.

the linear Λ0,Σ domain in the nonlinear ECAs 26, 82, 154, 210, and 218. This is likely

because Λ0,Σ does not appear to be a dominant behavior of rules 26, 82, 154, 210, and 218

from random initial conditions. In fact, simple stationary or oscillatory behaviors seem

to be the dominant attractors for these rules.

Reference [218] also reported on the nonlinear rule 126 emulating rule 90. This was

not over Λ0,Σ though. Instead it was over a different invariant set, that we call the even

domain Λeven. This domain also consists of a single temporal phase, which is the sofic

shift that contains only even blocks of 1s and 0s. The machine M(Λeven) for this domain

is shown in Figure 5.5. A sample domain spacetime field xΛeven
, evolved from a domain

configuration initial condition, is shown in Figure 5.5 with the associated local causal

state field SΛeven
= ε(xΛeven

) superimposed. Interestingly, though Λeven and Λ0,Σ have

different invariant spatial shifts, the resulting spacetime shifts of their orbits have the

same generalized symmetries, as captured by the local causal states.

The lookup table for rule 126 is compared with that of rule 90 in Table 5.3, as well

as its linearization to rule 90 and its restriction to Λeven. From this we can see that

LUT(φ126|L(Λeven)) = LUT(φ126↔90). As with Λ0,Σ and rule 18, this means Λeven is also an

invariant set of rule 90. Thus, rule 126 linearizes to rule 90 over Λeven at all powers:

LUT(φn126|L(Λeven)) ⊆ LUT(φn126↔90) ,

for n = 1, 2, 3,

131

B CA

1

1 0

0
(a) Machine M(Λeven) of invariant language L(Λeven).

(b) A spacetime field xΛ126
of Λ126 and associated filtered local causal state field SΛ126

= ε(xΛ126
).

Figure 5.5. (a) Machine M(Λeven) for the invariant language L(Λeven) of the rule 126
even domain. (b) Sample spacetime field xΛ126

(black and white squares) of the even
domain Λeven of rule 126 with the associated local causal state field SΛ126

= ε(xΛ126
)

(green and orange letters) superimposed.

132

Following the same combinatorics as with Λ0,Σ, we see from Table 5.3 that there are

only two neighborhoods not in L(Λeven). And so, there are 22 ECA rules with Λeven as a

domain invariant set. Two of these are rule 90 and rule 126; the other two are rule 94

and rule 122. Rule 122 is qualitatively similar to rule 126 over random initial conditions,

while rule 94 generically settles into a fixed-point orbit.

Before moving on, clarification is in order. We said that Λ0,Σ and Λeven are domain

invariant sets of Rule 90. Formally, from Definition 1, Φ90 is a factor map from Λ to Λ for

both of these domains. More specifically, this is true for every power of Φ90: Φn
90 : Λ→ Λ

for all n = 1, 2, 3, This is also holds for all the nonlinear rules just discussed that

also have one of these domain invariant sets. Thus, these rules emulate rule 90 over

their domain. That is, for all of these nonlinear φα, any orbit starting from an initial

configuration x̂ in the appropriate domain Λ is the same if evolved under Φα or Φ90:

{x̂,Φα(x̂),Φ2
α(x̂),Φ3

α(x̂), . . .}

= {x̂,Φ90(x̂),Φ2
90(x̂),Φ3

90(x̂), . . .} .

5.6.2 Rule 22

The next example we explore is the enigmatic Rule 22 [224], which exhibits a more general

notion of linearization. Using symbolic manipulation methods, Crutchfield and McTague

used the FME analysis to discover this ECA’s domain [210].

ΛA
22

B

A

D

C

0

0

0

0 1 ΛB
22

E F

GH I

J

0

0

0

0

1

1

1
Φ22

Φ22

Figure 5.6. Machine M(Λ22) for rule 22’s domain Λ22, which has two distinct temporal
phases: ΛA22 = Φ22(ΛB22) and ΛB22 = Φ22(ΛA22).

133

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Space

20

22

24

26

28

30

32

34

36

38

Ti
m

e
A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C
E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G
C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A
G H E F G H E F G H E F G H E F G H E F G H E F G H E F G H E
A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C
E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G
C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A
G H E F G H E F G H E F G H E F G H E F G H E F G H E F G H E
A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C
E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G
C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A
G H E F G H E F G H E F G H E F G H E F G H E F G H E F G H E
A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C
E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G
C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A
G H E F G H E F G H E F G H E F G H E F G H E F G H E F G H E
A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C
E F G H E F G H E F G H E F G H E F G H E F G H E F G H E F G
C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A

Figure 5.7. Filtered spacetime field xΛ22
(white and black squares) of the rule 22

domain Λ22 with the associated local causal state field SΛ22
= ε(xΛ22

) (colored letters)
superimposed.

Rules dominated by a stochastic symmetry domain, such as rule 22, are sometimes

referred to as “chaotic” CAs. As such, it is typically challenging to extract meaningful

structures purely from visually inspecting spacetime fields. So, while not visually appar-

ent, the domain underlying rule 22 is rather more complex than the previous ones. Much

of rule 22’s mystery stems from its complex domain.

The domain of rule 22 is comprised of two temporal phases, Λ22 = {ΛA
22,Λ

B
22}. The ma-

chine presentation M(Λ22) of Λ22 is shown in Figure 5.6. The two components correspond

to the irreducible sofic shifts ΛA
22 and ΛB

22. A sample spacetime field xΛ22
of Λ22 is shown

in Figure 5.7, with the associated local causal state field SΛ22
= ε(xΛ22

) superimposed on

top. There are two distinct spatial tilings of the local causal states, ABCD and EFGH,

associated with ΛA
22 and ΛB

22, respectively, giving a recurrence time p̂ = 2. The spacetime

translation invariance of SΛ22
gives a spatial period of s = 4 and temporal period p = 4.

Since Λ22 has two temporal phases, care must be taken when discussing its invariance

134

and linearization. Reference [210]’s FME analysis established that ΛA
22 = Φ22(ΛB

22) and

ΛB
22 = Φ22(ΛA

22). Thus, Φ22 is a factor map from each phase to itself only at the second

power: Φ2
22 : ΛA

22 → ΛA
22 and Φ2

22 : ΛB
22 → ΛB

22. It is not surprising then that LUT(φ22|L(Λ22))

is not additive at the first power, but at the second power. Specifically, LUT(φ2
22|L(Λ22))

linearizes again to rule 90. In fact, exact symbolic calculation finds this linearization

occurs at all even powers:

LUT(φ2n
22|L(Λ22)) ⊆ LUT(φ2n

22↔90) ,

for n = 1, 2, 3,

To be clear, LUT(φ22|L(Λ22)) is constructed by keeping only neighborhoods that are

in the language L(Λ22), which is the union L(Λ22) = L(ΛA
22) ∪ L(ΛB

22) of the temporal

phase languages. Since LUT(φ2n
22|L(Λ22)) is additive, then its subsets LUT(φ2n

22|L(ΛA22)
) and

LUT(φ2n
22|L(ΛB22)

) are also additive. That is, LUT(φ2n
22|L(ΛA22)

) ⊆ LUT(φ2n
22↔90) and similarly

for phase B. Therefore ΛA
22 and ΛB

22 are invariant sets of Φ2
90. However, we cannot say Λ22

is a domain of rule 90 because ΛA
22 6= Φ90(ΛB

22) and ΛB
22 6= Φ90(ΛA

22). Thus, rule 22 over

its domain does not fully emulate rule 90, they only agree every other time step. Given

similar terminology used elsewhere, we may call Λ22 a quasidomain of rule 90.

Table 5.4 gives the 2nd power of the rule 22 lookup table as well as that for rule 90.

It also gives the linearization to rule 90 as well as the restriction of rule 22 to Λ22 at the

2nd power, where the first linearization of this subdynamic occurs.

As with Λ0,Σ and Λeven, rule 22’s domain linearizes to the additive rule 90. Rule 90

produces the mod-2 Pascal triangle spacetime patterns characteristic of many chaotic CAs.

It is well known that the sum-mod-2 of the neighborhood outer bits is the mechanism that

generates these patterns. Since Λ0,Σ and Λeven are a subset of rule 90’s behaviors they also

exhibit the mod-2 Pascal triangles, as can be seen in Figures 5.4, 5.5. Since the discovery of

rule 22’s domain, it was known that it produces similar Pascal triangle patterns. Though

these are not exactly the same as rule 90’s, since φ22|L(Λ22) only emulates rule 90 every

other time step. However, as far as we are aware, rule 22’s domain linearization to rule

90 at every even power here is the first report of such a mechanism for the production of

Pascal traingle patterns in rule 22.

135

η2 φ2
90(η2) φ2

22(η2) φ2
22↔90(η2) φ2

22|L(Λ22)(η
2)

1 1 1 1 1 0 0 0 −
1 1 1 1 0 1 0 − −
1 1 1 0 1 0 0 0 0

1 1 1 0 0 1 1 1 1

1 1 0 1 1 0 0 0 0

1 1 0 1 0 1 1 1 −
1 1 0 0 1 0 0 0 −
1 1 0 0 0 1 1 1 1

1 0 1 1 1 0 0 0 0

1 0 1 1 0 1 0 − −
1 0 1 0 1 0 1 − −
1 0 1 0 0 1 0 − −
1 0 0 1 1 0 0 0 −
1 0 0 1 0 1 0 − −
1 0 0 0 1 0 0 0 0

1 0 0 0 0 1 1 1 1

0 1 1 1 1 1 0 − −
0 1 1 1 0 0 0 0 0

0 1 1 0 1 1 0 − −
0 1 1 0 0 0 1 − −
0 1 0 1 1 1 1 1 −
0 1 0 1 0 0 0 0 −
0 1 0 0 1 1 0 − −
0 1 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1

0 0 1 1 0 0 1 − −
0 0 1 0 1 1 0 − −
0 0 1 0 0 0 0 0 0

0 0 0 1 1 1 1 1 1

0 0 0 1 0 0 0 0 0

0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0

Table 5.4. Second-order lookup tables for rule 90 (φ2
90) and rule 22 (φ2

22), as well as
for φ2

22 linearized to φ2
90 (φ2

22↔90) and φ2
22 restricted to its domain (φ2

22|L(Λ22)). The

leftmost column gives all second-order ECA neighborhood values (that is, all radius-2
neighborhood values) in lexicographical order. Each subsequent column is the output
of the neighborhoods for the specified dynamic or subdynamic. The symbol − indicates
that lookup table element is excluded from the respective subdynamic.

136

5.7 A Non-Additive Domain

Now we come to an example in the class (A = {0, 1}, R = 2) that breaks the connection

between domains and additive subdynamics we have seen so far. It possesses a domain

that admits no linearizations.

The CA in question is radius-2 rule 2614700074, named according to the same num-

bering scheme used for ECAs. This was previously studied by Crutchfield and Hanson

[116]. They designed it to have the Λ0,Σ domain along with another structurally distinct

domain—the Λ1,1,0,Σ domain. This domain has a single temporal phase consisting of the

sofic shift X1,1,0,Σ with strings of the form · · · 110Σ110Σ110Σ · · · , where Σ is a wildcard

that can be either 1 or 0. The machine for Λ1,1,0,Σ is shown in Figure 5.8(c).

Reference [116] showed that Λ0,Σ and Λ1,1,0,Σ have distinct statistical signatures. Here,

we investigate these differences via local causal states. Filtered spacetime fields for the

Λ0,Σ and Λ1,1,0,Σ domains are shown in Figure 5.8(a) and (b), respectively. In each,

as above, the colored letters represent the local causal state label at each site. These

local causal state overlay diagrams clearly demonstrate that the domains have different

spacetime symmetry groups. Λ1,1,0,Σ has recurrence time p̂ = 1, temporal period p = 2,

and spatial period 4, while Λ0,Σ has recurrence time p̂ = 1, temporal period p = 1, and

spatial period s = 2 for rule 2614700074.

Recall that Λ0,Σ is a domain invariant set of ECA rule 90. It is thus also a domain

invariant set of Φ2
90, which is itself a CA in the class (A = {0, 1}, R = 2): a = (1, 0, 0, 0, 1).

From this we can understand the Λ0,Σ domain of rule 2614700074 from the same combi-

natorial perspective as Λ0,Σ with rule 18. The restriction LUT(φ2
90|L(Λ0,Σ)) leaves several

output values unconstrained for assignment to construct a full CA lookup table. One

such assignment gives rule 2614700074. As such, we find that rule 2614700074 linearizes

to a = (1, 0, 0, 0, 1) at all powers:

LUT(φn2614700074|L(Λ0,Σ)) ⊂ LUT(φn2614700074↔a=(1,0,0,0,1)),

for n = 1, 2, 3,

This connection to rule 90 also explains why Λ0,Σ has temporal period p = 2 for rule

18, but temporal period p = 1 for CA 2614700074. The local causal state field of Λ0,Σ for

137

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Space

20

22

24

26

28

30

32

34

36

38

T
im

e

B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B
B A B A B A B A B A B A B A B A B A B A B A B A B A B A B A B

(a) Filtered Λ0,Σ domain with associated local causal states.

20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50

Space

20

22

24

26

28

30

32

34

36

38

T
im

e

B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D
D A B C D A B C D A B C D A B C D A B C D A B C D A B C D A B
B C D A B C D A B C D A B C D A B C D A B C D A B C D A B C D

(b) Filtered Λ1,1,0,Σ domain with associated local causal states.

B

A

D

C

1

1

0

0 1

(c) Machine for the domain invariant language L(Λ1,1,0,Σ).

Figure 5.8. Filtered spacetime fields of the two domains of the (A = {0, 1}, R = 2)
CA rule 2614700074. Format and notation similar to previous such diagrams. (a) The
Λ0,Σ domain has the same invariant set language of ECA rule 90. Its machine is shown
in Figure 5.4(a)). (b) The Λ1,1,0,Σ domain. (c) Machine for L(Λ1,1,0,Σ).

138

η φ2614700074|L(Λ1,1,0,Σ)(η)

1 1 1 0 1 0

1 1 1 0 0 1

1 1 0 1 1 1

1 1 0 0 1 1

1 0 1 1 1 1

1 0 0 1 1 1

0 1 1 1 0 0

0 1 1 0 1 1

0 1 1 0 0 0

0 0 1 1 0 0

Table 5.5. First-order lookup table of (A = {0, 1}, R = 2) CA 2614700074 re-
stricted to its domain Λ1,1,0,Σ. For simplicity, all elements of LUT(φ2614700074) not
in LUT(φ2614700074|L(Λ1,1,0,Σ)) are not shown.

rule 18 has a checkerboard symmetry. If one starts in state A at some spacetime point

and moves forward one time step (i.e., applying Φ90) one arrives at state B. However,

starting in state A and moving forward two time steps (i.e., applying Φ2
90) one ends in

state A again.

The Λ1,1,0,Σ domain of rule 2614700074, in contrast to all other examples we have seen,

does not appear to have any linearizations. From all examples we have seen and know of

so far, we would expect rule 2614700074 to linearize over Λ1,1,0,Σ at its first power since it

is a hidden symmetry domain with recurrence time p̂ = 1: Φ2614700074 : X1,1,0,Σ → X1,1,0,Σ.

Below we prove that the domain-restricted subdynamic of LUT(φ2614700074|L(Λ1,1,0,Σ)) can-

not be additive. We also algorithmically checked for all possible linearizations of

LUT(φn2614700074|L(Λ1,1,0,Σ)) for n = 1, 2, 3, 4, finding none. For each n ∈ {1, 2, 3, 4} we con-

structed the linearization LUT(φn2614700074↔a) for all possible length 2nR + 1 coefficient

vectors a and found LUT(φn2614700074|L(Λ1,1,0,Σ)) to be a subset of none of the linearizations.

Reference [116] showed, using the FME, that Λ1,1,0,Σ is a domain invariant set of

rule 2614700074. First, we check that all 5-block words, i.e., all R = 2 neighborhoods

η, are in the language L(Λ1,1,0,Σ). To do so, consider the string · · · 110Σ110Σ110Σ · · ·
and a sliding 5-block window over this string. This yields the 5-blocks 110Σ1, 10Σ11,

139

0Σ110, and Σ110Σ. Replacing each Σ with realizations 0 and 1 gives the neighborhoods

in L(Λ1,1,0,Σ), from which we can create LUT(φ2614700074|L(Λ1,1,0,Σ)), shown in Table 5.5.

Now we show that there is no additivity assignment a = (a−2, a−1, a0, a1, a2) such that

φ2614700074|L(Λ1,1,0,Σ)(η) is given by a
(mod 2)· η. From the first two rows of Table 5.5 we see

that φ2614700074|L(Λ1,1,0,Σ)(11101) = 0 and φ2614700074|L(Λ1,1,0,Σ)(11100) = 1.

If φ2614700074|L(Λ1,1,0,Σ)(η) is additive, this shows the right-most entry of η must contribute

to the additivity sum, and so we must have a2 = 1. Similarly, from

φ2614700074|L(Λ1,1,0,Σ)(01100) = 0 and φ2614700074|L(Λ1,1,0,Σ)(11100) = 0 we would need a−2 = 1.

The neighborhoods 11001 and 11011 have the same output, giving a1 = 0. Similarly,

10011 and 10111 have the same output, giving a0 = 0, and 00110 and 01110 have the

same output giving a−1 = 0.

Therefore, if there is an additivity assignment a, it must be a = (1, 0, 0, 0, 1). How-

ever, we can see that φ2614700074|L(Λ1,1,0,Σ)(11011) = 1, for example, and (1, 0, 0, 0, 1)
(mod 2)·

(1, 1, 0, 1, 1) 6= 1. And so, φ2614700074|L(Λ1,1,0,Σ)(η) cannot be additive.

�

5.8 Conclusion

The most basic ingredient of a cellular automaton, its lookup table, could not be simpler—

a finite number of possible inputs are enumerated with their outputs explicitly specified.

However, the overlapping interactions that occur when applying this simple lookup ta-

ble synchronously for simultaneous global update of spatial configurations conspires to

produce arbitrarily complex behaviors. The emergent complexity enshrouds a cellular

automaton’s simplicity, making it difficult to answer seemingly basic questions. Specify-

ing a lookup table φ determines the global update Φ. Given a lookup table for φ, and

hence Φ, what invariant sets are induced by Φ in the state space AZ? In contrast with

low-dimensional dynamical systems, the states x ∈ AZ of spatially-extended dynamical

systems like CAs possess internal structure and live in infinite dimensions. For a given

invariant set Λ ⊆ AZ, is there a unifying structure in the states x ∈ Λ? Moreover, is there

spacetime structure in the orbits of sequential states in Λ?

140

Our investigations provide several inroads to these questions, but they also high-

light the challenge presented by complex spatially-extended dynamical systems and their

emergent behaviors. While domain invariant sets appear to strongly correspond to the

spacetime symmetries revealed by the local causal states in the orbit flows along the in-

variant sets, relating the invariant spatial shift spaces of Definition 1 with the resulting

spacetime shift spaces of Definition 2 and their generalized symmetries remains unsolved.

Since Φ is deterministic, the spacetime shift space that results from a given spatial shift

space X is uniquely determined by Φ. This is not to say, though, as is often assumed,

that the spacetime shift space trivially follows from Φ applied to X . In fact, we still do

not know how to fully characterize the spacetime shift space of orbits that follow from

hidden symmetry domain invariant spatial shift spaces. In particular, we do not know

how to properly define the domain temporal period for these spaces from their invariant

spatial shift spaces. Such difficulties in understanding the spacetime shift spaces of hidden

symmetry domains is perhaps one of the clearest examples of the fallacy of the “construc-

tionist” hypothesis that often accompanies reductionism [133]. Tackling this will be a

focus of subsequent investigations.

Beyond characterizing the spacetime shift spaces of domains, there remains the chal-

lenge of connecting domains, both the invariant spatial shift spaces and their resulting

spacetime shift space of orbits, to the equation of motion Φ and the lookup table φ that

generates it. Why does the particular assignment of lookup table outputs that form

LUT(φ18) generate the invariant set Λ0,Σ? Why should LUT(φ18|L(Λ0,Σ)) be additive when

LUT(φ18) is not? We have shown that this linear behavior of the nonlinear rule 18 actu-

ally follows from the combinatorics of Λ0,Σ being an invariant set of the additive rule 90.

In fact, this is the mechanism behind every known stochastic ECA domain, including the

enigmatic rule 22. Is this due to historical focus on rule 90? Or, is rule 90 particularly

special? Beyond ECAs, we know from the Λ1,1,0,Σ domain of the R = 2 rule 2614700074

that this is not the only mechanism for generating hidden symmetry domains. Hidden

symmetry domains need not be associated with an additive subdynamic. One possible

path forward could be through the partial permutivity outlined in Ref. [223]; the per-

141

mutive subalphabets of examples 1.2 and 1.3 in Ref. [223] correspond to the domains of

ECAs 18 and 22, respectively.

Perhaps in the sixteenth and seventeenth centuries — the burgeoning days of celestial

mechanics — one could take for granted that knowing the equations of motion was tan-

tamount to knowing the system and its behavior. Those days have long passed. Today,

we appreciate that having the Navier-Stokes equations of hydrodynamics in hand does

not translate into understanding emergent coherent structures, such as fluid vortices. The

preceding recounted this lesson yet again. Even systems as “simple” as elementary cellular

automata continue to hold surprises.

5.9 Appendices

5.9.1 Proof of Theorem 1

Theorem 1. Every nonzero linear CA Φβ with A = {0, 1} is a factor map from the full-A
shift to itself: Φβ : AZ → AZ.

Proof. For any x ∈ AZ we want to show that there exists a y ∈ AZ such that x = Φβ(y).

In other words, for a linear Φβ there is always a right inverse Φ̃β such that Φβ

(
Φ̃β (x)

)
= x.

First, decompose the string x into several ‘basis’ strings as follows; for each index i

in x such that xi = 1, create a basis string xi for which xii = 1 and xij = 0 for all j 6= i.

With this we have x =
∑

i x
i, which is shorthand for performing xj =

∑
i x

i
j (mod 2) at

each index j of x.

If we can show the basis strings xi always have a pre-image yi, xi = Φβ(yi), then it

follows from linear superposition that y =
∑

i y
i is the pre-image of x. If x =

∑
i x

i =∑
i Φβ(yi), then using superposition, Equation (5.2), we have

∑
i Φβ(yi) = Φβ(

∑
i y

i).

Thus, for any x there is a y such that Φβ(y) = Φ(
∑

i y
i) =

∑
i Φβ(yi) =

∑
i x

i = x.

We now need to show that for any basis string xi with a single 1 there is always a

pre-image yi. This follows from additivity of φβ. Since we are considering nonzero linear

CAs there is at least one coefficient ai = 1 in the additivity coefficient vector a. In fact,

it simplifies things to only consider CAs that have one or both of the outer bits of the

neighborhood with a nonzero coefficient: a−R = 1 or aR = 1 or both. Any rule where this

142

is not the case is equivalent to one that is; e.g., the radius R = 2 CA a = (0, 1, 0, 1, 0) is

equivalent to the radius R = 1 CA a = (1, 0, 1). (The only exception is the identity rule

with a0 = 1 and ai = 0 for all i ∈ {−R, . . . , 0, . . . , R}\{0}, but clearly every image is its

own pre-image for the identity rule, so it is surjective).

Chose i to be either −R or R such that ai = 1. The neighborhood that has xi = 1

and xj = 0 for j ∈ {−R, . . . , 0, . . . , R} and j 6= i will necessarily output 1. To find

the string that outputs the 3-block 010 there are three neighborhoods to consider, η−1,

η0, and η1. For the central neighborhood η0, chose the same as above to still output 1.

Neighborhood η−1 is to the left of η0 and η1 to the right. The outer neighborhoods overlap

with η0 and thus share all but one entry: η−1[−(R − 1), . . . , R] = η0[−R, . . . , R − 1] and

η1[−R, . . . , R − 1] = η0[−(R − 1), . . . , R]. Thus, we need only fill in η−1[−R] and η1[R].

If i = −R, then η0[−R] = 1 and η−1[−(R− 1)] = 1. And so, for η−1 to output a 0 we set

η−1[−R] = 1 if a−R+1 = 1 or η−1[−R] = 0 if a−R+1 = 0. Meanwhile η1[R − 1] = 0, so for

η1 to output a 0 we must set η1[R] = 0. If i = R perform the symmetric operation: set

η−1[−R] = 0 and η1[R] = 1.

To output the 5-block 00100 we similarly have two new neighborhoods to consider,

η−2 and η2. As above, we only need to fill in η−2[−R] and η2[R]. If i = −R we again just

set η2[R] = 0. Now, simply set η−2[−R] to either 0 or 1 so that a · η−2 = 0. Perform the

similar symmetric construction if i = R. We can continue in this way to extend out to

output arbitrary blocks · · · 000 · · · 1 · · · 000 · · · with a single 1. Thus, we showed how to

construct a pre-image yi for any basis string xi = · · · 000 · · · 1 · · · 000 · · · .
All that remains is the case of the all-0 string as an image. Clearly, though, from

additivity, Equation (5.1), the all-0 string is its own pre-image for all linear CAs.

If Φβ is surjective over all finite blocks, as we just showed, then Φβ is necessarily

surjective over AZ. Thus, y =
∑

i y
i = Φ̃β(x) for all x ∈ AZ.

�

143

Chapter 6

Cellular Automata: Coherent

Structures

While much progress has been made in understanding the instability mechanisms driving

pattern formation and the dynamics of the patterns themselves in idealized nonequi-

librium phase transitions [29, 1, 30, 31], many challenges remain, especially with wider

classes of real world patterns. In particular, the inescapable inhomogeneities of systems

found in nature give rise to relatively more localized patterns, rather than the cellular

patterns captured by simple Fourier modes. We refer to these localized patterns as co-

herent structures. There has been intense interest recently in coherent structures in fluid

flows, including structures in geophysical flows [225, 117], such as hurricanes [13, 226],

and in more general turbulent flows [62].

A principled universal description of the organization of such structures does not exist.

So, while we can exploit vast computing resources to simulate models of ever-increasing

mathematical sophistication, analyzing and extracting insights from such simulations be-

comes highly nontrivial. Indeed, given the size and power of modern computers, analyzing

their vast simulation outputs can be as daunting as analyzing any real physical experi-

ment [48]. Finally, there is no unique, agreed-upon approach to analyzing and predicting

coherent material structures in fluid flows, for instance [113]. Even today ad hoc thresh-

olding is often used to identify extreme weather events in climate data, such as cyclones

and atmospheric rivers [227, 228, 229]. Developing a principled, but general mathematical

144

description of coherent structures is our focus.

Parallels with contemporary machine learning are worth noting, given the increas-

ing overlap between these technologies and the needs of the physical sciences. Imposing

Fourier modes as templates for cellular patterns is the mathematical analog of the tech-

nology of (supervised) pattern recognition [230]. Patterns are given as a finite number of

classes and learning algorithms are trained to assign inputs into these classes by being fed

a large number of labeled training data, which are inputs already assigned to the correct

pattern class.

Computational mechanics, in contrast, makes far fewer structural assumptions [104].

As outlined in Section 3.2.2, for discrete spatially extended systems it makes only modest

yet reasonable assumptions about the existence and conditional stationarity of lightcones

in the orbit space of the system. In so doing, it facilitates identifying representations

that are intrinsic to a particular system. This is in contrast with subjectively imposing

a descriptional basis, such as Fourier modes, wavelets, or engineered pattern-class labels.

We say that our subject here is not simply pattern recognition, but (unsupervised) pattern

discovery.

This Chapter introduces the computational mechanics of coherent structures. The

theory builds off the conceptual foundation laid out by DPID in which structures, such

as particles and their interactions, are seen as deviations from spacetime shift-invariant

domains. The new local causal state formulation differs from DPID in how domains and

their deviations are formally defined and identified. The two distinct approaches to the

same conceptual objective complement and inform one another, lending distinct insight

into the patterns and regularity captured by the other.

Generalizing DPID particles, coherent structures are then formally defined as partic-

ular deviations from domains. Specifically, coherent structures are defined through latent

semantic fields ; either the local causal state field S = ε(x) or the DPID domain-transducer

filter, introduced in Section 4.4.1.1. For both of these, the latent field is endowed with

the same coordinate geometry of the corresponding observable field, and each local point

in spacetime carries a latent semantic variable (i.e. not a quantitative value).

145

CA coherent structures defined via the DPID domain-transducer filter are DPID par-

ticles. Defining particles using local causal states, in contrast, extends domain-particle-

interaction analysis to a broader class of spatiotemporal systems for which DPID trans-

ducers do not exist. Due to this improvement, in the local causal states analysis we adopt

the terminology of “coherent structures” over “particles”.

Similar approaches using local causal states have been pursued by others [112, 231,

232, 233, 234]. However, as will be elaborated upon in future work, these underutilize

computational mechanics, developing only a qualitative filtering tool—local statistical

complexity—that assists in subjective visual recognition of coherent structures. More-

over, they provide no principled way to describe structures and thus cannot, to take one

example, distinguish two distinct types of structures from one another. There have also

been other unsupervised approaches to coherent structure discovery in cellular automata

using information-theoretic measures [235, 236, 237, 238]. Recent critiques of employing

such measures to determine information storage and flow and causal dependency [239, 240]

indicate that these uses of information theory for CAs are still in early development and

have some distance to go to reach the structure-detection performance levels presented

here.

146

6.1 Structures as Domain Deviations

With domain regions and their symmetries established in Section 4.4, we now define

coherent structures in spatiotemporal systems as spatially localized, temporally persis-

tent broken symmetries. For clarity, the following definition is given for a single spatial

dimension, but the generalization to arbitrary spatial dimensions is straightforward.

Definition 5. A coherent structure Γ is a contiguous nondomain region R ⊂ L × Z of

an observable spacetime field x such that R has the following properties in the latent

semantic fields of S = ε(x) or T = τ(x):

1. Spatial locality : Given a spatial configuration xt at time t, Γ occupies the spatial

region Rt = [i : j] if S i:jt is bounded by domain states on its exterior and contains

nondomain states on its interior, S i−1
t ∈ Λ, S it /∈ Λ, Sjt /∈ Λ, and Sj+1

t ∈ Λ.

2. Lagrangian temporal persistence: Given Γ occupies the localized spatial region Rt

at time t, Γ persists to the next time step if there is a spatially localized set of

nondomain states in S at time t+1 occupying a contiguous spatial region Rt+1 that

is within the depth-1 future lightcone of Rt. That is, for every pair of coordinates

(r, t) ∈ Rt and (r′, t+ 1) ∈ Rt+1, ||r′ − r|| ≤ c.

For simplicity and generality we gave coherent structure properties in terms of local

causal state fields. For CAs, to which the FME operator may be applied, the DPID

transducer filter may similarly be used to identify coherent structures. However, the

condition for temporal persistence is less strict: the regions Rt+1 and Rt, when given

over T rather than S , must have finite overlap. That is, there exists at least one pair of

coordinates (r, t) ∈ Rt and (r′, t + 1) ∈ Rt+1 such that r = r′. Coherent structures in

CAs identified in this way are DPID particles. Both notions of temporal persistence are

referred to as Lagrangian since they allow Γ to move through space over time.

Since local causal states are assigned to each point in spacetime, coherent structures of

all possible sizes can be described. The smallest scale possible is a single spacetime point

and the structure is captured by a single local causal state. Larger structures are given as

147

a set of states localized at the corresponding spatial scale. Such sets may be arbitrarily

large and have (almost) arbitrary shape. In this way, the local causal states allow us

to discover complex structures, without imposing external templates on the structures

they describe. This leaves open the possibility of discovering novel structures that are

not readily apparent from a observable spacetime field or do not fit into known shape

templates.

We now apply the theory of domains and coherent structures to discover patterns in

the spacetime fields generated by elementary cellular automata. For each domain class

we analyze one exemplar ECA in detail. We begin describing the ECA’s domain(s) and

coherent structures generated by the ECA, from both the DPID and local causal state

perspectives.

The analysis of domains and structures gives a sense of the correspondence between

DPID and the local causal states; Conjecture 1. Though the CA dynamic Φ is not directly

used to infer local causal states, the correspondence between DPID and local causal state

domains shows that local causal states incorporate detailed dynamical features and they

can be used to discover patterns and structures that can be defined directly from Φ using

DPID.

6.2 Explicit Symmetry CAs

We start with a detailed look at ECA 54, whose domains and structures were worked

out in detail via DPID [4]. ECA 54 was said to support “artificial particle physics” and

this emergent “physics” was specified by the complete catalog of all its particles and

their interactions. Here, we analyze the domain and structures using local causal states

and compare. Since the particles (structures) are defined as deviations from a domain

that has explicit symmetries, the resulting higher-level particle dynamics themselves are

completely deterministic. As we will see later, this is not the case for hidden symmetry

systems; stochastic domains give rise to stochastic structures.

148

14

(a) Pure domain spacetime field x�54
. (b) Local causal state field S�54

= ‘(x�54
) atop x�54

.

(c) Finite-state machine M(�54) of DPID domain language �54.

�A

D A

BC

0

0

0

1

�B

H E

FG

1

1

1

0

�54

�54

FIG. 3. ECA 54 domain: A sample pure domain spacetime field x� is shown in (a). This field is repeated with the associated
local causal states S� = ‘(x�) added in (b). Lightcone horizons h≠ = h+ = 3 were used. The DPID spacetime invariant set
language is shown in (c). (Reprinted from Ref. [55] with permission.)

and is period 4 in both time and space. From the DPID
perspective, though, it consists of two distinct spatial-
configuration languages, �A = (0001)ú and �B = (1110)ú,
that map into each other under �54; see Fig. 3(c). This
gives a recurrence time of ‚p = 2. The finite-state machines,
M(�A) and M(�B), shown there for these languages each
have four states, reflecting the period-4 spatial translation
symmetry: s = 4. Although the domain’s recurrence time
is ‚p = 2, the raw states xt are period 4 in time due to
a spatial phase slip in the language evolution: p = 4.
This is shown explicitly in the spacetime machine given in
Ref. [55]. We can see that the machine in Fig. 3(c) fully
describes the domain field in Fig. 3(a). At some time t,
the system is either in (0001)ú or (1110)ú and at the next
time step t + 1 it switches, then back again at t + 2, and
so on.

Let’s compare this with the local causal state analysis.
The corresponding local causal state field S� = ‘(x�)
was generated from the pure domain field x� of Fig. 3(a)
via causal filtering; see Fig. 3(b). We reiterate here that
this reconstruction in no way relies upon the invariant

set languages of �54 identified in DPID. Yet we see that
the local causal states correspond exactly to M(�54)’s
states. In total there are eight states, and these appear as
two distinct tilings in the field. These tilings correspond
to the two temporal phases of �54: wA = [A,B,C,D] =
�A and wB = [E,F,G,H] = �B. At any given time t, a
spatial configuration is tiled by only one of these temporal
phases, which each consist of 4 states, giving a spatial
period s = 4. And, at the next time t + 1 there are only
states from the other tiling. Then back to previous tiling,
and so, the evolution continues. Thus, we can see the
recurrence time is ‚p = 2. In contrast, the actual local
causal states are temporally period p = 4, which is also
the orbit period of configurations in x�, as can be seen
in Fig. 3(a). This is in agreement with DPID’s invariant
set analysis, shown in Fig. 3(c). As noted before and
as will be emphasized, there is a strong correspondence
between DPID’s dynamically invariant sets of spatially
homogeneous configurations and the local causal state
description, both for coherent structures and the domains
from which they are defined.

Figure 6.1. ECA 54 domain: A sample pure domain spacetime field xΛ is shown in
(a). This field is repeated with the associated local causal states SΛ = ε(xΛ) added in
(b). Lightcone horizons h− = h+ = 3 were used. The DPID spacetime invariant set
language is shown in (c). (Reprinted from Ref. [4] with permission.)

6.2.1 ECA 54’s Domain

A pure-domain spacetime field xΛ of ECA 54 is shown in Figure 6.1(a). As can be seen,

it has explicit symmetries and is period 4 in both time and space. From the DPID

perspective, though, it consists of two distinct spatial-configuration languages, ΛA =

(0001)∗ and ΛB = (1110)∗, that map into each other under Φ54; see Figure 6.1(c). This

gives a recurrence time of p̂ = 2. The finite-state machines, M(ΛA) and M(ΛB), shown

there for these languages each have four states, reflecting the period-4 spatial translation

symmetry: s = 4. Although the domain’s recurrence time is p̂ = 2, the raw states xt are

period 4 in time due to a spatial phase slip that occurs during their evolution: p = 4.

This is shown explicitly in the spacetime machine given in Ref. [4]. We can see that the

machine in Figure 6.1(c) fully describes the domain field in Figure 6.1(a). At some time

t, the system is either in (0001)∗ or (1110)∗ and at the next time step t + 1 it switches,

149

then back again at t+ 2, and so on.

Let’s compare this with the local causal state analysis. The corresponding local causal

state field SΛ = ε(xΛ) was generated from the pure domain field xΛ of Figure 6.1(a) via

causal filtering; see Figure 6.1(b). We reiterate here that this reconstruction in no way

relies upon the invariant set languages of Λ54 identified in DPID. Yet we see that the

local causal states correspond exactly to M(Λ54)’s states. In total there are eight states,

and these appear as two distinct tilings in the field. These tilings correspond to the two

temporal phases of Λ54: wA = [A,B,C,D] = ΛA and wB = [E,F,G,H] = ΛB. At any given

time t, a spatial configuration is tiled by only one of these temporal phases, which each

consist of 4 states, giving a spatial period s = 4. And, at the next time t+1 there are only

states from the other tiling. Then back to previous tiling, and so, the evolution continues.

Thus, we can see the recurrence time is p̂ = 2. In contrast, the actual local causal states

are temporally period p = 4, which is also the orbit period of configurations in xΛ, as can

be seen in Figure 6.1(a). This is in agreement with DPID’s invariant set analysis, shown in

Figure 6.1(c). As noted before and as will be emphasized, there is a strong correspondence

between DPID’s dynamically invariant sets of spatially homogeneous configurations and

the local causal state description, both for coherent structures and the domains from

which they are defined.

6.2.2 ECA 54’s Structures

Let’s examine the structures (particles) supported by ECA 54 and their interactions.

Rule 54 organizes itself into domains and structures when started with random initial

conditions. A sample spacetime field x produced by evolving a random binary configu-

ration under Φ54 is shown in Figure 6.2(a). We first give a qualitative comparison of the

structures in this field from both the DPID and local causal state perspectives.

From the DPID side, a simple domain-nondomain filter is used with binary outputs

that flag sites in transducer filter field T = τ(x) as either domain (white) or not domain

(black). Applying this filter to the spacetime field of Figure 6.2(a) generates the diagram

shown in Figure 6.2(b). Similarly, a domain-nondomain filter built from local causal states

when applied to Figure 6.2(a) gives the output shown in Figure 6.2(c). For this filter, the

150

15

(a) Raw spacetime field.

(b) DPID domain-nondomain filter.

(c) Local causal state domain-nondomain filter.

FIG. 4. Overview of ECA 54 structures: (a) A sample space-
time field evolved from a random initial configuration. (b) A
filter that outputs white for cells participating in domains and
black otherwise, using the DPID definition of domain. (c) The
analogous domain-nondomain filter that uses the local causal
state definition of domain. Lightcone horizons h≠ = h+ = 3
were used.

2. ECA 54’s structures

Let’s examine the structures (particles) supported by
ECA 54 and their interactions. Rule 54 organizes itself
into domains and structures when started with random
initial conditions. A sample spacetime field x produced
by evolving a random binary configuration under �54 is
shown in Fig. 4(a). We first give a qualitative comparison
of the structures in this field from both the DPID and
local causal state perspectives.

From the DPID side, a simple domain-nondomain filter
is used with binary outputs that flag sites in transducer
filter field T = ·(x) as either domain (white) or not
domain (black). Applying this filter to the spacetime field
of Fig. 4(a) generates the diagram shown in Fig. 4(b).
Similarly, a domain-nondomain filter built from local
causal states when applied to Fig. 4(a) gives the output
shown in Fig. 4(c). For this filter, the eight domain local
causal states in S = ‘(x) are in white and all other local

causal states black. While domain-nondomain detections
di�er site-by-site, we see that in aggregate there is again
strong agreement on the structures identified by the two
filter types.

There are four types of particles found in ECA 54 [55],
which we can now examine in detail. Before doing so,
we must make a comment about the domain transducer
· used by DPID to identify structures. As mentioned,
a stack automaton is generally required, but may be
well-approximated with a finite-state transducer [56]. A
trade-o� is made with the transducer, however, since it
must choose a direction to scan configurations—left-to-
right or right-to-left. To best capture the proper spatial
extent of a particle, an interpolation may be done by
comparing right and left scans. This was done in the
domain-nondomain filter of Fig. 4(b). The bidirectional
interpolation used does not capture fine details of domain
deviations. For the particle analysis that follows, a single
direction (left to right) scan is applied to produce each
Tt = ·(xt) in T = ·(x). A noticeable side-e�ect of the
single direction scan is that it covers only about half of
any given particle’s spatial extent. (This scan-direction
issue simply does not arise in local causal state filtering.)

The first structure we analyze is the large stationary –

particle, shown in Fig. 5. For both diagrams the white and
black squares represent the values 0 and 1, respectively,
of the underlying ECA field x–. Overlaid blue letters and
red numbers are the semantic filter fields. In Fig. 5(a)
these come from the DPID domain transducer filtered
field T = ·(x–). In Fig. 5(b) they come from the local
causal state field S = ‘(x–).

For the DPID domain transducer filtered field in
Fig. 5(a), overlaid blue letters are sites flagged as partic-
ipating in domain by the transducer · , with the letter
representing the spatial phase of the domain as given by
M(�54). Red numbers correspond to sites flagged as var-
ious deviations from domain [55]. Here, the collection of
such deviations outlines the – particle’s structure; though,
as stated above, the unidirectional transducer only identi-
fies about half of the particle’s spatial extent. The main
feature to notice is that the particle has a period-4 tem-
poral oscillation. As the – is recognizable by eye from
the raw field values, one can see this period-4 structure
is intrinsic to the raw spacetime field and not an artifact
of the domain transducer. However, the period-4 tem-
poral structure is clearly displayed by the DPID domain
transducer description of –.

Figure 5(b) displays the local causal state field S =
‘(x–); the eight domain states are given as blue letters,
following Fig. 3(b), and all other nondomain states, which
outline the –, are red numbers. We see the local causal
states fill out the –’s full spatial extent. Since the nu-
meric labels for each state are arbitrarily assigned during

Figure 6.2. Overview of ECA 54 structures: (a) A sample spacetime field evolved from
a random initial configuration. (b) A filter that outputs white for cells participating
in domains and black otherwise, using the DPID definition of domain. (c) The anal-
ogous domain-nondomain filter that uses the local causal state definition of domain.
Lightcone horizons h− = h+ = 3 were used.

eight domain local causal states in S = ε(x) are in white and all other local causal states

black. While domain-nondomain detections differ site-by-site, we see that in aggregate

there is again strong agreement on the structures identified by the two filter types.

There are four types of particles found in ECA 54 [4], which we can now examine in

detail. Before doing so, we must make a comment about the domain transducer τ used

by DPID to identify structures. As mentioned, a stack automaton is generally required,

but may be well-approximated with a finite-state transducer [199]. A trade-off is made

with the transducer, however, since it must choose a direction to scan configurations—

left-to-right or right-to-left. To best capture the proper spatial extent of a particle, an

interpolation may be done by comparing right and left scans. This was done in the

151

domain-nondomain filter of Figure 6.2(b). The bidirectional interpolation used does not

capture fine details of domain deviations. For the particle analysis that follows, a single

direction (left to right) scan is applied to produce each Tt = τ(xt) in T = τ(x). A

noticeable side-effect of the single direction scan is that it covers only about half of any

given particle’s spatial extent. (This scan-direction issue simply does not arise in local

causal state filtering.)

The first structure we analyze is the large stationary α particle, shown in Figure 6.3.

For both overlay diagrams the white and black squares represent the values 0 and 1,

respectively, of the observable ECA field xα. Overlaid blue letters and red numbers are

the latent semantic fields. In Figure 6.3(a) these come from the DPID domain transducer

filtered field T = τ(xα). In Figure 6.3(b) they come from the local causal state field

S = ε(xα).

For the DPID domain transducer filtered field in Figure 6.3(a), overlaid blue letters are

sites flagged as participating in domain by the transducer τ , with the letter representing

the spatial phase of the domain as given by M(Λ54). Red numbers correspond to sites

flagged as various deviations from domain [4]. Here, the collection of such deviations

outlines the α particle’s structure; though, as stated above, the unidirectional transducer

only identifies about half of the particle’s spatial extent. The main feature to notice is that

the particle has a period-4 temporal oscillation. As the α is recognizable by eye from the

observable field values, one can see this period-4 structure is intrinsic to the observable

spacetime field and not an artifact of the domain transducer. However, the period-4

temporal structure is clearly displayed by the DPID domain transducer description of α.

Figure 6.3(b) displays the local causal state field S = ε(xα); the eight domain states are

given as blue letters, following Figure 6.1(b), and all other nondomain states, which outline

the α, are red numbers. We see the local causal states fill out the α’s full spatial extent.

Since the numeric labels for each state are arbitrarily assigned during reconstruction, the

α’s spatial reflection symmetry that is clearly present does not appear in the local causal

state labels. However, the underlying lightcones that populate the equivalence classes of

these states do exhibit this symmetry. As with the DPID domain transducer description

152

16

(a) DPID domain transducer T = ·(x–) atop x–.

(b) Local causal state field S = ‘(x–) atop x–.

FIG. 5. ECA 54’s – particle: In both (a) and (b) white (0)
and black (1) squares display the underlying ECA spacetime
field x–. (a) The DPID domain transducer filter T = ·(x–)
output is overlaid atop the spacetime field values of x–. Blue
letters are sites participating in domain and red numbers are
particular deviations from domain. (b) The local causal state
field S = ‘(x–). The eight domain states are given by blue
letters, all others by red numbers. In both diagrams, the non-
domain sites outline the – particle of rule 54, according to the
two di�erent semantic filters. Lightcone horizons h≠ = h+ = 3
were used.

reconstruction, the –’s spatial reflection symmetry that is
clearly present does not appear in the local causal state
labels. However, the underlying lightcones that populate
the equivalence classes of these states do exhibit this sym-
metry. As with the DPID domain transducer description
though, the local causal states properly capture the –’s
temporal period-4.

We emphasize that coherent structures are behaviors of
the underlying system and, as such, they exist in the sys-
tem’s spacetime field. The semantic filter fields are formal
methods that identify sites in the underlying spacetime

field which participate in a particular structure. This is
how overlay diagrams, like Fig. 5, derive their utility.

We discuss the three remaining structures of ECA 54 by
examining an interaction among them; the left-traveling
“≠ particle can collide with the right-traveling “+ particle
to form the — particle. This interaction is displayed with
overlay diagrams in Fig. 6. The values of the underlying
field x— are given by white (0) and black (1) squares. The
DPID domain transducer filter field T = ·(x—) is overlaid
over top of x— in Fig. 6(a) and the local causal state field
S = ‘(x—) atop x— in Fig. 6(b).

In both cases, the color scheme is as follows. Sites iden-
tified by the semantic filters as participating in a domain
are colored blue, with the letters specifying the particular
phase of the domain. In Fig. 6(a) the domain phases are
specified by T and in Fig. 6(b) they are specified by S.
And, as we saw in Fig. 3 and can see here, these specifi-
cations of �54 are identical. For both Figs. 6(a) and 6(b),
nondomain sites participating in the “+ are flagged with
red, those participating in the “≠ with yellow, and those
uniquely participating in the — with orange.

As with the – particle, the local causal state description
better covers the particles’ spatial extent, but both filters
agree on the temporal oscillations of each particle. Both
“s are period 2 and — is period 4. Unlike the – and —, the
“ particles are not readily identifiable by eye. They arise
as a result of a phase slip in the domain. For example,
a spatial configuration with a “ present is of the form
�A “ �B .

Related to this, we point out here an observation about
this interaction that illustrates how our methods uncover
structures in spatiotemporal systems. At the top of each
diagram in Fig. 6 the spatial configurations are of the
form �A “+ �B “≠ �A. At each subsequent time step,
the domains change phase A æ B and B æ A and the
intervening domain region shrinks as the “s move towards
each other. The intervening domain disappears when the
“s finally collide. Then we have local configurations of
the form �A — �A. However, there is an indication that
a phase slip between these domain regions still happens
“inside” the — particle. Notice in Fig. 6 there are several
spatial configurations (horizontal time slices) in which
domain states appear inside the — that are the opposite
phase of the bordering domain phases, indicating a phase
slip. Also, the states constituting the “s are found as
constituents of the —. For the DPID domain transducer
· , each “ consists of just two states, and all four of these
states (two for each “) are found in the —. In the local
causal state field S, each “ is described by eight local
causal states. Not all of these show up as states of the
—, but several do. Those “ states that do show up in the
— appear in the same spatiotemporal configurations they
have in the “s.

Figure 6.3. ECA 54’s α particle: In both (a) and (b) white (0) and black (1) squares
display the underlying ECA spacetime field xα. (a) The DPID domain transducer filter
T = τ(xα) output is overlaid atop the spacetime field values of xα. Blue letters are
sites participating in domain and red numbers are particular deviations from domain.
(b) The local causal state field S = ε(xα). The eight domain states are given by blue
letters, all others by red numbers. In both diagrams, the non-domain sites outline the
α particle of rule 54, according to the two different semantic fields. Lightcone horizons
h− = h+ = 3 were used.

153

though, the local causal states properly capture the α’s temporal period-4.

We emphasize that coherent structures are behaviors of the underlying system and,

as such, they exist in the system’s observable spacetime field. The latent semantic fields

are formal methods that identify sites in the observable spacetime field which participate

in a particular structure. This is made possible through the shared coordinate geometry

between the observable field and the latent semantic fields, and is how overlay diagrams,

like Figure 6.3, derive their utility.

We discuss the three remaining structures of ECA 54 by examining an interaction

among them; the left-traveling γ− particle can collide with the right-traveling γ+ particle

to form the β particle. This interaction is displayed with overlay diagrams in Figure 6.4.

The values of the underlying field xβ are given by white (0) and black (1) squares. The

DPID domain transducer filter field T = τ(xβ) is overlaid over top of xβ in Figure 6.4(a)

and the local causal state field S = ε(xβ) atop xβ in Figure 6.4(b).

In both cases, the color scheme is as follows. Sites identified by the semantic fields as

participating in a domain are colored blue, with the letters specifying the particular phase

of the domain. In Figure 6.4(a) the domain phases are specified by T and in Figure 6.4(b)

they are specified by S. And, as we saw in Figure 6.1 and can see here, these specifications

of Λ54 are identical. For both Figures 6.4(a) and 6.4(b), nondomain sites participating in

the γ+ are flagged with red, those participating in the γ− with yellow, and those uniquely

participating in the β with orange.

As with the α particle, the local causal state description better covers the particles’

spatial extent, but both filters agree on the temporal oscillations of each particle. Both

γs are period 2 and β is period 4. Unlike the α and β, the γ particles are not readily

identifiable by eye. They arise as a result of a phase slip in the domain. For example, a

spatial configuration with a γ present is of the form ΛA γ ΛB.

Related to this, we point out here an observation about this interaction that illus-

trates how our methods uncover structures in spatiotemporal systems. At the top of

each diagram in Figure 6.4 the spatial configurations are of the form ΛA γ+ ΛB γ− ΛA.

At each subsequent time step, the domains change phase A → B and B → A and the

154

17

(a) DPID domain transducer T = ·(x—) atop x— .

(b) Local causal state field S = ‘(x—) atop x— .

—

“+ “≠

—

“+

“≠

FIG. 6. ECA 54’s “+ + “≠ æ — interaction: In both diagrams
the white (0) and black (1) squares display the underlying ECA
spacetime field x— . (a) The DPID domain transducer filter
T = ·(x—) output is overlaid atop the spacetime field values of
x— . Blue letters are sites identified by T as participating in the
domain. Colored numbers are sites identified as participating
in one of the three remaining structures. The “+ particle is
outlined only by red numbers, “≠ by yellow numbers, and —
by a combination of red, yellow, and orange. (b) The local
causal state field S = ‘(x—) is overlaid atop x— . The eight
domain states are in blue, and the other nondomain states are
colored the same as in (a). Lightcone horizons h≠ = h+ = 3
were used.

These observations tell us about the underlying ECA’s
behavior and so can be gleaned from the raw spacetime
field itself. That said, the discovery that the — particle is
a “bound state” of two “s and that it contains an internal
phase slip of the bordering domain regions is not at all
obvious from inspecting raw spacetime fields. That is,
“+ � “≠ æ —. Such structural discovery, however, is
greatly facilitated by the coherent structure analysis. To
emphasize, these insights concern the intrinsic organiza-
tion embedded in the spacetime fields generated by the
ECA. No structural assumptions, beyond the very basic
definitions of local causal states, are required.

Let’s recapitulate the correspondence between the inde-
pendent DPID and local causal state descriptions of the
ECA 54 domain and structures. From the DPID perspec-
tive, the ECA 54 domain �54 consists of two homogeneous
spatial phases that are mapped into each other by �54.
In contrast, �54 is described by a set of local causal states
with a spacetime translation symmetry tiling. The two
descriptions agree completely, giving a spatial period 4,
temporal period 4, and recurrence time of 2. On the one
hand, for ECA 54’s structures DPID directly uses domain
information to construct a transducer filter T = ·(x)
that identifies structures as groupings of particular do-
main deviations. On the other, the local causal states
are assigned uniformly to spacetime field sites via causal
filtering S = ‘(x). Domains and sites participating in a
domain are found by identifying spatiotemporal symme-
tries in the local causal states. Coherent structures are
then localized deviations from these symmetries. Though
the agreement is not exact as with the domain, DPID
and the local causal states still agree to a large extent
on their descriptions of ECA 54’s four particles and their
interactions.

3. ECA 110

As the most complex explicit symmetry ECA, ECA
110 is worth a brief mention. It is the only ECA proven
to support universal computation (on a specific subset of
initial configurations) and implements this using a subset
of the ECA’s coherent structures [89]. This was shown
by mapping ECA 110’s particles and their interactions
onto a cyclic tag system that emulates a Post tag system
which, in turn, emulates a universal Turing machine. A
domain-nondomain filter reveals several of ECA 110’s
particles used in the implementation; see Fig. 7. The
ECA 110 domain was displayed in Figs. 2(a) and 2(c), as
the example for explicit symmetry domains. The domain
has a single phase, rather than two phases like ECA 54’s,
and requires 14 states, as opposed to ECA 54’s combined
8. The ECA 110’s highly complex behavior surely derives

Figure 6.4. ECA 54’s γ+ + γ− → β interaction: In both diagrams the white (0)
and black (1) squares display the underlying ECA spacetime field xβ. (a) The DPID
domain transducer filter T = τ(xβ) output is overlaid atop the spacetime field values
of xβ. Blue letters are sites identified by T as participating in the domain. Colored
numbers are sites identified as participating in one of the three remaining structures.
The γ+ particle is outlined only by red numbers, γ− by yellow numbers, and β by a
combination of red, yellow, and orange. (b) The local causal state field S = ε(xβ) is
overlaid atop xβ. The eight domain states are in blue, and the other nondomain states

are colored the same as in (a). Lightcone horizons h− = h+ = 3 were used.

155

intervening domain region shrinks as the γs move towards each other. The intervening

domain disappears when the γs finally collide. Then we have local configurations of the

form ΛA β ΛA. However, there is an indication that a phase slip between these domain

regions still happens “inside” the β particle. Notice in Figure 6.4 there are several spatial

configurations (horizontal time slices) in which domain states appear inside the β that

are the opposite phase of the bordering domain phases, indicating a phase slip. Also,

the states constituting the γs are found as constituents of the β. For the DPID domain

transducer τ , each γ consists of just two states, and all four of these states (two for each

γ) are found in the β. In the local causal state field S, each γ is described by eight local

causal states. Not all of these show up as states of the β, but several do. Those γ states

that do show up in the β appear in the same spatiotemporal configurations they have in

the γs.

These observations tell us about the underlying ECA’s behavior and so can be gleaned

from the observable spacetime field itself. That said, the discovery that the β particle is

a “bound state” of two γs and that it contains an internal phase slip of the bordering

domain regions is not at all obvious from inspecting observable spacetime fields. That is,

γ+ Λ γ− → β. Such structural discovery, however, is greatly facilitated by the coherent

structure analysis. To emphasize, these insights concern the intrinsic organization em-

bedded in the spacetime fields generated by the ECA. No structural assumptions, beyond

the very basic definitions of local causal states, are required.

Let’s recapitulate the correspondence between the independent DPID and local causal

state descriptions of the ECA 54 domain and structures. From the DPID perspective,

the ECA 54 domain Λ54 consists of two homogeneous spatial phases that are mapped

into each other by Φ54. In contrast, Λ54 is described by a set of local causal states with

a spacetime translation symmetry tiling. The two descriptions agree completely, giving

a spatial period 4, temporal period 4, and recurrence time of 2. On the one hand, for

ECA 54’s structures DPID directly uses domain information to construct a transducer

filter T = τ(x) that identifies structures as groupings of particular domain deviations.

On the other, the local causal states are assigned uniformly to spacetime field sites via

156

causal filtering S = ε(x). Domains and sites participating in a domain are found by

identifying spatiotemporal symmetries in the local causal states. Coherent structures are

then localized deviations from these symmetries. Though the agreement is not exact as

with the domain, DPID and the local causal states still agree to a large extent on their

descriptions of ECA 54’s four particles and their interactions.

6.2.3 ECA 110

As the most complex explicit symmetry ECA, rule 110 is worth another mention (see

Section 1.6 for further discussion on the significance of ECA rule 110). It is the only ECA

proven to support universal computation (on a specific subset of initial configurations) and

implements this using a subset of the ECA’s coherent structures [136]. This was shown by

mapping ECA 110’s particles and their interactions onto a cyclic tag system that emulates

a Post tag system which, in turn, emulates a universal Turing machine. A domain-

nondomain filter reveals several of ECA 110’s particles used in the implementation; see

Figure. 1.6. The ECA 110 domain was displayed in Figures. 4.1(a) and 4.1(c), as the

example for explicit symmetry domains. The domain has a single phase, rather than two

phases like ECA 54’s, and requires 14 states, as opposed to ECA 54’s combined 8. The

ECA 110’s highly complex behavior surely derives from the heightened complexity of its

domain. Exactly how, though, remains an open problem.

6.3 Hidden Symmetry CAs

Our attention now turns to ECAs with hidden symmetries and stochastic domains. These

are the so-called “chaotic” ECAs. Since the structure of an ECA’s domain heavily dic-

tates the overall behavior, stochastic domains give rise to stochastic structures and hence,

in combination, to an overall stochastic behavior. To be clear, since all ECA dynamics

are globally deterministic—the evolution of spatial configurations is deterministic—the

stochasticity here refers to local structures rather than global configurations. In contrast

to explicit symmetry ECAs whose structures are largely identifiable from the observable

spacetime field, the structures found in stochastic-domain ECAs are often not at all ap-

parent. In this case the ability of our methods to facilitate the discovery and description

157

of such hidden structures is all the more important and sometimes even necessary. While

the distinction between stochastic and explicit symmetry domains does not make a dif-

ference when determining DPID’s spacetime invariant sets, local causal state inference is

relatively more difficult with stochastic domains, usually requiring large lightcone depths

and an involved domain-structure analysis.

Here, we examine ECA 18 in detail, as its stochastic domain is relatively simple and

well understood. An empirical domain-structure analysis of ECA 18 was first given in

Ref. [217] and then more formally in Refs. [216, 241, 242, 243], which notes the domain’s

temporal invariance. It was not until the FME was introduced in Ref. [5] that this was

rigorously proven and shown to follow within the more general DPID framework. The

distinguishing feature of ECA 18’s domain observed in the early empirical analysis was

that the lookup table φ18 becomes additive when restricted to domain configurations.

Specifically, when restricted to domain, φ18 is equivalent to φ90, which is the sum mod

2 of the outer two bits of the local neighborhood; xrt+1 = φ90(xr−1
t xrtx

r+1
t) = xr−1

t +

xr+1
t (mod 2). This was detailed above in Chapter 5.

ECA 18’s structures illustrate additional complications of local causal state analysis

with stochastic symmetry systems. Nondomain states of ECA 54 and other explicit

symmetry ECAs always indicate a particle or particle interaction, after transients. This

is not the case with chaotic ECAs, and our formal definition is needed to identify ECA

18’s coherent structures.

6.3.1 ECA 18’s Domain

Iterates of a pure domain spacetime field xΛ18
for the ECA 18 domain Λ18 is shown

in Figure 6.5(a). White and black cells represent site values 0 and 1, respectively. A

symmetry is not apparent (or indeed present) in the observable spacetime field. One

noticeable pattern, though, is that 1s (black cells) always appear in isolation, surrounded

by 0s on all four sides. This still does not reveal symmetry, since neither time nor space

shifts match the original field. When scanning along one dimension, making either timelike

or spacelike moves (vertically or horizontally), one sees that every other site is always

a 0 and the sites in between are wildcards—they can be either 0 or 1. Making this

158

19

(a) Pure domain spacetime field x�.

(b) Local causal state field S� = ‘(x�).

A B

0
1

0
(c) Finite-state machine M(�18) of DPID

domain language �18.

FIG. 8. ECA 18 domain: (a) Iterates of a sample pure do-
main spacetime field x�, white and black are values 0 and 1,
respectively. (b) The same domain field with the local causal
state field S� = ‘(x�) overlaid. Lightcone horizons h≠ = 8
and h+ = 3 were used. (c) The finite-state machine M(�18)
of the DPID invariant set language of the ECA 18 domain
�18. (Reprinted with permission from Ref [50].)

This is a rotation, though, in spacetime. While unintu-
itive at first, the above discussion shows this spacetime
rotational symmetry is not just a coincidence. The 0-
wildcard semantics applies for both spacelike and timelike
scans through the field.

The DPID invariant-set language for this domain is
given in Figure 8(c). Not surprisingly, this is the 0-
wildcard language. It is easy to see that „18 creates
a tiling of 0-wildcard local configurations. Also, note

(a) Raw spacetime field

(b) DPID transducer domain-nondomain filter

(c) Local causal-state domain-nondomain filter

FIG. 9. ECA 18 structures: (a) Sample spacetime field evolved
under ECA 18 from a random initial configuration. (b) Space-
time field after filtering with domain regions in white and
coherent structures in blue, using the DPID domain trans-
ducer. (c) Spacetime field filtered with domain regions in
white and structures in blue, using local causal states. The
occasional gap in the structures is an artifact of using finite-
depth lightcones during reconstruction of local causal states.
Lightcone horizons h≠ = 8 and h+ = 3 were used.

the transition branching (the wildcard) leaving state A
indicates a semigroup algebra. This identifies �18 as a
stochastic symmetry domain. We again see a clear cor-
respondence between the local causal state identification
of the domain and that of DPID. Both give spatial pe-
riod s = 2, temporal period p = 2, and recurrence time
‚p = 1, as there is a single local causal state tiling and a
single DPID spatial language, both corresponding to the
0-wildcard pattern.

Figure 6.5. ECA 18 domain: (a) Iterates of a sample pure domain spacetime field xΛ,
white and black are values 0 and 1, respectively. (b) The same domain field with the
local causal state field SΛ = ε(xΛ) overlaid. Lightcone horizons h− = 8 and h+ = 3
were used. (c) The finite-state machine M(Λ18) of the DPID invariant set language of
the ECA 18 domain Λ18. (Reprinted with permission from Ref [5].)

159

identification finally reveals the (stochastic) symmetry in the ECA 18 domain [5].

In contrast to this ad hoc description, the 0-wildcard pattern is clearly and immedi-

ately identified in the local causal state field SΛ = ε(xΛ), shown in Figure 6.5(b). State

A occurs on the fixed-0 sites and state B on the wildcard sites. And, these states occur

in a checkerboard symmetry that tiles the spacetime field. An interesting observation of

this symmetry group is that it has rotational symmetry, in addition to the time and space

translation symmetries. This is a rotation, though, in spacetime. While unintuitive at

first, the above discussion shows this spacetime rotational symmetry is not just a coin-

cidence. The 0-wildcard semantics applies for both spacelike and timelike scans through

the field.

The DPID invariant-set language for this domain is given in Figure 6.5(c). Not sur-

prisingly, this is the 0-wildcard language. It is easy to see that φ18 creates a tiling of

0-wildcard local configurations. Also, note the transition branching (the wildcard) leav-

ing state A indicates a lack of translation symmetry. This identifies Λ18 as a stochastic

symmetry domain. We again see a clear correspondence between the local causal state

identification of the domain and that of DPID. Both give spatial period s = 2, temporal

period p = 2, and recurrence time p̂ = 1, as there is a single local causal state tiling and

a single DPID spatial language, both corresponding to the 0-wildcard pattern.

6.3.2 ECA 18’s Structures

ECA 18’s two-state domain Λ18 supports a single type of coherent structure—the α par-

ticle that appears as a phase-slip in the spatial period-2 domain and consists of local

configurations 102k1, k = 0, 1, 2, The domain’s stochastic nature drives the αs in an

unbiased left-right random-walk. When two collide they pairwise annihilate; resolving

each α’s spatial phase shift. (To clarify, the α of ECA 18 has no relation to the α of ECA

54.)

Figure 6.6 shows these structures as they evolve from a random initial configuration

under Φ18. The observable spacetime field is given in Figure 6.6(a) with the DPID trans-

ducer domain-nondomain filter (bidirectional scan interpolation) in Figure 6.6(b) and the

local causal state domain-nondomain filter in Figure 6.6(c). With the aid of these domain

160

19

(a) Pure domain spacetime field x�.

(b) Local causal state field S� = ‘(x�).

A B

0
1

0
(c) Finite-state machine M(�18) of DPID

domain language �18.

FIG. 8. ECA 18 domain: (a) Iterates of a sample pure do-
main spacetime field x�, white and black are values 0 and 1,
respectively. (b) The same domain field with the local causal
state field S� = ‘(x�) overlaid. Lightcone horizons h≠ = 8
and h+ = 3 were used. (c) The finite-state machine M(�18)
of the DPID invariant set language of the ECA 18 domain
�18. (Reprinted with permission from Ref [50].)

This is a rotation, though, in spacetime. While unintu-
itive at first, the above discussion shows this spacetime
rotational symmetry is not just a coincidence. The 0-
wildcard semantics applies for both spacelike and timelike
scans through the field.

The DPID invariant-set language for this domain is
given in Figure 8(c). Not surprisingly, this is the 0-
wildcard language. It is easy to see that „18 creates
a tiling of 0-wildcard local configurations. Also, note

(a) Raw spacetime field

(b) DPID transducer domain-nondomain filter

(c) Local causal-state domain-nondomain filter

FIG. 9. ECA 18 structures: (a) Sample spacetime field evolved
under ECA 18 from a random initial configuration. (b) Space-
time field after filtering with domain regions in white and
coherent structures in blue, using the DPID domain trans-
ducer. (c) Spacetime field filtered with domain regions in
white and structures in blue, using local causal states. The
occasional gap in the structures is an artifact of using finite-
depth lightcones during reconstruction of local causal states.
Lightcone horizons h≠ = 8 and h+ = 3 were used.

the transition branching (the wildcard) leaving state A
indicates a semigroup algebra. This identifies �18 as a
stochastic symmetry domain. We again see a clear cor-
respondence between the local causal state identification
of the domain and that of DPID. Both give spatial pe-
riod s = 2, temporal period p = 2, and recurrence time
‚p = 1, as there is a single local causal state tiling and a
single DPID spatial language, both corresponding to the
0-wildcard pattern.

Figure 6.6. ECA 18 structures: (a) Sample spacetime field evolved under ECA 18 from
a random initial configuration. (b) Spacetime field after filtering with domain regions
in white and coherent structures in blue, using the DPID domain transducer. (c)
Spacetime field filtered with domain regions in white and structures in blue, using local
causal states. The occasional gap in the structures is an artifact of using finite-depth
lightcones during reconstruction of local causal states. Lightcone horizons h− = 8 and
h+ = 3 were used.

161

filters, visual inspection shows that ECA 18’s structures are, in fact, pairwise annihilating

random-walking particles. This was explored in detail by Ref. [194].

As noted above, the domain-structure local causal state analysis for stochastic domain

systems is generally more subtle. In the DPID analysis, ECA 18 consists solely of the single

domain and random-walking α particle structures. Thus, using the DPID transducer to

filter out sites participating in domains leaves only α particles, as done in Figure 6.6(b).

The situation is more complicated in the local causal state analysis. As described in more

detail shortly, filtering out domain states leaves behind more than the structures. Why

exactly this happens is the subject of future work. The field shown in Figure 6.6(c) was

produced from a coherent structure filter, rather than from a domain-nondomain filter.

There, local causal states that fit the coherent structure criteria are colored blue and all

others are colored white.

To illustrate the more involved local causal state analysis let’s take a closer look at the

α particle. This also highlights a major difference between DPID and local causal state

analyses. As the DPID transducer is strictly a spatial description it can identify structures

that grow in a single time step to arbitrary size. One artifact of this is that the spatial

growth can exceed the speed of local information propagation and thus make structures

appear acausal. The local causal states, however, are constructed from lightcones and so

naturally take into account this notion of causality. They cannot describe such acausal

structures. Accounting for this, though, there is a strong agreement between the two

descriptions.

From the perspective of the DPID domain transducer τ ECA 18’s α particles are

simple to understand. From the domain language in Figure 6.5(c), the domain-forbidden

words are those in the regular expression 1(00)∗1. That is, pairs of ones with an even

number of 0s (including no 0s) in between. This is the description of α particles at the

spatial configuration level. The DPID bidirectional scan interpolation domain transducer

perfectly captures α described this way; see Figure 6.7(a). To aid in visual identification

we employed a different color scheme for Figure 6.7: the underlying ECA field values are

given by green (0) and gray (1) squares. For the DPID transducer filtered field T = τ(x)

162

21

(a) DPID domain transducer filter T = ·(x). (b) Coherent structure filter over S .

(c) Structure described by S compared to structure described by T .

FIG. 10. Comparative analysis of ECA 18’s – particle: In all three spacetime diagrams, the underlying ECA field values of 0 and
1 are represented as green and gray squares, respectively. (a) DPID domain transducer filtered field T = ·(x) with bidirectional
scan interpolation. Domain sites are identified with white 0s and particle sites with black 1s. (b) A coherent structure causal
filter; local causal state field S = ‘(x) with nondomain local causal states states satisfying the coherent structure definition are
colored black with all other states colored white. Lightcone horizons h≠ = 8 and h+ = 3 were used. (c) Comparison of the
structures from the two methods: The DPID transducer filter of (a) with sites that have local causal states identified as the
coherent structure in (b) given a red square label.

of the notion of semantics, which derives from the mea-
surement semantics introduced in Ref. [87]. Performing
causal filtering S = ‘(x) may at first seem counterpro-
ductive, especially for binary fields like those generated

by ECAs, as the state space of the system is generally
larger in S than in x. As the local state space of ECAs
is binary, complexity is manifest in how the sites interact
and arrange themselves. Not all sites in the field play the

Figure 6.7. Comparative analysis of ECA 18’s α particle: In all three spacetime
diagrams, the underlying ECA field values of 0 and 1 are represented as green and
gray squares, respectively. (a) DPID domain transducer filtered field T = τ(x) with
bidirectional scan interpolation. Domain sites are identified with white 0s and particle
sites with black 1s. (b) A coherent structure causal filter; local causal state field
S = ε(x) with nondomain local causal states states satisfying the coherent structure
definition are colored black with all other states colored white. Lightcone horizons
h− = 8 and h+ = 3 were used. (c) Comparison of the structures from the two methods:
The DPID transducer filter of (a) with sites that have local causal states identified as
the coherent structure in (b) given a red square label.

163

in Figure 6.7(a), overlaid white 0s identify domain sites and black 1s identify particle

sites. Every local configuration identified as an α is of the form 1(00)∗1. As noted above,

however, αs described in this way can grow in size arbitrarily in a single time step as the

number of pairs of zeros in 1(00)∗1 is unbounded.

Local causal state inference—whether topological (Section 4.2) or probabilistic [110]—

is unsupervised in the sense that it uses only raw spacetime field data and no other external

information such as the CA rule used to create that spacetime data. Once states are

inferred, further steps are needed for coherent structure analysis.

The first step is to identify domain states in the local causal state field S = ε(x).

They tile spacetime regions, i.e., domain regions. For explicit-symmetry domain ECAs

this step is sufficient for creating a domain-structure filter. Tiled domain states can be

easily identified and all other states outline ECA structures or their interactions. The

situation is more subtle, however, for ECAs with stochastic domains.

For our purposes here, it suffices to strictly apply the definition of coherent structures

after this first “out of the box” unsupervised causal filter. The initial unsupervised filtered

spacetime diagram identifies a core set of states that are spatially localized and temporally

persistent. A coherent structure filter then isolates these states by coloring them black

and all other states white in the local causal state field S . The output of this filter is

shown in Figure 6.7(b). The growth rate of the structures identified in this way—by the

local causal states—is limited by the speed of information propagation, which for ECAs

is unity. Applying this growth-rate constraint on the DPID structure transducer, one

again finds strong agreement. A comparison is shown in Figure 6.7(c). It shows the

output of the DPID filter applied to the spacetime field of Figure 6.7(a) and, in red, sites

corresponding to the structure according to the local causal states in Figure 6.7(b).

6.4 Remarks

Having laid out our coherent structure theory and illustrating it in some detail, it is worth

looking back, as there are subtleties worth highlighting. The first is our use of the notion

of semantics, which derives from the measurement semantics introduced in Ref. [197].

164

Performing causal filtering S = ε(x) may at first seem counterproductive, especially for

binary fields like those generated by ECAs, as the state space of the system is generally

larger in S than in x. As the local state space of ECAs is binary, complexity is manifest

in how the sites interact and arrange themselves. Not all sites in the field play the same

role. For instance, in ECA 110’s domain, Figure 4.1(a), the 0s in the field group together

to form a triangular shape. This triangle has a bottom-most 0 and a rightmost 0, but

they are both still 0s. To capture the semantics of “bottom-most” and “rightmost” 0 of

that triangle shape, a larger local state space is needed. And, indeed, this is exactly the

manner in which the local causal states capture the semantics of the underlying field. We

saw a similar example with the fixed-0 and wildcard semantics of Λ18.

The values in the fields S = ε(x) and T = τ(x) are not measures of some quantity, but

rather semantic labels. For the local causal states, they are labels of equivalence classes

of local dynamical behaviors. For the DPID domain transducer, they label sites as being

consistent with the domain language Λ or else as the particular manner in which they

deviate from that language.

This, however, is only the first level of semantics used in our coherent structure theory.

While the filtered fields S = ε(x) and T = τ(x) capture semantics of the original field

x, to identify coherent structures a new level of semantics on top of these filtered fields

is needed. These are semantics that identify sites as domain or coherent structure using

S and T . For the DPID domain transducer T , the domain semantics are by construction

built into T . Our coherent structure definition adds the necessary semantics to identify

collections of nondomain sites as participating in a coherent structure.

For the local causal states, one may think of the field S = ε(x) as being the semigroup

level of semantics. That is, they represent pattern and structure as generalized symmetries

of the underlying field x. This is the same manner in which the ε-machine captures pattern

and structure of a stochastic process with semigroup algebra; see Section 3.1.6. The next

level of semantics, used to identify domains, requires finding explicit symmetries in S .

Thus, domain semantics are the group-theoretic level of semantics, since domains are

identified by spacetime translation symmetry groups over S . With states participating

165

in those symmetry groups identified, our coherent structure definition again provides the

necessary semantics to identify structures in x through S . These remarks hopefully also

clarify the interplay between group and semigroup algebras in our development.

Lastly, we highlight the distinction between a CA’s local update rule φ and its global

update Φ—the CA’s equations of motion. For many CAs, as with ECAs, Φ is constructed

from simultaneous synchronous application of φ across the lattice. In a sense, then, there

is a simple relation between φ and Φ. However, as demonstrated by many ECAs, most

notably the Turing complete ECA 110, the behaviors generated by Φ can be extraordinar-

ily complicated, even though φ is extraordinarily simple. This is why complex behaviors

and structures generated by ECAs are said to be emergent.

This point is worth emphasizing here due to the relationship between past lightcones

and φi for CAs. Since the local causal states are equivalence classes of past lightcones, they

are equivalence classes of the elements of φi for CAs. Thus, the system’s local dynamic

is directly embedded in the local causal states. As we saw, the local causal states are

capable of capturing emergent behaviors and structures of CAs and so, in a concrete way,

they provide a bridge between the simple local dynamic φ and the emergent complexity

generated by Φ. Moreover, the correspondence between the local causal state and DPID

domain-structure analysis shows the particular equivalence relation over the elements of

φi used by the local causal states captures key dynamical features of Φ, used explicitly by

DPID.

The relationship, though, between φi and Φ captured by the local causal states is not

entirely transparent, as most clearly evidenced by the need for behavior-driven recon-

struction of the local causal states. Given a CA lookup table φ, one may pick a finite

depth i for the past lightcones and easily construct φi. It is not at all clear, however,

how to use Φ to generate the equivalence classes over the past lightcones of φi that have

the same conditional distributions over future lightcones. The only known way to do this

is by brute-force simulation and reconstruction, letting Φ generate past lightcone-future

lightcone pairs directly.

166

6.5 Conclusion

Two distinct, but closely related, approaches to spatiotemporal computational mechan-

ics were reviewed: DPID and local causal states. From them, we developed a theory of

pattern and structure in fully discrete dynamical field theories. Both approaches iden-

tify patterns as statistically-regular regions of a system’s spatiotemporal behavior—its

domains—generalizing patterns from exact symmetries. We then defined coherent struc-

tures as localized deviations from domains; i.e., coherent structures are locally-broken

domain (generalized) symmetries.

The DPID approach defines domains as sets of homogeneous spatial configurations

that are temporally invariant under the system dynamic. In 1+1 dimension systems,

dynamically important configuration sets can be specified as particular types of regu-

lar language, i.e. sofic languages. Once these domain patterns are identified, a domain

transducer τ can be constructed that filters spatial configurations Tt = τ(xt), identifying

sites that participate in domain regions or that are the unique deviations from domains.

Finding a system’s domains and then constructing domain transducers requires much

computational overhead, but full automation has been demonstrated. Once acquired, the

domain transducers provide a powerful tool for analyzing emergent structures in discrete,

deterministic 1+1 dimension systems. The theory of domains as dynamically invariant ho-

mogeneous spatial configurations is easily generalizable beyond this setting, but practical

calculation of configuration invariant sets in more generalized settings presents enormous

challenges.

The local causal state approach, in contrast, generalizes well. Both in theory and

in practice, under a caveat of computational resource scaling (see Section 7.2). It is a

more direct generalization of computational mechanics from its original temporal setting.

The causal equivalence relation over pasts based on predictions of the future is the core

feature of computational mechanics from which the generalization follows. Local causal

states are built from a local causal equivalence relation over past lightcones based on

predictions of future lightcones. Local causal states provide the same powerful tools of

domain transducers, and more. Being equivalence classes of past lightcones, which in the

167

deterministic setting are the system’s underlying local dynamic, local causal states offer

a bridge between emergent structures and the underlying dynamic that generates them.

In both, patterns and structures are discovered rather than simply recognized. No

external bias or template is imposed, and structures at all scales may be uniformly cap-

tured and represented. These representations greatly facilitate insight into the behavior

of a system, insights that are intrinsic to a system and are not artifacts of an analyst’s

preferred descriptional framework. ECA 54’s γ+ + Λ + γ− → β interaction exemplifies

this.

DPID domain transducers utilize full knowledge of a system’s underlying dynamic

and, thus, perfectly capture domains and structures. Local causal states are built purely

from spacetime fields and not the equations of motion used to produce those fields. Yet,

the domains and structures they capture are remarkably close to the dynamical systems

benchmark set by DPID. This is highly encouraging as the local causal states can be

uniformly applied to a much wider array of systems than the DPID domain transducers,

while at the same time providing a more powerful analysis of coherent structures.

Looking beyond cellular automata, recent years witnessed renewed interest in coherent

structures in fluid systems [117, 65, 62]. There has been particular emphasis on Lagrangian

methods, which focus on material deformations generated by the flow. The local causal

states, in contrast, are an Eulerian approach, as they are built from lightcones taken from

spacetime fields and do not require material transport in the system. A frequent objection

raised against Eulerian approaches to coherent structures is that such approaches are not

“objective”—they are not independent of an observer’s frame of reference. This applies

for instantaneous Eulerian approaches, however. And so, does not apply to local causal

states. In fact, lightcones and the local causal equivalence relation over them are preserved

under Euclidean isometries. This can be seen from Equations. (3.9) and (3.10) that define

lightcones in terms of distances only and so they are independent of coordinate reference

frame. Local causal states are objective in this sense.

Methods in the Lagrangian coherent structure literature fall into two main categories:

diagnostic scalar fields and analytic approaches utilizing one or another mathematical

168

coherence principle. Previous approaches to coherent structures using local causal states

relied on the local statistical complexity [112, 231]. This is a diagnostic scalar field

and comes with all the associated drawbacks of such approaches [113]. The coherent

structure theory presented here, in contrast, is the first principled mathematical approach

to coherent structures using local causal states.

With science producing large-scale, high-dimensional data sets at an ever increasing

rate, data-driven analysis techniques like the local causal states become essential. Stan-

dard machine learning techniques, most notably deep learning methods, convolutional

neural nets, and the like are experiencing increasing use in the sciences [244, 245]. Unlike

commercial applications in which deep learning has led to surprising successes, scientific

data is highly complex and typically unlabeled. Moreover, interpretability and detect-

ing new mechanisms are key to scientific discovery. With these challenges in mind, we

offer local causal states as a unique and valuable tool for discovering and understanding

emergent structure and pattern in spatiotemporal systems.

169

Chapter 7

Coherent Structures in Complex

Fluid Flows

Over the last decade, the Data Deluge [246] brought dramatic progress across all of

science [45, 46, 247, 47, 248]. For data-driven science to flourish by extracting meaningful

scientific insights [48, 49], new methods are required that (i) discover and mathematically

describe complex emergent phenomena, (ii) uncover the underlying physical and causal

mechanisms, and (iii) accurately predict the occurrence and evolution of these phenomena

over time. Increasingly, scientists lean on machine learning (ML) [249, 250, 251, 252, 253]

and, more recently, deep learning (DL) [254, 255, 256, 257, 258] to fill this role.

While these techniques show great promise, serious challenges arise when they are

applied to scientific problems. To better elucidate the challenges of scientific applica-

tion of DL methods, we will focus on a particular problem of utmost and imminent

importance that necessitates data-driven discovery - detection and identification of ex-

treme weather events in climate data [259, 129, 130]. Driven by an ever-warming climate,

extreme weather events are changing in frequency and intensity at an unprecedented

pace [123, 124]. Scientists are simulating a multitude of climate change scenarios using

high-resolution, high-fidelity global climate models, producing 100s of TBs of data per

simulation. Currently, climate change is assessed in these simulations using summary

statistics (e.g. mean global sea surface temperature) which are inadequate for analyzing

the full impact of climate change. Due to the sheer size and complexity of these simulated

170

data sets, it is essential to develop robust and automated methods that can provide the

deeper insights we seek.

Recently, supervised DL techniques have been applied to address this problem [125,

127, 128] including one of the 2018 Gordon Bell award winners [126]. However, there is an

immediate and daunting challenge for these supervised approaches: ground-truth labels

do not exist for pixel-level identification of extreme weather events [130]. The DL models

used in the above studies are trained using the automated heuristics of TECA [129] for

proximate labels. While the results in [125] qualitatively show that DL can improve upon

TECA, the results in [128] reach accuracy rates over 97%, essentially reproducing the

output of TECA. The supervised learning paradigm of optimizing objective metrics (e.g.

training and generalization error) breaks down here [49] since TECA is not ground truth

and we do not know how to train a DL model to disagree with TECA in just the right

way to get closer to “ground truth”.

With the absence of ground-truth labels, many scientific problems are fundamentally

unsupervised problems. Rather than attempt to adapt unsupervised DL approaches to a

problem like extreme weather detection, we instead take a behavior-driven approach and

start from physical principles to develop a novel physics-based representation learning

method for discovering structure in spatiotemporal systems directly from unlabeled data.

Having introduced the local causal states and their mathematical foundations in Chap-

ters 2 and 3, and demonstrated their ability to capture meaningful pattern and structure

in cellular automata in Chapters 4, 5, and 6, we are now ready to investigate the potential

utility of the local causal states for data-driven scientific discovery on real-world problems.

First, in Section 7.1 we discuss the approximations required to reconstruct the local causal

states from real-valued spacetime fields. The main barriers to analyzing natural systems

like fluid flows, however, arises in the required computational resources. In Section 7.2

we detail our distributed, high-performance computing (HPC) implementation of local

causal state reconstruction that removes this barrier [122].

For the problem of unsupervised segmentation of extreme weather events in climate

data, we view these events as particular cases of more general hydrodynamic coherent

171

structures. Atmospheric dynamics, and hydrodynamic flows more generally, are highly

structured and largely organized around a low-dimensional skeleton of collective features,

referred to as coherent structures [62]. In Section 7.3 we use the Lagrangian approach

to coherent structures in fluid flows [117] as a benchmark for assessing the potential of

using the local causal state coherent structure analysis (Chapter 6) for discovering these

structures. Finally, in Section 7.4 we present preliminary results on the use of local causal

states for unsupervised segmentation analysis of extreme weather events in high-resolution

general circulation climate model datasets.

172

7.1 Reconstruction and Approximations

As discussed in Section 2.2, it is not known how to find “good” measurement devices

(i.e. generating partitions) for natural systems like fluid flows. Thus, rather than re-

constructing a machine presentation from a discretized measurement data stream, like in

the dynamical structure modeling paradigm described in Section 2.1.2, we must perform

reconstruction directly from observed spacetime fields. This was first done by Jänicke

et. al. in Ref. [231]. In order to estimate empirical morph distributions Pr(L+|`−) some

kind of discretization is required. Rather than discretize the observable values, clustering

over lightcones was done to discretize lightcone space. Once this is done, the reconstruc-

tion algorithm follows in the same manner as for discrete-valued observable fields, as first

outlined in Ref. [110].

The reconstruction algorithm for real-valued fields was further elaborated upon by

the LICORS work [233, 234, 260]. In this, they proved some statistical properties of

the algorithm, including convergence results, and gave a more general description of the

algorithm. The most significant contribution, from the perspective of the present work,

is the continuous histories assumption that provides a theoretical justification for the

lightcone clustering step. We will discuss this in more detail below.

The reconstruction algorithm used in the rest of this Chapter largely follows the basic

LICORS algorithm given in Ref. [233]. That said, we provide a more thorough mathemat-

ical formalism behind the algorithm and its approximations. The main modification we

make to the actual algorithm is the introduction of a lightcone distance for use in lightcone

clustering, as opposed to the Euclidean distance used by the predecessor algorithms.

7.1.1 Setup

Assume there is a data-generating process P . Since this thesis concerns spatiotemporal

systems, we present our reconstruction formalism in that setting, but everything given

here also applies for reconstruction of causal states from real-valued time series. As usual,

denote past lightcones as `− with random variable L−. The space of all possible past

lightcones is L−. Similar notation for future lightcones, their random variables, and the

space of future lightcones is `+, L+, and L+, respectively. We will find a functional form

173

of the causal equivalence relation useful in what follows, given as:

`−i ∼ε `−j ⇐⇒ Pr(L+|L− = `−i) = Pr(L+|L− = `−j) ⇐⇒ ε(`−i) = ε(`−j) . (7.1)

Optimality and uniqueness of causal states are only guaranteed in the infinite-length

limit of pasts and futures. In this case, both L− and L+ are uncountable and the morphs

Pr(L+|L− = `−) are probability densities, which we will now denote as pr(L+|L− = `−).

Moreover, they are probability densities conditioned on measure-zero events L− = `−. If

P satisfies conditional stationarity (which is satisfied for the systems considered in this

work, with fixed local dynamics that are applied uniformly through space and time) then

the morph densities are well-defined and thus so are the causal states. But how can we

access and work with these objects empirically when we only ever have access to finite

samplings of P? There is an uncountable number of pasts `− and for each there is a

continuous probability density pr(L+|L− = `−) over an uncountable number of futures `+.

Each `− is measure zero, so one can never hope to sample an individual morph density

more than once.

7.1.2 Reconstruction Formalism

Clearly approximations are needed to replace the measure-zero objects `− with those of

finite measure. As is usual, we need elements of a σ-algebra ΣL− on L−. In particular,

we would like to partition L− using finite-measure events p− ∈ ΣL− so that the following

densities can actually be sampled from finite data;

pr(L+|P− = p−) =

∫
`−∈ p−

pr(L+|L− = `−)dµ , (7.2)

where
⋃
i p
−
i = L−, p−i ∩ p−j = ∅, and µ(p−) 6= 0 for all p−.

Let γ : `− 7→ p− be the mapping from past lightcones to these finite-measure partition

elements, which we will refer to simply as pasts. The γ mapping from past lightcones to

pasts (sets of past lightcones) generates the following equivalence relation,

`−i ∼γ `−j ⇐⇒ `−i ∈ p−a and `−j ∈ p−a ⇐⇒ γ(`−i) = γ(`−j) . (7.3)

For a given process P , how do we construct this partitioning into finite-measure ele-

ments p− of a σ-algebra ΣL−? For discrete-valued processes constructing γ is quite natural

174

given that a finite-horizon cutoff h− must be used for reconstruction from finite data: ΣL−

is the cylindrical σ-algebra and the p− are the length-l cylinder sets of L− (past lightcones

that share the same first l symbols).

If P is real-valued, then the space of finite-length pasts L−l is also uncountable (similar

for futures) and so finite-length pasts are still measure-zero objects. The insight of the

LICORS approach is that if two past lightcones are close, according to some metric, then

their morphs must necessarily be close. This is know as the assumption of continuous

histories [233, Assumption 3.1]. Thus for real-valued systems we can partition L−l into

elements of the Borel algebra using distance-based clustering and the resulting clusters

give the finite set of pasts {p−i }. Two past lightcones are γ-equivalent in this case if they

are assigned to the same distance-based cluster, and the γ-function maps past lightcones

to their cluster assignment.

All prior work has used Euclidean distance for lightcone clustering. This gives uniform

weight to all points within the finite time horizon of the lightcone, and no weight to all

points outside. To smooth this step discontinuity, we introduce a lightcone distance with

an exponential temporal decay. Consider two finite lightcones given as flattened vectors a

and b, each of length l;

Dlightcone(a,b) ≡
√

(a1 − b1)2 + . . .+ e−τd(l)(al − bl)2 , (7.4)

where τ is the temporal decay rate and d(i) is the temporal depth of the lightcone vector

at index i. Intuitively, when comparing lightcones we care more about similarities close

to the present than similarities in the distant past. Euclidean distance over lightcones

gives equal weight to these. As a side note, this decayed lightcone distance is similar to

the echo state property that allows for effective reservoir computing and for which the

reservoir will asymptotically wash out any information from initial conditions [261].

Using distance-based clustering for γ-equivalence, the empirical densities pr(L+|p−) =∫
p− pr(L+|L− = `−)dµ can then be sampled. Alternatively, as we will do in this Chap-

ter, the space of future lightcones L+
l can similarly be partitioned into a finite set of

clusters (called futures) {p+
i } using distance-based clustering. Causal equivalence is then

approximated using the discrete distributions Pr(P+|p−).

175

In either case, γ-equivalence is seen as a pre-partitioning for causal equivalence. If two

past lightcones are close, their future morphs must necessarily be close, and thus they

are approximately causally equivalent under the ε-map. We thus state a more actionable

version of the continuous histories assumption, which is implicitly used, but not formally

stated, in Ref. [233]: if two past lightcones are γ-equivalent, they are assumed to be

ε-equivalent,

γ(`−i) = γ(`−j) =⇒ ε(`−i) = ε(`−j) . (7.5)

This is slightly different from the continuous histories assumption, which is a pair-wise

statement. Assumption 7.5 above states that a group of past lightcones are assumed to be

causally equivalent if they are assigned to the same distance-based cluster. While prac-

tically implementable, it is also dependent on the chosen clustering algorithm, including

clustering parameters.

Note that I have used the formalism of γ-equivalence for both the discrete-valued

case and the real-valued case, but the continuous histories assumption does not hold for

discrete processes. It is used for finite-length, real-valued pasts and the intuition behind it

relies on the presumed continuity and smoothness of the dynamical system that produces

P .

Using the empirical morphs, pr(L+|p−) or Pr(P+|p−), which can be sampled from finite

data, we can define an empirical causal equivalence over the finite-measure p− ∈ ΣL− . If

two empirical morphs are close, according to some empirical test, then their pasts are

ψ-equivalent:

p−i ∼ψ p−j ⇐⇒ Pr(P+|p−i) ≈ Pr(P+|p−j) ⇐⇒ ψ(p−i) = ψ(p−j) . (7.6)

We use the empirical distributions Pr(P+|p−) rather than the empirical densities pr(L+|p−)

because we have defined future lightcones to not include the present site, and so our future

lightcones vectors (with finite horizon h+ > 0) are never dimension 1. This is what is

done in the LICORS work, so that they can perform standard density estimates and tests

over univariate future lightcones. We thus use the further approximation of discretizing

176

future lightcones to avoid difficulties with multivariate densities (e.g. multivariate kernel

density estimation [262]).

We can now formally state the causal equivalence reconstruction approximation as:

ε(`−) ≈ ψ
(
γ(`−)

)
. (7.7)

7.1.3 Reconstruction Algorithm

We now use the above formalism to describe our reconstruction algorithm for real-valued

systems. The objective of the algorithm is to reconstruct the empirical approximation

to the ε-function, Approximation (7.7). The core reconstruction parameters are the

past lightcone horizon, future lightcone horizon, and speed of information propagation:

(h−, h+, c). These define the lightcone template, which is shown in Figure 7.1 for systems

with two spatial dimensions, as will be considered in this chapter. In what follows, all

lightcones are considered as finite vectors defined by this template.

Figure 7.1. 2+1 D lightcone template with past horizon h− = 2, future horizon h+ = 2,
and speed of information propagation c = 1. Credit: Nalini Kumar

7.1.3.1 Lightcone extraction

The main task in local causal state reconstruction is estimation of the empirical morphs,

Pr(P+|p−). Ultimately this comes down to counting past lightcone - future lightcone

pairs, (`−, `+). Thus the first step, shown in Algorithm 1, is to extract all such lightcone

177

pairs from the given spacetime field(s) x and store them in the paired lists ([plcs], [flcs]).

Lightcones are stored as flattened vectors with dimension dim(`±) =
∑h±

d=0(2dc+1)2. Note

that there will be points along the boundary of x where full lightcones are not present.

The collection of such points is called the margin of x.

Algorithm 1: Lightcone extraction

Data: spacetime field x

Result: lists [plcs] and [flcs]

for spacetime coordinates (t, y, x) ∈ x not in the margin do

read values of L−(t, y, x) in canonical order;

write values to flattened array `−;

add `− to [plcs];

read values of L+(t, y, x) in canonical order;

write values to flattened array `+;

add `+ to [flcs];

end

7.1.3.2 Cluster lightcones

For real-valued systems, like the fluid flows considered here, unique (`−, `+) pairs will never

repeat and so we implement γ-equivalence using distance-based clustering over lightcones.

Because we will use the empirical distribution Pr(P+|P− = p−), and not empirical densi-

ties pr(L+|P− = p−), we will independently cluster over both past lightcones and future

lightcones, as shown in Algorithm 2; γ− : `− 7→ p− is the mapping from past lightcones to

assignments of clusters over past lightcones, and similarly γ+ : `+ 7→ p+ is the mapping

from future lightcones to their cluster assignments.

7.1.3.3 Build morphs

After clustering [plcs] and [flcs] to produce [pasts] and [futures], respectively, we

can build the empirical morphs Pr(P+|P− = p−). They are found as rows of the joint

distribution matrix D, where Di,j = Pr(P−i ,P
+
j). To get D we simply count occurrences

of pairs (p−, p+) in ([pasts], [futures]). This is shown in Algorithm 3. Note that we

178

Algorithm 2: Lightcone clustering

Data: lists [plcs] and [flcs]

Result: list [pasts] of past lightcone cluster assignment labels and list [futures]

of future lightcone cluster assignment labels

begin

Input: [plcs];

perform distance-based clustering using Dlightcone(`
−
i , `

−
j);

write cluster assignment labels to [pasts] such that;

each p−i = [pasts]i = γ−(`−i): `−i = [plcs]i;

Output: [pasts];

end

begin

Input: [flcs];

perform distance-based clustering using Dlightcone(`
+
i , `

+
j);

write cluster assignment labels to [futures] such that;

each p+
i = [futures]i = γ+(`+

i); `+
i = [flcs]i;

Output: [futures];

end

use integer labels i ∈ {0, 1, . . . , N−} for the past lightcone cluster assignments (pasts)

p−i , where N− is the total number of past clusters |P−|. Similarly for futures p+
i with

N+ = |P+|.
7.1.3.4 Causal equivalence

With the empirical morphs Pr(P+|P− = p−) in hand we can reconstruct causal equiva-

lence of pasts, i.e. ψ-equivalence, using a two-sample test. We reconstruct ψ-equivalence

using hierarchical agglomerative clustering, as shown in Algorithm 4. Distribution simi-

larity Pr(P+|p−i) ≈ Pr(P+|ξa) is evaluated using a chi-squared test with p-value 0.05.

The resulting equivalence classes are the approximated local causal states, and the

approximation of ε(`−) is given as Approximation 7.7 using the reconstructed γ and ψ

179

Algorithm 3: Build morphs

Data: [pasts] and [futures]

Result: joint distribution matrix D

Initialize D as N− by N+ array of zeros;

for (p−, p+) in ([pasts], [futures]) do

increment Dp−,p+ by 1 ;

end

Algorithm 4: Causal equivalence

Data: joint distribution D

Result: approximated local causal states and ε-map

Initialize empty list [states] of local causal states;

for Pr(P+|p−i) = Di in D do

for ξa in [states] do

if Pr(P+|p−i) ≈ Pr(P+|ξa) then

add p−i to ξa; p
−
i ∈ ξa;

update ψ(p−i) = ξa;

break;

end

end

else

initialize new state as ξb = {p−i , };
add ξb to [states];

update ψ(p−i) = ξb

end

end

180

functions: ε(`−) ≈ ψ
(
γ(`−)

)
.

7.1.3.5 Causal filter

Using the approximated ε-map we can perform spacetime segmentation of x though causal

filtering. The γ-function has already been applied to produce [pasts] by clustering [plcs].

We then apply the learned ψ-function from Causal equivalence, Algorithm 4, to [pasts]

to produce [states]. Because all these lists are in spacetime order, we simply reshape

[states] to get the approximated local causal state field S ≈ ψ
(
γ(x)

)
. Causal filtering

is shown in Algorithm 5.

Algorithm 5: Causal filter

Data: spacetime field x

Result: local causal state field S = ε(x)

Initialize empty local causal state field S with same dimensions as x;

for spacetime coordinates (t, y, x) ∈ x do

read past lightcone: `− = L−(t, y, x);

get local causal state: ε(`−) ≈ ψ
(
γ(`−)

)
= ξa;

write local causal state label in S: S(t, y, x) = a;

end

7.1.4 Distributed Reconstruction Pipeline

As will be discussed further next in Section 7.2, a distributed implementation of local

causal state reconstruction is required for application to real-world systems. Here we

briefly describe how to distribute the reconstruction algorithm across multiple compute

processes. In Section 7.2 below, we give further detail on our actual implementation of

this algorithm in Python.

1. Data loading : Stripe the spacetime data so that the spatial fields for each time-step

in x are stored individually to allow for parallel I/O. Let workset be the time-steps

that each process will extract lightcones from. Because lightcones extend in time,

each process must load extra time-steps (halos), h− at the beginning of workset

and h+ at the end. Each process loads its workset + halos in parallel.

181

2. Lightcone extraction: The temporal haloing removes any need for communication

during lightcone extraction, Algorithm 1, which proceeds independently for each

process.

3. Communication barrier : Ensure all processes have their local [plcs] and [flcs] lists

before proceeding.

4. Cluster lightcones : A distributed version of Algorithm 2 is executed across all pro-

cesses. First cluster the past lightcones across all processes. Store the cluster as-

signments labels locally, in order. Then do the same for future lightcones.

5. Build local morphs : Each process counts (p−, p+) pairs in its local ([pasts], [futures])

to build Dlocal. Algorithm 3 is executed locally for each process.

6. Communication barrier : Wait for all processes to build Dlocal.

7. Build global morphs : Execute an all-reduce sum of all Dlocal to yield Dglobal across

all processes.

8. Causal equivalence: Since each process has Dglobal, they can independently recon-

struct the approximated local causal states and ε-map according to Algorithm 4

9. Causal filter : Each process independently applies the ε-map to their workset to

produce Slocal; Algorithm 5 is executed locally for each process.

10. Write output : Each process independently saves Slocal with time-order labels so that

S = ε(x) can be constructed from all Slocal.

182

Figure 7.2. Distributed reconstruction pipeline. Credit: Nalini Kumar

7.2 DisCo – HPC Implementation in Python

Before beginning we note that the work presented in this Chapter, and in this Section

in particular, was performed as part of Project DisCo [122]; the goal of which was to

create a high-performance computing implementation of the local causal state analysis for

application to extreme weather events in large climate simulation data sets. The collabo-

rators for this Project, who contributed greatly to the work described below, are: Nalini

Kumar (Intel), Vladislav Epifanov (Intel), Karthik Kashinath (LBNL), Oleksandr Pavlyk

(Intel), Frank Schlimbach (Intel), Mostofa Patwary (Baidu Research), Sergey Maidanov

(Intel), Victor Lee (Intel), Prabhat (LBNL), and James P. Crutchfield (UC Davis).

Theoretical developments in behavior-driven theories have far outpaced their imple-

mentation and application to real science problems due to significant computational de-

mands. Theorists typically use high-productivity languages like Python, which often incur

performance penalties, only for prototyping their method and demonstrating its use on

small idealized data sets. Since these prototypes aren’t typically optimized for production

183

level performance, their use in science applications with big datasets is limited. To solve

real science problems, domain scientists often have to rewrite applications, or portions of,

in programming languages like C, C++, and Fortran [263].

Making high-productivity languages performant and scalable on HPC systems requires

highly optimized platform-specialized libraries with easy-to-use APIs, seamlessly inte-

grated distributed-memory processing modes with popular Python libraries (like scikit-

learn), efficient use of Just In Time (JIT) compilers like Numba etc. In Project DisCo,

we use all these techniques to enable optimized Python code from prototype development

to production deployment on more than 1000 nodes of an HPC system. This brings us

closer to bridging the performance and productivity disconnect that typically exists in

HPC, and streamlining the process from theoretical development to deployment at scale

for science applications.

A challenge specific to DisCo is the need for distance-based clustering of lightcone data

structures (described above in Section. 7.1). Compared to traditional clustering datasets,

lightcones are very high-dimensional objects. Though lightcone dimensionality depends on

reconstruction parameters, even the baseline lower bound of O(100) dimensions is already

very high for typical implementations of clustering methods. To facilitate discovery, our

experiments used lightcones with dimension as high as 4495. Also, creation of lightcone

vectors increases the on-node data by O(lightcone dimension ∗ 2). In our largest run,

we process 89.5 TB of lightcone data, which is several orders of magnitude larger than

previously reported lightcone-based methods.

To enable novel data-driven discovery at the frontiers of domain science with the abil-

ity to process massive amounts of high-dimensional data, we created a highly parallel,

distributed-memory, performance optimized implementation of DisCo software includ-

ing two specialized clustering methods (K-Means [264] and DBSCAN [265]). In keeping

with our goal of maintaining scientists’ software development productivity, the libraries

use standard Python APIs (scikit-learn). These distributed implementations will be up-

streamed to benefit the growing community of Python developers.

While unsupervised methods like K-Means [264] and DBSCAN [265] do not place

184

theoretical limitations on their use with high-dimensional data, the implementations are

typically optimized for data with very small dimensions. Performing clustering, especially

density-based clustering, in such high dimensions at such data scale has largely been left

unexplored until DisCo. Moreover, due to the large amount of both raw and lightcone

data, DisCo requires this high-dimensional clustering to be done over multi-node dis-

tributed data sets. We developed distributed implementations of K-Means and DBSCAN

with similar API calls as scikit-learn and optimized. Our DBSCAN implementation was

developed specially for high-dimensional data like the lightcones. In the following, we

evaluate the scaling performance with both K-Means and DBSCAN for this large-dataset

high-dimensional clustering problem in Project DisCo.

7.2.1 Contributions

Project DisCo makes the following contributions:

• First distributed-memory implementation of local causal state reconstruction allow-

ing unprecedented capability on large scientific data sets.

• Performs unsupervised coherent structure segmentation that qualitatively outper-

forms state-of-the-art methods for complex realistic fluid flows.

• Demonstrates good single-node, weak scaling, and strong scaling performance up to

1024 nodes.

• Distributed implementation of K-Means and DBSCAN clustering methods for high-

dimensional data using standard Python APIs.

• Achieves high performance while maintaining developer productivity by using newly

developed optimized Python library functions and efficiently using parallelizing com-

pilers.

7.2.2 Related Work

The basic algorithm for real-valued local causal state reconstruction used by DisCo largely

follows that of LICORS [233, 260]. Without an HPC implementation, LICORS focused

185

on statistical properties of the algorithm, e.g. convergence, and small proof-of-concept

experiments. Further, this work used the point-wise entropy over local causal states for

coherent structure filters [112], but this approach cannot produce objective segmentation

masks. In contrast, our method readily generates objective segmentation masks.

The first real-valued local causal state reconstruction was done in [231], which also ana-

lyzed complex fluid flows and climate simulations. They were able to work with these data

sets due to efficient data reuse and data sub-sampling from a low-productivity single-node

implementation written from scratch. Even with these optimizations in their implemen-

tation, DisCo produces much higher resolution results with our high-productivity HPC

optimized implementation. Compare the bottom row of Fig. 5 in [231] with Fig. 7.5 in

Section. 7.3. They also used the local causal state entropy, and so were also not capable

of a structural segmentation analysis.

The structural segmentation methods for fluid flows most relevant to DisCo fall under

the heading of Lagrangian Coheret Structures (LCS). These are a collection of approaches

grounded in nonlinear dynamical systems theory that seeks to describe the most repelling,

attracting, and shearing material surfaces that form the skeletons of Lagrangian particle

dynamics [117]. Ref. [113] gives a survey of LCS methods, including two benchmark data

sets we use here. This provides us a key point of comparison to the state-of-the-art for

method validation, given in Section 7.3.

DisCo’s segmentation semantics are built on a structural decomposition provided by

the local causal states. Such a decomposition is similar to empirical dimensionality re-

duction methods, such as PCA [266] and DMD [67]. These methods are used extensively

in fluid dynamics [62] and climate analytics [267].

The current state-of-the-art for detecting coherent weather and climate patterns are

expert-designed empirical heuristics. These combine the wealth of experience that me-

teorologists have systematically gathered over decades and simple physical theories of

weather and climate events [129]. However, there is often no consensus, even amongst the

experts, on the most appropriate, accurate and precise definition for any given weather

or climate event. Hence large projects are organized to bring scientists together to com-

186

pare different methods of detecting and tracking weather and climate patterns [130]. In

recent years, scientists have made significant progress in applying methods from machine

learning and deep learning to tackle the problems of event classification, detection, seg-

mentation and tracking [244, 111, 256]. The success of these supervised learning methods,

however, is strongly limited by the availability of reliable and accurate ground truth train-

ing data [131]. Semi-supervised and fully unsupervised segmentation are emerging areas

of research with significant challenges [268].

The key step in the DisCo pipeline requires an unsupervised clustering method. We fo-

cus on the popular K-Means [264] method and the density-based DBSCAN [265]. Further

discussion of clustering in the DisCo pipeline is given in Sections 7.1, 7.2.3, and 7.3.4.

Several distributed implementations of K-Means have been developed over the years.

Ref. [269] is a C-based implementation that uses both MPI and OpenMP for paralleliza-

tion. It evenly partitions the data to be clustered among all processes and replicates the

cluster centers. At the end of each iteration, global-sum reduction for all cluster centers

is performed to generate the new cluster centers. Ref. [270] is an extension of this work

for larger datasets of billions of points, and Ref. [271] optimizes K-Means performance

on Intel KNC processors by efficient vectorization. The authors of Ref. [272] propose a

hierarchical scheme for partitioning data based on data flow, centroids(clusters), and di-

mensions. Our K-Means implementation partitions the problem based on data size, since

its application to climate data is a weak scaling problem. We process much larger data-

sizes, though Ref. [272] showcases good performance for much higher dimensionality, up to

O(106), and clusters O(106) than our use case. For comparison, in our capstone problem,

in the K-Means stage of DisCo workflow we process ∼ 70× 109lightcones (∼ 70× 106 per

node) of 84 dimensions into 8 clusters in 2.32 s/iteration on Intel E5-2698 v3 (vs. 2.5E6

samples of 68 dimensions into 10,000 clusters in 2.42 s/iteration on 16 nodes of Intel

i7-3770K processors in Ref. [272]). We also use a custom distance metric for applying

temporal decay (described in Section 3.2.2) which doubles the number of floating point

operations.

Several distributed implementations have been developed for density-based algorithms.

187

BD-CATS is a distributed DBSCAN implementation using union-find data structures

that scales to 8000 nodes on Cori [273]. POPTICS [274] is a distributed implementation

of the OPTICS algorithm using the disjoint-set data structure and scaled to 3000 nodes.

HDBSCAN from Petuum analytics [275] uses the NN-Descent algorithm and approximates

the k-NN graph. While their method has been shown to work for high-dimensional data,

it has not been shown to work at scale. Other implementations such as PDBSCAN [276],

PSDBSCAN [277], PDSDBSCAN [278], HPDBSCAN [279], etc. have been shown to scale

well, but they use specialized indexing structures like k-d trees or ball-trees, which are

sub-optimal for clustering high-dimensional data. To the best of our knowledge, this is

the first implementation to demonstrate clustering to O(100) dimensional data at this

data scale (56 million points per node and 57 billion points in total).

7.2.3 Challenges of Lightcone Clustering

The most significant step, both computationally and conceptually, in the DisCo pipeline is

the discretization of lightcone-space via distance-based clustering. While there are many

choices for distance-based clustering, we focus on two of the most popular clustering

algorithms in the scientific community: K-Means [264] and DBSCAN [265].

The use of clustering in a structural decomposition pipeline, along with the need to

conform to the continuous histories assumption (see Section 7.1), would seem to favor

a density-based method like DBSCAN over a prototype-based method like K-Means.

Density-connectivity should ensure nearby lightcones are clustered together, whereas K-

Means must return K clusters and therefore may put cuts in lightcone-space that separate

nearby past lightcones, violating the continuous histories assumption.

Since we should avoid imposing geometric restrictions on the structures captured by

local causal states, the ability of DBSCAN to capture arbitrary cluster shapes seems

preferable to K-Means, which only captures convex, isotropic clusters. Furthermore, the

restriction to K clusters, as opposed to an arbitrary number of cluster with DBSCAN,

puts an upper bound on the number of reconstructed local causal states. To test these

hypotheses we experimented with both K-Means and DBSCAN at scale to evaluate their

parallel scaling performance and the quality of clustering in the DisCo pipeline on real-

188

world data sets. These experiments and results are discussed in Sections 7.2.4, 7.2.5 and

7.3.

7.2.3.1 Distributed K-Means

We developed a distributed K-Means implementation which will be upstreamed to daal4py

[280], a Python package similar in usage to scikit-learn. Daal4Py provides a Python

interface to a large set of conventional ML algorithms highly tuned for Intel R© platforms.

In contrast to other distributed frameworks for ML in Python, daal4py uses a strict single

program, multiple data (SPMD) approach, and so assumes the input data to be pre-

partitioned. All communication within the algorithms is handled under the hood using

MPI.

Our single-node K-Means implementation performs one iteration of the algorithm in

the following way: all data points are split into small blocks to be processed in parallel.

For each block, distances from all points within the block to all current centroids are

computed. Based on these distances, points are reassigned to clusters and each thread

computes the partial sums of coordinates for each cluster. At the end of the iteration

the partials sums are reduced from all threads to produce new centroids. We use Intel R©

AVX2 or Intel R© AVX512 instructions, depending on the hardware platform, for vectorizing

distance computations.

Our multi-node K-Means implementation follows the same general pattern: on each

iteration current centroids are broadcast to all nodes, each node computes the assignments

and partial sums of coordinates for each centroid, and then one of the nodes collects all

partial sums and produces new centroids. We use MPI4Py for collecting partial sums. We

utilize various routines for finding the initial set of K centroids – first K feature vectors,

K random feature vectors, and K-Means++ [264] – provided by Intel R© DAAL (Data

Analytics Acceleration Library).

7.2.3.2 Distributed DBSCAN

We developed both single-node and multi-node implementations of DBSCAN optimized

for use with high-dimensionality lightcone data.

The single-node DBSCAN implementation computes neighborhoods without using

189

indexing structures, like k-d tree or ball-tree, which are less suitable for high-dimensional

data. The overall algorithmic complexity is quadratic in the number of points and linear in

feature size (lightcone dimension). Neighborhood computation for blocks of data points is

done in parallel without use of pruning techniques. We use Intel R© AVX2 or Intel R© AVX512

instructions, depending on the hardware platform, to compute distances between points,

giving a 2-2.5x speed-up compared to the non-vectorized version.

For multi-node DBSCAN clustering, the first step is geometric re-partitioning of data

to gather nearby points on the same node, inspired by the DBSCAN implementation of

Ref. [273]. It is performed using the following recursive procedure: for a group of nodes

we choose some dimension, find an approximate median of this dimension from all points

currently stored on a node, split the current group of nodes into two halves (with value

of chosen dimension lesser/greater than the median) and reshuffle all points so that each

node contains only points satisfying the property above.

Next, do geometric re-partitioning recursively for the two resulting halves (groups) of

nodes. Then each node gathers from other nodes any extra points that fall into its bound-

ing box (extended by the epsilon in each direction) similar to [278]. Using these gathered

points the clustering is performed locally on each node (single node implementation) and

the results from all the nodes are then merged into a single clustering.

Because we use an approximate value of the median, the geometric partitions can

sometimes have imbalanced sizes. This can impact the overall performance since different

nodes will complete local clustering at different times and no node can proceed further

until every node has finished. Also, the number of extra points for some geometric par-

titions lying in low and high density regions of the data set may be different, which may

also cause some load imbalance among nodes.

7.2.4 Experimental Setup

Here we describe the data sets used for both the science results and scaling measurements.

We also describe the HPC system – Cori – on which these computations were performed.

190

7.2.4.1 Description of the Cori System

All of our experiments were run on the Cori system at the National Energy Research Sci-

entific Computing Center (NERSC) at Lawrence Berkeley National Laboratory (LBNL).

Cori is a Cray XC40 system featuring 2,004 nodes of Intel R© XeonTM Processor E5-2698

v3 (Haswell) and 9,688 nodes of Intel R© Xeon PhiTM Processor 7250 (KNL). Both Haswell

and KNL nodes were used.

Haswell compute nodes have two 16-core Haswell processors. Each processor core has

a 32 KB private L1 instruction cache, 32 KB private L1 data and a 256 KB private L2

cache. The 16 cores in each Haswell processor are connected with an on-die interconnect

and share a 40-MB L3 cache. Each Haswell compute node has 128 GB of DDR4-2133

DRAM.

Each KNL compute node has a single KNL processor with 68 cores (each with 4

simultaneous hardware threads and 32 KB instruction and 32 KB data in L1 cache), 16

GB of on-package MCDRAM, and 96 GB of DDR4-2400 DRAM. Every two cores share

an 1MB L2 (with an aggregate of 32MB total). The 68 cores are connected in a 2D

mesh network. All measurements on KNL reported in this paper are performed with the

MCDRAM in “cache” mode (configured as a transparent, direct-mapped cache to the

DRAM).

Compute nodes in both the Haswell and KNL partitions are connected via the high-

speed Cray Aries interconnect. Cori also has a Sonnexion 2000 Lustre filesystem, which

consists of 248 Object Storage Targets (OSTs) and 10,168 disks, giving nearly 30PB of

storage and a maximum of 700GB/sec IO performance.

7.2.4.2 Libraries and Environment

The DisCo application code is written in Python using both open-source and vendor opti-

mized library packages. We use Intel R© Distribution Of Python (IDP) 3.6.8. IDP

incorporates optimized libraries such as Intel R© MKL and Intel R© DAAL for machine learn-

ing and data analytics operations to improve performance on Intel platforms. We also use

NumPy (1.16.1), SciPy (1.2.0), Numba (0.42.1), Intel R© TBB (2019.4), Intel R©

DAAL (2019.3) and Intel R© MKL (2019.3) from Intel R© Anaconda channels. MPI4Py

191

(3.0.0) is built to use the Cray MPI libraries.

For all K-Means experiments, our optimized implementation was built from source

with Cray MPI and ICC (18.0.1 20171018). These will be contributed back to Intel R©

daal4py. We compile our DBSCAN implementation with Intel R© C/C++ Compilers (ICC

18.0.1 20171018) and without the -fp-model strict compiler switch which can impact

the vectorization performance. Both K-Means and DBSCAN are linked to Cray MPI

binaries as well.

For scaling tests we installed the conda environments on the Lustre filesystem to

improve Python package import times for large runs on Cori [263]. For K-Means experi-

ments, we run the code with 1 MPI process per Haswell socket and limit the number of

TBB threads to 32 on a node with -m tbb -p 32 flags to the Python interpreter. For

DBSCAN experiments we run the code with 1 MPI process per node and 68 tbb threads

on KNL, and 1 MPI process per node with 32 threads on Haswell nodes.

7.2.4.3 Datasets

Two benchmark data sets – 2D turbulence and clouds of Jupiter – were chosen for val-

idation against a survey of LCS methods from Ref. [113] and a simulated climate data

set was chosen to demonstrate scientific and scaling performance on a real-world scientific

application, as in [126].

The Jupiter data is interpolated RGB video taken over a period of 10 days by the

NASA Cassini spacecraft and converted to integer grayscale [281]. The 2D turbulence

data set is the vorticity field from direct numerical solutions of 2-dimensional Navier-

Stokes equations using pseudo-spectral methods in a periodic domain [282]. The climate

data set, used for scaling experiments, is simulated data of Earth’s climate from the 0.25-

degree Community Atmospheric Model (CAM5.1) [283]. Climate variables are stored on

an 1152 x 768 spatial grid (float32), with a temporal resolution of 3 hours. Over 100

years of simulation output is available as NetCDF files. Our hero run processed 89.5 TB

of lightcone data (obtained from 580 GB of simulated climate data).

192

7.2.5 Performance Results

We performed both K-Means and DBSCAN weak-scaling and strong-scaling experiments

with the CAM5.1 climate dataset. For weak-scaling the data size per node is held fixed

as the number of nodes increases (i.e. the total amount of data processed increases),

while for strong-scaling the data size aggregated over all the nodes is held fixed as the

number of nodes increases (hence the data size per node varies for strong-scaling). K-

Means experiments are run on Cori Haswell nodes and DBSCAN experiments are run on

both Cori Haswell and Cori KNL nodes. The performance of each stage of the pipeline

as well as the total wall-clock time to solution (including synchronization) for an end-

to-end single run is measured in seconds. These measurements capture the end-to-end

capability of the system and software, including the single node optimizations, efficiency

of the distributed clustering methods, and interconnect subsystems.

7.2.5.1 K-Means: Single-Node Performance

Table 7.1 shows the breakdown of execution time of different stages of the DisCo pipeline

developed from scratch on one Haswell and one KNL node.

The data read stage simply reads the spacetime field data into memory which is then

processed in extract to generate lightcone vectors. This involves reading spatiotemporal

neighbors of each point in the field and flattening them into an n-dimensional vector.

These are serial read/write operations that are unavoidable, but the memory access pat-

tern can be optimized. Using Numba decorators for JIT optimization to improve caching

and vectorization performance, we obtained a 64x speedup on Haswell and 134x speedup

on KNL node resulting in overall speedup of 16.9x on Haswell and 62x on KNL over

the baseline implementation inspired by [231]. For the cluster lc stage, we compare our

optimized K-Means implementation which gives ∼20x better performance than stock

scikit-learn [284]. The other three stages take only a small fraction of the execution time

and have little to gain from directed optimization.

7.2.5.2 K-Means: Multi-Node Scaling

All experiments were conducted with h± = 3, c = 1, number of clusters K=8, and

iterations=100 for K-Means clustering. The results are shown in Figure 7.3. Extract is

193

Table 7.1. Single-node performance of the different stages of the DisCo pipeline before
and after optimization

Stage Haswell, time(s) — KNL, time(s)

Baseline
Opti-

mized

Speed

up
Baseline

Opti-

mized

Speed

up

data read 3.32 3.29 1 8.44 7.01 1.2

extract 519.64 7.85 65 4713.47 35.13 134

cluster lc 399.63 19.03 21 513.63 26.34 19

morphs 0.85 0.86 1 6.19 6.16 1

equivalence 0.002 0.002 1 0.56 0.02 26

causal filter 0.14 0.14 1 0.49 0.49 1

Total 923.58 31.20 29.6 5242.78 74.93 70

embarrassingly parallel and thus, shows excellent scaling.

For weak scaling on Haswell, we used 220MB/node of raw data (80 timesteps of 1152

x 768 spatial fields). After lightcone extraction (84 dimension vectors of float32 data),

the size of input to the clustering stage increases to 87.44GB/node. We achieved weak-

scaling efficiency of 91% at 1024 nodes, measured against performance at 8 nodes. This

is expected from increased amounts of time spent in communication at the end of each

K-Means iteration as node concurrency increases.

For strong scaling experiments on Haswell, we used 64 timesteps per node on 128

nodes, 32 timesteps per node on 256 nodes, 16 timesteps per node on 512 nodes, and

8 timesteps per node on 1024 nodes. After lightcone extraction the total size of input

data to the clustering stage is 54GB. We achieved 64% overall scaling efficiency and 81%

clustering efficiency at 1024 nodes. At 1024 nodes, the amount of local computation

workload on a node is small compared to the number of synchronization steps within

K-Means and in the end-to-end pipeline.

7.2.5.3 DBSCAN: Single-Node Performance

We used the pipeline optimized for K-Means results, shown in Table 7.1. In the clus-

ter lc stage, we use our implementation of the DBSCAN algorithm discussed in Section

194

Figure 7.3. Breakdown of execution time spent in various stages of the DisCo on
Haswell nodes with K-Means. Top : weak scaling and Bottom: strong scaling. Parallel
efficiency are plotted on the secondary axis. Credit: Nalini Kumar

195

Figure 7.4. Breakdown of execution time spent in various stages of the DisCo on
Haswell and KNL nodes with DBSCAN. Top : weak scaling and Bottom: strong
scaling. Parallel efficiency are plotted on the secondary axis. Credit: Nalini Kumar

196

7.2.3. Designed for high-dimensional clustering, it does not use indexing data structures

for nearest neighbor calculations. On the 2D turbulence data set, the scikit-learn DB-

SCAN with brute-force neighborhood computation is more than 3x faster than the default

scikit-learn DBSCAN, which uses k-d trees, while producing reasonable results (less than

20% noise points). In turn, our DBSCAN implementation is more than 3x faster than

the scikit-learn brute implementation (same clustering parameters) due to better on-node

parallelization and use of AVX2 and AVX512 vector instructions for computing neighbor-

hoods and distances.

7.2.5.4 DBSCAN: Multi-Node Scaling

We performed DBSCAN weak scaling and strong scaling runs using the climate data set

on both Haswell and KNL nodes. All experiments were conducted with minpts = 10 and

eps=0.05 for DBSCAN clustering. The results are shown in Figure 7.4.

For weak scaling on Haswell and KNL, we split a single timestep of the 1152 x 768

spatial field across 8 nodes. At 1024 nodes, we achieved a scaling efficiency of 34.6%.

The poor scaling efficiency can be attributed to several causes. One, as discussed in

Section 7.2.3, distributed DBSCAN uses geometric partitioning to gather adjacent points

on the same node. Then, at each step, every node clusters its local data subset before

merging results among different nodes. Two, since we didn’t use indexing data structures

to perform local clustering in DBSCAN, the complexity of each step is O(dimensionality∗
|size of the partition|2). Third, the total clustering time is equal to the running time of

the slowest node, which is the node containing the largest data partition. As the number

of nodes increases, it leads to an increase in imbalance in number of points between nodes

and increased total running time, as can be seen in Figure 7.4. We are exploring ways of

better partitioning the initial data to resolve the load imbalance issue while maintaining

the scalability with increasing number of dimensions.

For strong scaling on Haswell and KNL, we used a single timestep of the 1152 x 768

spatial field per node for the 128-nodes run; one timestep across 2 nodes for the 256-

nodes run; one timestep across 4 nodes for the 512-nodes run; and one timestep across

8 nodes for the 1024-nodes run. We achieved an overall scaling efficiency of 38% and

197

Table 7.2. Load distribution from geometric partitioning in DBSCAN

Nodes 128 256 512 1024

Min 87392 81960 84963 70824

Max 130867 130147 154574 172377

Average 105156 105156 105156 105156

Median 104378 104759 103854 103666

clustering efficiency of 52% on 1024 Haswell nodes. Increasing the number of nodes, while

preserving the total input data size, results in a proportional decrease of partition sizes

gathered per node. From the quadratic dependency on the number of points mentioned

earlier, reducing the sizes of the partitions by 2x, decreases the execution time by 4x.

However, since the partitions are not balanced, the obtained efficiency from increasing

the number of nodes is marginally lower than the expected 4x reduction in execution

time.

7.2.6 Hero Run

Our largest run processed 89.5 TB of lightcone data (obtained from 580 GB of simulated

climate data) with distributed K-Means clustering on 1024 Intel Haswell nodes with 2

MPI ranks/node and 32 tbb threads/processor. We do not use Cori burst buffer. 580GB

of climate data is read from the Cori /cscratch/ filesystem for generating nearly 90TB of

lightcone data, after extract, which resides in the on-node memory. The left column of

Figure 7.3 shows execution times for this run. The total time to solution was 6.6 minutes

with a weak scaling efficiency of 91%. This suggests that further scaling may be possible.

7.2.7 Intel Legal Disclaimers

“Software and workloads used in performance tests may have been optimized for performance only on

Intel microprocessors.

Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel micro-

processors for optimizations that are not unique to Intel microprocessors. These optimizations include

SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the avail-

ability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel.

Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

198

Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please

refer to the applicable product User and Reference Guides for more information regarding the specific

instruction sets covered by this notice. Notice Revision #20110804

Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems,

components, software, operations and functions. Any change to any of those factors may cause the results

to vary. You should consult other information and performance tests to assist you in fully evaluating your

contemplated purchases, including the performance of that product when combined with other products.

For more information go to www.intel.com/benchmarks.

Performance results are based on testing as of April 10, 2019 and may not reflect all publicly available

security updates. See configuration disclosure for details. No product or component can be absolutely

secure.

Configurations: Testing on Cori (see 7.2.4) was performed by NERSC, UC Davis, and Intel, with the

spectre v1 and meltdown patches.

Intel technologies’ features and benefits depend on system configuration and may require enabled hard-

ware, software or service activation. Performance varies depending on system configuration. Check with

your system manufacturer or retailer or learn more at [intel.com].

Intel, the Intel logo, Intel Xeon, Intel Xeon Phi, Intel DAAL are trademarks of Intel Corporation or its

subsidiaries in the U.S. and/or other countries. *Other names and brands may be claimed as the property

of others.”

199

7.3 Lagrangian Coherent Structures
With the theory and HPC implementation in place, we now present preliminary results demonstrating

the ability of the local causal states to capture emergent coherent structures in complex spatiotemporal

systems. In particular, we bring the local causal state analysis to bear on the Lagrangian coherent

structure (LCS) problem in complex fluid flows.

The local causal state fields that are the direct output of DisCo, without additional semantic analysis

(described further below), can be considered a “structural decomposition” of the flow. Incorporating the

physics of local interactions to generalize the computational mechanics theory of structure (Section 3.1.6)

to spatiotemporal systems, the local causal states are a more principled and well-motivated decomposition

approach compared to empirical dimensionality reduction methods such as PCA and DMD (see Sec. 7.2.2),

or automated heuristics like TECA.

But does the structural decomposition of the local causal states capture meaningful “structure”?

What constitutes physically meaningful structure in complex fluid flows is an incredibly challenging open

problem [62, 113]. Even something as seemingly obvious as a fluid vortex does not have a generally

accepted rigorous definition [285]. This is to say that it is impossible to give a quantitative assessment of

how close our method gets to ground truth because ground truth for this problem currently does not exist.

Validating results that are otherwise not externally well-defined is a challenge faced by any unsupervised

method.

In the absence of a quality metric to compare different methods against, the community standard is

to qualitatively compare methods against each other. In particular, the Lagrangian approach to coherent

structures in complex fluids is gaining wide acceptance and Ref. [113] surveys the current state-of-the-

art Lagrangian Coherent Structure methods (see Sec. 7.2.2). We directly compare our results with the

geodesic and LAVD approaches (described below) on the 2D turbulence data set from [113] and the

Jupiter data set from [113] and [286].

There are three classes of flow structures in the LCS framework; elliptic LCS are rotating vortex-

like structures, parabolic LCS are generalized Lagrangian jet-cores, and hyperbolic LCS are tendril-like

stable-unstable manifolds in the flow [117]. The geodesic approach [117, 286] is the state-of-the-art

method designed to capture all three classes of LCS and has a nice interpretation for the structures it

captures in terms of characteristic deformations of material surfaces. The Lagrangian-Averaged Vorticity

Deviation (LAVD) [287] is the state-of-the-art method specifically for elliptic LCS, but is not designed

to capture parabolic or hyperbolic LCS.

The local causal states are not a Lagrangian method (they are built from spacetime fields, not

Lagrangian particle flow) so they are not specifically designed to capture these structures. However,

LCS are of interest because they heavily dictate the dynamics of the overall flow, and so signatures of

LCS should be captured by the local causal states. As we will see in the results and comparisons in

200

Sections 7.3.2 and 7.3.3, this is indeed the case.

Snapshot images for our structural decomposition results on the three fluid flow data sets using

K-Means clustering in the DisCo pipeline are shown in Figure 7.5. DBSCAN results are discussed in

Section 7.3.4. We emphasize that DisCo produces a spacetime segmentation; the images shown are

single-time snapshots taken from spacetime videos. The left image of each row in Figure 7.5 – (a), (d),

and (f) – are snapshots from the unlabeled “training” data used for local causal state reconstruction. As

an unsupervised method, nothing else is needed beyond the raw observable spacetime data. The other

image(s) in each row are corresponding snapshots from the latent local causal state decomposition fields,

which are the output of Algorithm 5: causal filtering, the final stage in the DisCo pipeline. Parameters

used for reconstruction are given in the caption of Figure 7.5. Full segmentation videos are available at

the DisCo YouTube channel [6].

Recall from Section 1.2.1 that for segmentation each point in spacetime (pixel in the video) is assigned

a class label. The extreme weather event segmentation masks shown in [126] have the following semantics:

cyclone, atmospheric river, and background. In contrast, the segmentation classes of DisCo are the

local causal states. Each unique color in the segmentation images – Figure 7.5 (b), (c), (e), and (g) –

corresponds to a unique local causal state. Further post-processing is needed to assign semantic labels

such as cyclone and atmospheric river to sets of local causal states. We will discuss this further in

Section. 7.3.2 and Section 7.4.

7.3.1 Reconstruction Parameters

Before we examine the LCS results in detail, a discussion of how reconstruction parameters affect the

local causal state structural decomposition is in order. The complex fluid flows of interest are multi-scale

phenomena and so the question of how they are structured may not have a single answer. Different notions

of structure may exist at different length and time scales. With this in mind, we found that essentially all

reconstruction parameters yield a physically valid structural decomposition. Varying parameters adjusts

the structural details captured in a satisfying way.

Larger values of K in K-Means produce refinements of structural decompositions from smaller values

of K, capturing finer levels of detail. The speed of information propagation c controls the spatial-scale

of the structural decomposition and the decay-rate τ controls the temporal coherence scale. Because

uniqueness and optimality of local causal states are asymptotic properties, lightcone horizons should be

set as large as is computationally feasible. Though some finite cutoff must always be used. The lightcone

horizon creates a discrete cut in the amount information of local pasts that is taken into account, as

opposed to the smooth drop-off of the temporal decay.

The local causal states, using different parameter values, provide a suite of tools for analyzing struc-

ture in complex, multi-scale spatiotemporal systems at various levels of description. Finally, we note that

the τ →∞ (or, equivalently the h± → 0) limit produces a standard K-Means image segmentation, which

201

(d) NASA Cassini Jupiter cloud data in grayscale (e) Jupiter local causal state field

(b) Turbulence state field, fine structure(a) Turbulence vorticity field (c) Turbulence state field, coarse structure

(f) Water vapor field of CAM5.1 climate model simulation (g) Climate local causal state field

Figure 7.5. Structural segmentation results for the three scientific data sets using K-
Means lightcone clustering. The leftmost image of each row shows a snapshot from the
data spacetime fields, and the other image(s) in the row show corresponding snapshots
from the reconstructed local causal state spacetime fields. Reconstruction parameters
given as (h−, h+, c,K−, τ): (b) - (14, 2, 1, 10, 0.8), (c) - (14, 2, 1, 4, 0.0), (e) - (3, 3,
3, 8, 0), (g) - (3, 3, 1, 16, 0.04). K+ = 10 and 0.05 for chi-squared significance level
were used for all reconstructions. Full segmentation videos are available on the DisCo
YouTube channel [6]

202

captures instantaneous structure and does not account for coherence across time and space.

7.3.2 2D Turbulence

While still complex and multi-scale, the idealized 2D turbulence data provides the cleanest Lagrangian

Coherent Structure analysis using our DisCo structural decomposition. Figure 7.5 (a) shows a snapshot

of the vorticity field, and (b) and (c) show corresponding snapshots from structural decompositions using

different reconstruction parameter values. Both use the same lightcone template with h− = 14, h+ = 2,

and c = 1. To reveal finer structural details that persist on shorter time scales, Figure 7.5 (b) uses τ = 0.8

and K = 10. To isolate the coherent vortices, which persist at longer time scales, Figure 7.5 (c) was

produced using τ = 0.0 and K = 4. As can be seen in (b), the local causal states distinguish between

positive and negative vortices, so for (c) we removed this asymmetry by reconstructing from the absolute

value of vorticity.

All three images are annotated with color-coded bounding boxes outlining elliptic LCS to directly

compare with the geodesic and LAVD LCS results from Figure 9, (k) and (l) respectively, in [113]. Green

boxes are vortices identified by both the geodesic and LAVD methods and red boxes are additional

vortices identified by LAVD but not the geodesic. Yellow boxes are new structural signatures of elliptic

LCS discovered by DisCo. Because the background potential flow is mapped to a single local causal

state state, colored white, in (c), all objects with a bounding box can be assigned a semantic label of

coherent structure since they satisfy the local causal state definition given in Section 6.1 as spatially

localized, temporally persistent deviations from generalized spacetime symmetries (i.e. local causal state

symmetries). Significantly, DisCo has discovered vortices in (c) as coherent structures with this very

general interpretation as locally broken symmetries. Further, this structural decomposition was performed

with large past lightcones h− = 14 and that have no temporal decay τ = 0.0. Thus vortices are found to

be the most long-lived coherent objects in this flow, and all shorter-lived fluctuations in the background

potential flow get mapped to a Euclidean-symmetry domain (i.e. a single-state domain).

In the finer-scale structural decomposition of (b) we still have a unique set of states outlining the

coherent vortices, as we would expect. If they persist on longer time scales, they will also persist on the

short time scale. The symmetry of the background potential flow is broken further, revealing additional

organization that largely follows the hyperbolic LCS stable-unstable manifolds. Because they act as

transport barriers, they partition the flow on either side and these partitions are given by two distinct

local causal states with the boundary between them running along the hyperbolic LCS in the unstable

direction. For example, the narrow dark blue-colored state in the upper right of (b) indicates a narrow

flow channel squeezed between two hyperbolic LCS.

203

7.3.3 Clouds of Jupiter

Figure 7.5 (d) shows a snapshot from the Jupiter cloud data, with corresponding structural decomposition

snapshot in (e). The Great Red Spot, highlighted with a blue arrow, is the most famous structure in

Jupiter’s atmosphere. As it is a giant vortex, the Great Red Spot is identified as an elliptic LCS by both

the geodesic and LAVD methods [286, 113]. While the local causal states in (e) do not capture the Great

Red Spot as cleanly as the vortices in (b) and (c), it does have the same nested state structures as the

turbulence vortices. There are other smaller vortices in Jupiter’s atmosphere, most notably the “string

of pearls” in the Southern Temperate Belt, four of which are highlighted with blue bounding boxes. We

can see in (e) that the pearls are nicely captured by the local causal states, similar to the turbulence

vortices in (b).

Perhaps the most distinctive features of Jupiter’s atmosphere are the zonal belts. The east-west

zonal jet streams that form the boundaries between bands are of particular relevance to Lagrangian

Coherent Structure analysis. Figure 11 in [286] uses the geodesic method to identify these jet streams

as shearless parabolic LCS, indicating they act as transport barriers that separate the zonal belts. The

particular decomposition shown in (e) captures a fair amount of detail inside the bands, but the edges of

the bands have neighboring pairs of local causal states with boundaries that extend contiguously in the

east-west direction along the parabolic LCS transport barriers. Two such local causal state boundaries

are highlighted in green, for comparison with Figure 11 (a) in [286]. The topmost green line, in the center

of (d) and (e), is the southern equatorial jet, shown in more detail in Figure 11 (b) and Figure 12 of [286].

Its north-south meandering is clearly captured by the local causal states.

7.3.4 Lightcone Clustering Revisited

So what about DBSCAN, which was expected to be the more appropriate clustering method for the DisCo

pipeline? For DBSCAN we found that most typical outcomes either classify most points as noise or into

one single cluster. Some density parameters give O(1000) clusters, but most contain O(1) lightcones. All

cases do not yield physically-meaningful segmentation output.

As a density-based method, when compared to K-Means, DBSCAN faces the curse of dimensionality

[288, 289]. Distinguishing density-separated regions becomes exponentially difficult in high-dimensional

spaces, such as the lightcone spaces used in our applications. Further, a limiting assumption of DBSCAN

is that all clusters are defined by a single density threshold. Adaptive methods like OPTICS [290] and

HDBSCAN [291] may perform better for complex data. The results we observe from experiments with

DBSCAN suggests that the lightcone-spaces of complex fluid flows do not contain clear density-separated

regions, and thus do not yield to a density-based discretization.

Figure 7.6 shows snapshots of spacetime segmentation results of the turbulence data set using both

DBSCAN (a) and K-Means (b). The K-Means result in Figure 7.6 (b) is copied from Figure 7.5 (b)

for easier visual comparison with the DBSCAN results in Figure 7.6 (a), which used reconstruction

204

(a) Turbulence local causal state field using DBSCAN (b) Turbulence local causal state field using K-Means

Figure 7.6. Comparison of structural segmentation results on 2D turbulence using
DBSCAN (a) and K-Means (b) for lightcone clustering. The K-Means results in (b)
are the same as Figure 7.5 (b), repeated here for easier comparison. The DBSCAN
results shown in (a) use reconstruction parameters (h−, h+, c) = (3, 2, 1), τ = 0.0, eps
= 0.0, and minpts = 10.

parameters (h−, h+, c) = (3, 2, 1), τ = 0.0, eps=0.0005, and minpts = 10. We can see that the DBSCAN

segmentation does outline structure in the flow, but it is all detailed structure of the background potential

flow. None of our experiments with different parameter values were able to isolate vortices with a unique

set of local causal states, which, as demonstrated above, is possible with K-Means. This inability to isolate

vortices, along with the patchwork pattern of decomposition in parts of the background flow suggest that

a single density threshold of lightcone space, which is assumed by DBSCAN, is incapable of coherent

structure segmentation.

Similarly, our DBSCAN experiments on the climate data typically yielded outcomes that either

classify most points as noise or into one single cluster. Some density parameters give O(1000) clusters,

but most contain O(1) lightcones. All of these cases do not yield physically meaningful segmentation

output, which again points to the shortcoming of a single density threshold. As can be seen in Figure 7.5

(f), the CAM5.1 water vapor data is very heterogeneous in space; the water vapor values are much

more uniform towards the poles (the top and bottom of the image) than in the tropics (center). The

polar regions will contribute a relatively small, but very dense, region in lightcone space compared to

contributions from the tropics.

From experiments it appears that K-Means attempts to uniformly partition lightcone-space, which is

consistent with these spaces not being density-separated. If this is in fact the case, the convex clusters that

uniformly separate lightcone-space which result from K-Means are actually the most natural discretization

205

of lightcone-space concordant with the continuous histories assumption used during reconstruction, as

described in Section 7.1.

Despite prior assumptions and intuitions, K-Means appears to be a much more effective clustering

method for hydrodynamic coherent structure segmentation using our DisCo pipeline. That being said,

there are plenty of other applications for which density-based clustering using DBSCAN is the appropriate

choice. Our DBSCAN implementation has now made this algorithm available for large, high-dimensional

applications, with the same easy-to-use Python API as found in scikit-learn.

7.4 Extreme Weather Events
Finally, we return to climate science. Figure 7.5 (g) shows the local causal state decomposition of the

CAM5.1 water vapor field shown in Figure 7.5 (f). While our decomposition of the turbulence and

Jupiter data align nicely with the LCS analysis in [113] and [286], we are not yet able to use the climate

decomposition to construct segmentation masks of weather patterns.

However, given the promising decomposition in Figure 7.5 (g), we believe this is achievable. The

climate decomposition shown here was performed solely on the water vapor field, and not on all physical

variables of the CAM5.1 climate model, like was done in [126]. While we see signatures of cyclones

and atmospheric rivers outlined in Figure 7.5 (g), it is not surprising that these structures are not

uniquely identified from the water vapor fields alone; this would be akin to describing hurricanes as just

local concentrations of water vapor. More contextual spacetime information is needed. This includes

additional physical fields, and the use of larger lightcones in reconstruction.

A key distinguishing feature of hurricanes is their rotation. While rotation has its signature in the

water vapor field, the three timesteps used for the lightcones in our local causal state reconstruction

cannot capture much of this rotation. The vorticity field, as used for the 2D turbulence data, gives

instantaneous local circulation. From Figure 7.5 (b) and (c) we see that vortices are easier to capture

from vorticity. Additionally, hurricanes have distinctive patterns in temperature and pressure, for example

a warm, low pressure inner core. Including the vorticity, temperature, and pressure fields into the climate

decomposition will help yield a distinct set of states that identify hurricanes as high rotation objects with

a warm, low pressure core that locally concentrate water vapor..

Similarly, atmospheric rivers (ARs) have distinguishing characteristics in other physical fields, most

notably water vapor transport, that will help identify ARs when added to the decomposition. The use

of larger lightcones should be particularly helpful for creating AR masks, as their geometry is crucial for

their identification, which extends over a much larger spatial scale than can be captured by the depth-3

lightcones used in the reconstruction here.

Although our structural segmentation requires information from multiple physical observables to iden-

tify extreme weather events, the generality of the local causal states will allow us to do this. Lagrangian

206

approaches to coherent structures in fluid flows are based on Lagrangian particle flow dynamics. Such

methods can not be applied to thermodynamic aspects of climate, like temperature and water vapor.

The local causal states, which require only spacetime field data, can be applied to thermodynamic fields,

as we have shown here.

207

References

[1] M.C. Cross and H.S. Greenside. Pattern Formation and Dynamics in Nonequilibrium
Systems. Cambridge University Press, Cambridge, United Kingdom, 2009.

[2] M. Van Dyke. An Album of Fluid Motion. Parabolic Press, Stanford, California,
1982.

[3] S. Ji. Kernel trick. https://commons.wikimedia.org/wiki/File:Kernel_trick_

idea.svg#filelinks, 2017. Accessed: 2020-01-21.

[4] J. E. Hanson and J. P. Crutchfield. Computational mechanics of cellular automata:
An example. Physica D, 103:169–189, 1997.

[5] J. E. Hanson and J. P. Crutchfield. The attractor-basin portrait of a cellular au-
tomaton. J. Stat. Phys., 66:1415 – 1462, 1992.

[6] Project disco segmentation videos. https://www.youtube.com/channel/

UCwKTJloOOFQHVHDwkpqIdYA, Accessed: 2019-04-10.

[7] NASA, JPL-Caltech, SwRI, MSSS, G. Eichstädt, and S. Doran. Jupiters
Great Red Spot, spotted. https://www.nasa.gov/image-feature/jpl/pia21985/
jupiter-s-great-red-spot-spotted, 2019.

[8] A. T. Winfree. The prehistory of the Belousov-Zhabotinsky oscillator. Journal of
Chemical Education, 61(8):661, 1984.

[9] A. M. Turing. The chemical basis of morphogenesis. Trans. Roy. Soc., Series B,
237:5, 1952.

[10] P. Ball. The Self-Made Tapestry: Pattern Formation in Nature. Oxford University
Press, New York, 1999.

[11] J. Sommeria, S. D. Meyers, and H. L. Swinney. Laboratory simulation of Jupiter’s
Great Red Spot. Nature, 331(6158):689–693, 1988.

[12] P. S. Marcus. Numerical simulation of Jupiter’s Great Red Spot. Nature,
331(6158):693–696, 1988.

[13] K. A. Emanuel. The theory of hurricanes. Ann. Rev. Fluid Mech., 23(1):179–196,
1991.

[14] U. Nakaya. Snow Crystals: Natural and Artificial. Harvard University Press, Boston,
Massachusetts, 1954.

[15] E. Ben-Jacob, I. Cohen, O. Shochet, I. Aranson, H. Levine, and L. Tsimring. Com-
plex bacterial patterns. Nature, 373:556–567, 1995.

[16] I. V. Markov. Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal
Growth and Epitaxy. World Scientific, Singapore, third edition, 2017.

[17] H. Bénard. Les Tourbillons Cellulaires dans une nappe Liquide Propageant de la
Chaleur par Convection: en Régime Permanent. Gauthier-Villars, 1901.

208

https://commons.wikimedia.org/wiki/File:Kernel_trick_idea.svg#filelinks
https://commons.wikimedia.org/wiki/File:Kernel_trick_idea.svg#filelinks
https://www.youtube.com/channel/UCwKTJloOOFQHVHDwkpqIdYA
https://www.youtube.com/channel/UCwKTJloOOFQHVHDwkpqIdYA
https://www.nasa.gov/image-feature/jpl/pia21985/jupiter-s-great-red-spot-spotted
https://www.nasa.gov/image-feature/jpl/pia21985/jupiter-s-great-red-spot-spotted

[18] Lord Rayleigh. On convection currents in a horizontal layer of fluid, when the higher
temperature is on the under side. Phil. Mag. (Series 6), 32(192):529–546, 1916.

[19] G.I. Taylor. Stability of a viscous liquid contained between two rotating cylinders.
Phil. Trans. Roy. Soc. Lond. A, 223:289–343, 1923.

[20] S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Oxford, Clarendon
Press, 1968.

[21] F. H. Busse. Non-linear properties of thermal convection. Reports on Progress in
Physics, 41(12):1929, 1978.

[22] P.R. Fenstermacher, H.L. Swinney, and J.P. Gollub. Dynamical instabilities and the
transition to chaotic Taylor vortex flow. J. Fluid Mech., 94(1):103–128, 1979.

[23] V. Steinberg, G. Ahlers, and D. S. Cannell. Pattern formation and wave-number
selection by Rayleigh-Bénard convection in a cylindrical container. Physica Scripta,
T9:97, 1985.

[24] L.E. Reichl. A Modern Course in Statistical Physics. Wiley-VCH, Weinheim, Ger-
many, 2016.

[25] H. Haken. Information and Self-Organization. Springer, New York, 2016.

[26] S. A. Kivelson, E. Fradkin, and V. J. Emery. Electronic liquid-crystal phases of a
doped Mott insulator. Nature, 393(6685):550–553, 1998.

[27] B.-X. Zheng, C.-M. Chung, P. Corboz, G. Ehlers, M.-P. Qin, R. M. Noack, H. Shi,
S. R. White, S. Zhang, and G. K.-L. Chan. Stripe order in the underdoped region
of the two-dimensional Hubbard model. Science, 358(6367):1155–1160, 2017.

[28] N. Goldenfeld. Lectures On Phase Transitions And The Renormalization Group.
Westview Press, New York, 1992.

[29] M. C. Cross and P. C. Hohenberg. Pattern formation outside of equilibrium. Rev.
Mod. Phys., 65(3):851–1112, 1993.

[30] R. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge University
Press, New York, 2006.

[31] M. Golubitsky and I. Stewart. The Symmetry Perspective: From Equilibrium to
Chaos in Phase Space and Physical Space, volume 200. Birkhäuser, New York, 2003.

[32] P. Glansdorff and I. Prigogine. Thermodynamic theory of structure, stability and
fluctuations. 1971.

[33] G. Nicolis and I. Prigogine. Self-Organization in Nonequilibrium Systems. Wiley,
New York, 1977.

[34] D. Kondepudi and I. Prigogine. Modern Thermodynamics: From Heat Engines to
Dissipative Structures. John Wiley & Sons, 2014.

[35] H. L. Swinney. Emergence and evolution of patterns. In AIP Conference Proceedings,
volume 501, pages 3–22. American Institute of Physics, 2000.

209

[36] J. Keizer and R.F. Fox. Qualms regarding the range of validity of the glansdorff-
prigogine criterion for stability of non-equilibrium states. Proceedings of the National
Academy of Sciences, 71(1):192–196, 1974.

[37] R.F. Fox. The excess entropy around nonequilibrium steady states,(δ2s)ss, is not
a liapunov function. Proceedings of the National Academy of Sciences, 77(7):3763–
3766, 1980.

[38] R. Landauer. Inadequacy of entropy and entropy derivatives in characterizing the
steady state. Physical Review A, 12(2):636, 1975.

[39] E T Jaynes. The minimum entropy production principle. Annual Review of Physical
Chemistry, 31(1):579–601, 1980.

[40] A.C. Newell. Envelope equations. Lectures in Applied Mathematics, 15(157):4, 1974.

[41] I. Prigogine. From being to becoming: Time and complexity in the physical sciences.
Philosophy of Science, 51(2):355–357, 1980.

[42] W.T. Grandy. Entropy and The Time Evolution of Macroscopic Systems, volume 10.
Oxford University Press, 2008.

[43] P. Attard. Non-Equilibrium Thermodynamics and Statistical Mechanics: Founda-
tions and Applications. Oxford, 2012.

[44] F. J. Dyson. The scientist as rebel. New York Review of Books, 2006.

[45] Tom Chivers. How big data is changing science.
https://mosaicscience.com/story/how-big-data-changing-science-algorithms-
research-genomics/, 2018. Accessed: 2019-04-07.

[46] Marc Chahin. How big data advances physics. https://www.elsevier.com/

connect/how-big-data-advances-physics, 2017. Accessed: 2019-04-07.

[47] Terrence J Sejnowski, Patricia S Churchland, and J Anthony Movshon. Putting big
data to good use in neuroscience. Nature Neuroscience, 17(11):1440, 2014.

[48] J. P. Crutchfield. The dreams of theory. WIRES Comp. Stat., 6(March/April):75–79,
2014.

[49] James H Faghmous and Vipin Kumar. A big data guide to understanding climate
change: The case for theory-guided data science. Big data, 2(3):155–163, 2014.

[50] C. Anderson. The end of theory: The data deluge makes the scientific method
obsolete. https://www.wired.com/2008/06/pb-theory/, 2008. Accessed: 2019-04-
07.

[51] V. Vapnik. The nature of statistical learning theory. Springer science & business
media, 2013.

[52] I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.

[53] T. M. Mitchell. Machine learning. McGraw Hill, 45(37):870–877, 1997.

210

https://www.elsevier.com/connect/how-big-data-advances-physics
https://www.elsevier.com/connect/how-big-data-advances-physics

[54] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[55] P. Mehta, M. Bukov, C.-H. Wang, A. G.R. Day, C. Richardson, C. K. Fisher, and
D. J. Schwab. A high-bias, low-variance introduction to machine learning for physi-
cists. Physics reports, 2019.

[56] Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence,
35(8):1798–1828, 2013.

[57] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–
297, 1995.

[58] J. Mercer. Functions of positive and negative type, and their connection the theory
of integral equations. Philosophical Transactions of the Royal Society A., 209(441-
458):415–446, 1909.

[59] M. Eigensatz. Insights into the geometry of the gaussian kernel and an application in
geometric modeling. Master’s thesis, Swiss Federal Institute of Technology Zürich,
Switzerland, 2006.

[60] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,
2015.

[61] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics
and intelligent laboratory systems, 2(1-3):37–52, 1987.

[62] P. Holmes, J.L. Lumley, G. Berkooz, and C.W. Rowley. Turbulence, Coherent Struc-
tures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge,
United Kingdom, 2012.

[63] B. O. Koopman. Hamiltonian systems and transformation in Hilbert space. Pro-
ceedings of the national academy of sciences, 17(5):315, 1931.

[64] M. Budǐsić, R. Mohr, and I. Mezić. Applied Koopmanism. Chaos: An Interdisci-
plinary Journal of Nonlinear Science, 22(4):047510, 2012.

[65] I. Mezić. Analysis of fluid flows via spectral properties of the koopman operator.
Annual Review of Fluid Mechanics, 45:357–378, 2013.

[66] P. J. Schmid. Dynamic mode decomposition of numerical and experimental data.
Journal of fluid mechanics, 656:5–28, 2010.

[67] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz. On
dynamic mode decomposition: Theory and applications. Journal of Computational
Dynamics, 1(2):391–421, 2014.

[68] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley. A data-driven approximation
of the Koopman operator: Extending dynamic mode decomposition. Journal of
Nonlinear Science, 25(6):1307–1346, 2015.

211

[69] L. Molgedey and H. G. Schuster. Separation of a mixture of independent signals
using time delayed correlations. Physical review letters, 72(23):3634, 1994.

[70] G. Pérez-Hernández, F. Paul, T. Giorgino, G. De Fabritiis, and F. Noé. Identification
of slow molecular order parameters for markov model construction. The Journal of
chemical physics, 139(1):07B604 1, 2013.

[71] G. Froyland and K. Padberg. Almost-invariant sets and invariant manifolds connect-
ing probabilistic and geometric descriptions of coherent structures in flows. Physica
D: Nonlinear Phenomena, 238(16):1507 – 1523, 2009.

[72] S. Klus, B. E. Husic, M. Mollenhauer, and F. Noé. Kernel methods for detect-
ing coherent structures in dynamical data. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 29(12):123112, 2019.

[73] H. Poincaré and D. Goroff (ed.). New Methods of Celestial Mechanics. American
Institute of Physics, 1993.

[74] E. N. Lorenz. Deterministic nonperiodic flow. J. Atmos. Sci., 20:130, 1963.

[75] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73:797–817,
1967.

[76] J. D. Meiss. Differential Dynamical Systems. Society for Industrial and Applied
Mathematics, 2007.

[77] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw. Geometry from a
time series. Phys. Rev. Let., 45:712, 1980.

[78] D. Lind and B. Marcus. An Introduction to Symbolic Dynamics and Coding. Cam-
bridge University Press, New York, 1995.

[79] R. Fischer. Sofic systems and graphs. Monastsh. Math, 80:179, 1975.

[80] R. Fischer. Graphs and symbolic dynamics. Coll. Math. Soc. Janos Bolyai, 16.
Topics in Information Theory, 1975.

[81] W. Krieger. On sofic systems i. Israel Journal of Mathematics, 48(4):305–330, 1984.

[82] S. H. Strogatz. Nonlinear Dynamics and Chaos: with applications to physics, biology,
chemistry, and engineering. Addison-Wesley, Reading, Massachusetts, 1994.

[83] J. Hadamard. Les surfaces à courbures opposées et leurs lignes géodésique. Journal
de Mathematiques Pures et Appliqué, 4:27–73, 1898.

[84] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation. Prentice-Hall, New York, third edition, 2006.

[85] B. Weiss. Subshifts of finite type and sofic systems. Monastsh. Math., 77:462, 1973.

[86] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood
Cliffs, New Jersey, 1967.

[87] B. Kitchens and S. Tuncel. Semi-groups and graphs. Israel. J. Math., 53:231, 1986.

212

[88] T. Cohen and M. Welling. Group equivariant convolutional networks. In Interna-
tional conference on machine learning, pages 2990–2999, 2016.

[89] N. Thomas, T. Smidt, S. M. Kearnes, L. Yang, L. Li, K. Kohlhoff, and P. Riley.
Tensor field networks: Rotation- and translation-equivariant neural networks for 3d
point clouds. ArXiv, abs/1802.08219, 2018.

[90] A. Salova, J. Emenheiser, A. Rupe, J. P. Crutchfield, and R. M. DSouza. Koopman
operator and its approximations for systems with symmetries. Chaos: An Interdis-
ciplinary Journal of Nonlinear Science, 29(9):093128, 2019.

[91] C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. Uni-
versity of Illinois Press, Champaign-Urbana, 1962.

[92] A. N. Kolmogorov. A new metric invariant of transient dynamical systems and au-
tomorphisms in Lebesgue spaces. Dokl. Akad. Nauk. SSSR, 119:861, 1958. (Russian)
Math. Rev. vol. 21, no. 2035a.

[93] A. N. Kolmogorov. Entropy per unit time as a metric invariant of automorphisms.
Dokl. Akad. Nauk. SSSR, 124:754, 1959. (Russian) Math. Rev. vol. 21, no. 2035b.

[94] Ya. G. Sinai. On the notion of entropy of a dynamical system. Doklady of Russian
Academy of Sciences, 124:768, 1959.

[95] J. Milnor and W. Thurston. On iterated maps of the interval. Springer Lecture
Notes, 1342:465–563, 1988.

[96] A. A. Brudno. The complexity of the trajectories of a dynamical system. Russ. Math.
Surv., 33(1):197–198, 1978. [Russian] Uspekhi Mat. Nauk 33:1 (1978), 207-208.

[97] A. A. Brudno. Entropy and the complexity of the trajectories of a dynamical sys-
tem. Trans. Moscow Math. Soc., 44:127–151, 1983. [Russian] Tr. Mosk. Mat. Obs.,
Moscow State University, Moscow, 1982, 124–149.

[98] P. Collet, J. P. Crutchfield, and J. P. Eckmann. Computing the topological entropy
of maps. Comm. Math. Phys., 88:257, 1983.

[99] J. P. Crutchfield and N. H. Packard. Symbolic dynamics of one-dimensional maps:
Entropies, finite precision, and noise. Intl. J. Theo. Phys., 21:433, 1982.

[100] S. Wolfram. Statistical mechanics of cellular automata. Rev. Mod. Phys., 55:601,
1983.

[101] S. Wolfram. Computation theory of cellular automata. Comm. Math. Phys., 96:15,
1984.

[102] P. Grassberger. Toward a quantitative theory of self-generated complexity. Intl. J.
Theo. Phys., 25:907, 1986.

[103] J. P. Crutchfield and K. Young. Inferring statistical complexity. Phys. Rev. Let.,
63:105–108, 1989.

[104] J. P. Crutchfield. Between order and chaos. Nature Physics, 8(January):17–24,
2012.

213

[105] T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley-Interscience,
New York, 1991.

[106] J. P. Crutchfield and B. S. McNamara. Equations of motion from a data series.
Complex Systems, 1:417 – 452, 1987.

[107] M. Schmidt and H. Lipson. Distilling free-form natural laws from experimental
data. Science, 324(5923):81–85, 2009.

[108] S. L. Brunton, J. L. Proctor, and J. N. Kutz. Discovering governing equations from
data by sparse identification of nonlinear dynamical systems. Proceedings of the
national academy of sciences, 113(15):3932–3937, 2016.

[109] S.-M. Udrescu and M. Tegmark. AI Feynman: A physics-inspired method for sym-
bolic regression. Science Advances, 6(16):eaay2631, 2020.

[110] C.R. Shalizi. Optimal nonlinear prediction of random fields on networks. Discrete
Mathematics & Theoretical Computer Science, 2003.

[111] E. Racah, C. Beckham, T. Maharaj, S. E. Kahou, Prabhat, and C. Pal. Ex-
tremeWeather: A large-scale climate dataset for semi-supervised detection, local-
ization, and understanding of extreme weather events. In Advances in Neural Infor-
mation Processing Systems, pages 3402–3413, 2017.

[112] C.R. Shalizi, R. Haslinger, J.-B. Rouquier, K.L. Klinkner, and C. Moore. Automatic
filters for the detection of coherent structure in spatiotemporal systems. Phys. Rev.
E, 73(3):036104, 2006.

[113] A. Hadjighasem, M. Farazmand, D. Blazevski, G. Froyland, and G. Haller. A
critical comparison of Lagrangian methods for coherent structure detection. Chaos,
27(5):053104, 2017.

[114] A. Rupe and J. P. Crutchfield. Spacetime symmetries, invariant sets, and additive
subdynamics of cellular automata. arXiv preprint arXiv:1812.11597, 2018.

[115] A. Rupe and J. P. Crutchfield. Local causal states and discrete coherent structures.
Chaos, 28(7):1–22, 2018.

[116] J. P. Crutchfield and J. E. Hanson. Turbulent pattern bases for cellular automata.
Physica D, 69:279 – 301, 1993.

[117] G. Haller. Lagrangian coherent structures. Ann. Rev. Fluid Mech., 47:137–162,
2015.

[118] T. Peacock and G. Haller. Lagrangian coherent structures: The hidden skeleton of
fluid flows. Physics Today, 66(2):41–47, 2013.

[119] E. R. Weeks, J. S. Urbach, and H. L. Swinney. Anomalous diffusion in asymmetric
random walks with a quasi-geostrophic flow example. Physica D: Nonlinear Phe-
nomena, 97(1-3):291–310, 1996.

[120] T. Von Kármán. Aerodynamics, volume 9. McGraw-Hill New York, 1963.

214

[121] S. Chen and G. D.. Doolen. Lattice boltzmann method for fluid flows. Annual
Review of Fluid Mechanics, 30(1):329–364, 1998.

[122] A. Rupe, N. Kumar, V. Epifanov, K. Kashinath, O. Pavlyk, F. Schlimbach, M. Pat-
wary, S. Maidanov, V. Lee, Prabhat, and J. P. Crutchfield. Disco: Physics-based
unsupervised discovery of coherent structures in spatiotemporal systems. In 2019
IEEE/ACM Workshop on Machine Learning in High Performance Computing Envi-
ronments (MLHPC), pages 75–87. IEEE, 2019. arXiv:1909.11822 [physics.comp-ph].

[123] K. A. Emanuel. The dependence of hurricane intensity on climate. Nature,
326(6112):483, 1987.

[124] Peter J Webster, Greg J Holland, Judith A Curry, and H-R Chang. Changes in
tropical cyclone number, duration, and intensity in a warming environment. Science,
309(5742):1844–1846, 2005.

[125] M. Mudigonda, S. Kim, A. Mahesh, S .Kahou, K. Kashinath, D. Williams,
V. Michalski, T. OBrien, and Prabhat. Segmenting and tracking extreme climate
events using neural networks. In Deep Learning for Physical Sciences (DLPS) Work-
shop, held with NIPS Conference, 2017.

[126] T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr, E. Phillips, A. Mahesh,
M. Matheson, J. Deslippe, M. Fatica, Prabhat, and M. Houston. Exascale deep
learning for climate analytics. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage, and Analysis, page 51. IEEE
Press, 2018.

[127] M. J. Chiyu, J. Huang, K. Kashinath, Prabhat, P. Marcus, and M. Niessner. Spher-
ical CNNs on unstructured grids. In International Conference on Learning Repre-
sentations, 2019.

[128] T. Cohen, M. Weiler, B. Kicanaoglu, and M. Welling. Gauge equivariant con-
volutional networks and the icosahedral CNN. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Research, pages 1321–1330,
Long Beach, California, USA, 09–15 Jun 2019. PMLR.

[129] Prabhat, O. Rbel, S. Byna, K. Wu, F. Li, M. Wehner, W. Bethel, et al. TECA: A
parallel toolkit for extreme climate analysis. In Third Worskhop on Data Mining in
Earth System Science (DMESS), 2012.

[130] C. A. Shields, J. J. Rutz, L.-Y. Leung, F. M. Ralph, M. Wehner, B. Kawzenuk, J. M.
Lora, E. McClenny, T. Osborne, A. E. Payne, P. Ullrich, A. Gershunov, N. Gold-
enson, B. Guan, Y. Qian, A. M. Ramos, C. Sarangi, S. Sellars, I. Gorodetskaya,
K. Kashinath, V. Kurlin, K. Mahoney, G. Muszynski, R. Pierce, A. C. Subramanian,
R. Tome, D. Waliser, D. Walton, G. Wick, A. Wilson, D. Lavers, Prabhat, A. Col-
low, H. Krishnan, G. Magnusdottir, and P. Nguyen. Atmospheric river tracking
method intercomparison project (ARTMIP): project goals and experimental design.
Geoscientific Model Development, 11(6):2455–2474, 2018.

215

[131] Prabhat, Karthik Kashinath, Mayur Mudigonda, Kevin Yang, Jiayi Chen, Annette
Grenier, and Benjamin Toms. ClimateNet: bringing the power of deep learning to
the climate community via open datasets and architectures.
https://www.nersc.gov/research-and-development/data-analytics/big-data-
center/climatenet/, 2018.

[132] C. Olah, A. Satyanarayan, I. Johnson, S. Carter, L. Schubert, K. Ye,
and A. Mordvintsev. The building blocks of interpretability. Distill, 2018.
https://distill.pub/2018/building-blocks.

[133] P. W. Anderson. More is different. Science, 177(4047):393–396, 1972.

[134] S. Wolfram. Undecidability and intractability in theoretical physics. Physical Review
Letters, 54(8):735, 1985.

[135] M. Gu, C. Weedbrook, A. Perales, and M. A. Nielsen. More really is different.
Physica D: Nonlinear Phenomena, 238(9-10):835–839, 2009.

[136] M. Matthew. Universality in elementary cellular automata. Complex Systems,
15(1):1–40, 2004.

[137] R. S. MacKay. Nonlinearity in complexity science. Nonlinearity, 21(12):T273, 2008.

[138] J. Ladyman, J. Lambert, and K. Wiesner. What is a complex system? European
Journal for Philosophy of Science, 3(1):33–67, 2013.

[139] S. Aaronson, S. M. Carroll, and L. Ouellette. Quantifying the rise and fall of com-
plexity in closed systems: The coffee automaton. arXiv preprint arXiv:1405.6903,
2014.

[140] S. Aaronson. NP-complete problems and physical reality. ACM Sigact News,
36(1):30–52, 2005.

[141] C. Moore. Unpredictability and undecidability in dynamical systems. Phys. Rev.
Lett., 64:2354, 1990.

[142] C. Moore and S. Mertens. The nature of computation. Oxford, 2011.

[143] J. Kari. Rice’s theorem for the limit sets of cellular automata. Theoretical computer
science, 127(2):229–254, 1994.

[144] S. Wolfram. Cellular automata as models of complexity. Nature, 311:419, 1984.

[145] N. Israeli and N. Goldenfeld. Computational irreducibility and the predictability of
complex physical systems. Physical review letters, 92(7):074105, 2004.

[146] C. Moore. Majority-vote cellular automata, Ising dynamics, and P-completeness.
Journal of Statistical Physics, 88(3-4):795–805, 1997.

[147] T. Neary and D. Woods. P-completeness of cellular automaton Rule 110. In In-
ternational Colloquium on Automata, Languages, and Programming, pages 132–143.
Springer, 2006.

216

[148] S. Arora and B. Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

[149] Scott Aaronson. P
?
=NP . In Open problems in mathematics, pages 1–122. Springer,

2016.

[150] H. Ye, R. J. Beamish, S. M. Glaser, S. C.H. Grant, C.-H. Hsieh, L. J. Richards,
J. T. Schnute, and G. Sugihara. Equation-free mechanistic ecosystem forecasting
using empirical dynamic modeling. Proceedings of the National Academy of Sciences,
112(13):E1569–E1576, 2015.

[151] M. J. Block. Surface tension as the cause of Bénard cells and surface deformation
in a liquid film. Nature, 178(4534):650–651, 1956.

[152] J.R.A. Pearson. On convection cells induced by surface tension. Journal of fluid
mechanics, 4(5):489–500, 1958.

[153] M. F. Schatz, S. J. VanHook, W. D. McCormick, J.B. Swift, and H. L. Swinney. On-
set of surface-tension-driven Bénard convection. Physical review letters, 75(10):1938,
1995.

[154] J.W. Scanlon and L.A. Segel. Finite amplitude cellular convection induced by sur-
face tension. Journal of Fluid Mechanics, 30(1):149–162, 1967.

[155] A. Cloot and G. Lebon. A nonlinear stability analysis of the Bénard–Marangoni
problem. Journal of Fluid Mechanics, 145:447–469, 1984.

[156] A. Church. A note on the entscheidungsproblem. J. Symbolic Logic, 1:40–41, 1936.

[157] A. M. Turing. On computable numbers, with an application to the entshei-
dungsproblem. Proc. Lond. Math. Soc. Ser. 2, 42:230, 1936.

[158] R. Gandy. Church’s thesis and principles for mechanisms. In Studies in Logic and
the Foundations of Mathematics, volume 101, pages 123–148. Elsevier, 1980.

[159] O. Copeland, B. J.and Shagrir. Physical computation: How general are gandys
principles for mechanisms? Minds and Machines, 17(2):217–231, 2007.

[160] A. Ginzburg. Algebraic theory of automata. Academic Press, 1968.

[161] K. Young. The Grammar and Statistical Mechanics of Complex Physical Systems.
PhD thesis, University of California, Santa Cruz, 1991. published by University
Microfilms Intl, Ann Arbor, Michigan.

[162] M. Casdagli and S. Eubank, editors. Nonlinear Modeling, SFI Studies in the Sciences
of Complexity, Reading, Massachusetts, 1992. Addison-Wesley.

[163] N. Rubido, C. Grebogi, and M. S. Baptista. Entropy-based generating Markov
partitions for complex systems. Chaos: An Interdisciplinary Journal of Nonlinear
Science, 28(3):033611, 2018.

[164] L.-S. Young. Entropy in dynamical systems. Entropy, 313, 2003.

217

[165] R. M. May. Simple mathematical models with very complicated dynamics. Nature,
261(5560):459–467, 1976.

[166] P. Collet and J.-P. Eckmann. Maps of the Unit Interval as Dynamical Systems.
Birkhauser, Berlin, 1980.

[167] Y. B. Pesin. Characteristic lyapunov exponents and smooth ergodic theory. Russian
Mathematical Surveys, 32(4):55–112, 1977.

[168] D. Ruelle. An inequality for the entropy of differentiable maps. Boletim da Sociedade
Brasileira de Matemática-Bulletin/Brazilian Mathematical Society, 9(1):83–87, 1978.

[169] C. R. Shalizi and J. P. Crutchfield. Computational mechanics: Pattern and predic-
tion, structure and simplicity. J. Stat. Phys., 104:817–879, 2001.

[170] G. A. Hedlund. Endomorphisms and automorphisms of the shift dynamical system.
Theory of Computing Systems, 3(4):320–375, 1969.

[171] B. Kitchens and S. Tuncel. Finitary measures for subshifts of finite type and sofic
systems. Memoirs of the AMS, 58:no. 338, 1985.

[172] M. Boyle and K. Petersen. Hidden Markov processes in the context of symbolic
dynamics. arXiv preprint arXiv:0907.1858, 2009.

[173] J.L Schiff. Cellular Automata: a Discrete View of the World, volume 45. John
Wiley & Sons, 2011.

[174] S. Wolfram. Theory and Applications of Cellular Automata. World Scientific Pub-
lishers, Singapore, 1986.

[175] T. Ceccherini-Silberstein and M. Coornaert. Cellular Automata and Groups.
Springer Science & Business Media, 2010.

[176] D. Lind. Multi-dimensional symbolic dynamics. In Symbolic Dynamics and its
Applications, volume 60, pages 61–80. American Mathematical Society, 2004.

[177] K. Schmidt. Dynamical systems of algebraic origin. Springer Science & Business
Media, 1995.

[178] M. Hochman. Multidimensional shifts of finite type and sofic shifts. In Combina-
torics, Words and Symbolic Dynamics, pages 296–359. Cambridge University Press,
2016.

[179] R. Berger. The undecidability of the domino problem. Number 66. American Math-
ematical Soc., 1966.

[180] R. M. Robinson. Undecidability and nonperiodicity for tilings of the plane. Inven-
tiones mathematicae, 12(3):177–209, 1971.

[181] D. R. Upper. Theory and Algorithms for Hidden Markov Models and Generalized
Hidden Markov Models. PhD thesis, University of California, Berkeley, 1997. Pub-
lished by University Microfilms Intl, Ann Arbor, Michigan.

218

[182] N. Travers and J. P. Crutchfield. Equivalence of history and generator ε-
machines. Physical Review E, page in press, 2014. SFI Working Paper 11-11-051;
arxiv.org:1111.4500 [math.PR].

[183] J. Ruebeck, R. G. James, John R. Mahoney, and J. P. Crutchfield. Prediction
and generation of binary Markov processes: Can a finite- state fox catch a markov
mouse? CHAOS, 28:013109, 2018.

[184] J. P. Crutchfield and D. P. Feldman. Regularities unseen, randomness observed:
Levels of entropy convergence. CHAOS, 13(1):25–54, 2003.

[185] R. G. James, C. J. Ellison, and J. P. Crutchfield. Anatomy of a bit: Information in
a time series observation. CHAOS, 21(3):037109, 2011.

[186] J. P. Crutchfield, C. J. Ellison, and J. R. Mahoney. Time’s barbed arrow: Irre-
versibility, crypticity, and stored information. Phys. Rev. Lett., 103(9):094101, 2009.

[187] J. P. Crutchfield, C. J. Ellison, J. R. Mahoney, and R. G. James. Synchronization
and control in intrinsic and designed computation: An information-theoretic analysis
of competing models of stochastic computation. CHAOS, 20(3):037105, 2010. Santa
Fe Institute Working Paper 10-08-015; arxiv.org:1007.5354 [cond-mat.stat-mech].

[188] J. P. Crutchfield, P. Riechers, and C. J. Ellison. Exact complexity: Spectral decom-
position of intrinsic computation. Phys. Lett. A, 380(9-10):998–1002, 2015.

[189] P. M. Ara, R. G. James, and J. P. Crutchfield. The elusive present: Hidden past
and future dependence and why we build models. Phys. Rev. E, 93(2):022143, 2016.
SFI Working Paper 15-07-024; arxiv.org:1507.00672 [cond-mat.stat-mech].

[190] A. N. Kolmogorov. Three approaches to the concept of the amount of information.
Prob. Info. Trans., 1:1, 1965.

[191] G. Chaitin. On the length of programs for computing finite binary sequences. J.
ACM, 13:145, 1966.

[192] M. Li and P. M. B. Vitanyi. An Introduction to Kolmogorov Complexity and its
Applications. Springer-Verlag, New York, 1993.

[193] J. P. Crutchfield. Discovering coherent structures in nonlinear spatial systems. In
A. Brandt, S. Ramberg, and M. Shlesinger, editors, Nonlinear Ocean Waves, pages
190–216, Singapore, 1992. World Scientific. also appears in Complexity in Physics
and Technology, R. Vilela-Mendes, editor, World Scientific, Singapore (1992).

[194] J. P. Crutchfield and J. E. Hanson. Attractor vicinity decay for a cellular automaton.
CHAOS, 3(2):215–224, 1993.

[195] A. Rupe and J. P. Crutchfield. Spatiotemporal computational mechanics. 2020. in
preparation.

[196] K. Lindgren, C. Moore, and M. Nordahl. Complexity of two-dimensional patterns.
J. Stat. Phys., 91:909–951, 1998.

219

[197] J. P. Crutchfield. Semantics and thermodynamics. In M. Casdagli and S. Eubank,
editors, Nonlinear Modeling and Forecasting, volume XII of Santa Fe Institute Stud-
ies in the Sciences of Complexity, pages 317 – 359, Reading, Massachusetts, 1992.
Addison-Wesley.

[198] J. P. Crutchfield and M. Mitchell. The evolution of emergent computation. Proc.
Natl. Acad. Sci., 92:10742–10746, 1995.

[199] C. S. McTague and J. P. Crutchfield. Automated pattern discovery—An algorithm
for constructing optimally synchronizing multi-regular language filters. Theo. Comp.
Sci., 359(1-3):306–328, 2006.

[200] J. G. Brookshear. Theory of computation: Formal languages, automata, and com-
plexity. Benjamin/Cummings, Redwood City, California, 1989.

[201] W.-K. Tung. Group Theory in Physics: an Introduction to Symmetry Principles,
Group Representations, and Special Functions in Classical and Quantum Physics.
World Scientific Publishing Co Inc, Philidelphia, 1985.

[202] M.V. Lawson. Inverse Semigroups: the Theory of Partial Symmetries. World Sci-
entific, 1998.

[203] J. Rhodes. Applications of Automata Theory and Algebraic via the Mathemati-
cal Theory of Complexity to Biology, Physics, Psychology, Philosophy, Games, and
Codes. University of California, Berkeley, California, 1971. C. Nehaniv, editor, World
Scientific Publishing Company, Singapore (2009).

[204] W. M. L. Holcombe. Algebraic Automata Theory. Cambridge University Press,
Cambridge, 1982.

[205] H. Haken. Synergetics, An Introduction. Springer, Berlin, third edition, 1983.

[206] J. P. Sethna. Order parameters, broken symmetry, and topology. arXiv:9204009.

[207] M. Livio. Physics: Why symmetry matters. Nature, 490(7421):472–473, 2012.

[208] E.D. Siggia and A. Zippelius. Dynamics of defects in rayleigh-bénard convection.
Physical Review A, 24(2):1036, 1981.

[209] B. D. Johnson, J. P. Crutchfield, C. J. Ellison, and C. S. McTague. Enumerating
finitary processes. arxiv.org:1011.0036.

[210] J. P. Crutchfield and C. S. McTague. Unveiling an enigma: Patterns in elementary
cellular automaton 22 and how to discover them. 2002. Santa Fe Institute Technical
Report.

[211] J. D. Farmer, T. Toffoli, and S. Wolfram, editors. Cellular Automata, Proceed-
ings of an Interdisciplinary Workshop, Amsterdam, 1984. North-Holland Publishing
Company.

[212] N. H. Packard and S. Wolfram. Two-dimensional cellular automata. J. Stat. Physics,
38(5–6):901–946, 1985.

220

[213] T. Toffoli and N. Margolis. Cellular Automata Machines: A New Environment for
Modeling. MIT Press, Cambridge, Massachusetts, 1987.

[214] H. Gutowitz. Cellular Automata: Theory and Experiment. Special Issues of Physica
D. Bradford Books, Cambridge, Massachusetts, 1991.

[215] O. Martin, A. Odlyzko, and S. Wolfram. Algebraic properties of cellular automata.
Commun. Math. Phys., 93:219, 1984.

[216] D. A. Lind. Applications of ergodic theory and sofic systems to cellular automata.
Physica, 10D:36, 1984.

[217] P. Grassberger. New mechanism for deterministic diffusion. Phys. Rev. A, 28:3666,
1983.

[218] E. Jen. Exact solvability and quasiperiodicity of one-dimensional cellular automata.
Nonlinearity, 4:251, 1990.

[219] C. Moore. Quasilinear cellular automata. Physica D: Nonlinear Phenomena, 103(1-
4):100–132, 1997.

[220] J. Gravner and D. Griffeath. The one-dimensional Exactly 1 cellular automaton:
Replication, periodicity, and chaos from finite seeds. J. Stat. Physics, 142(1):168–
200, 2011.

[221] L. Le Bruyn and M. Van den Bergh. Algebraic properties of linear cellular automata.
Linear Algebra and its Applications, 157:217–234, 1991.

[222] D. A. Lind. The structure of skew products with ergodic group automorphisms.
Israel J. Math., 28(3):205–248, 1977.

[223] K. Eloranta. Partially permutive cellular automata. Nonlinearity, 6(6):1009, 1993.

[224] P. Grassberger. Long-range effects in an elementary cellular automaton. J. Stat.
Physics, 45(1-2):27–39, 1986.

[225] M. R. Allshouse and T. Peacock. Lagrangian based methods for coherent structure
detection. Chaos, 25(9):097617, 2015.

[226] T. Sapsis and G. Haller. Inertial particle dynamics in a hurricane. J. Atmos. Sci.,
66(8):2481–2492, 2009.

[227] F. Vitart, J.L. Anderson, and W.F. Stern. Simulation of interannual variability of
tropical storm frequency in an ensemble of GCM integrations. J. Climate, 10(4):745–
760, 1997.

[228] K. Walsh and I.G. Watterson. Tropical cyclone-like vortices in a limited area model:
Comparison with observed climatology. J. Climate, 10(9):2240–2259, 1997.

[229] Prabhat, S. Byna, V. Vishwanath, E. Dart, M. Wehner, W. D. Collins, et al. TECA:
Petascale pattern recognition for climate science. In International Conference on
Computer Analysis of Images and Patterns, pages 426–436. Springer, 2015.

221

[230] C.M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
2006.

[231] H. Jänicke, A. Wiebel, G. Scheuermann, and W. Kollmann. Multifield visualization
using local statistical complexity. IEEE Trans. Vis. Comp. Graphics, 13(6):1384–
1391, 2007.

[232] H. Jänicke and G. Scheuermann. Towards automatic feature-based visualization. In
Dagstuhl Follow-Ups, volume 1. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2010.

[233] G.M Goerg and C.R. Shalizi. LICORS: Light cone reconstruction of states for
non-parametric forecasting of spatio-temporal systems. arXiv:1206.2398.

[234] G.M. Goerg and C.R. Shalizi. Mixed LICORS: A nonparametric algorithm for
predictive state reconstruction. In Artificial Intelligence and Statistics, pages 289–
297, 2013.

[235] J.T. Lizier, M. Prokopenko, and A.Y. Zomaya. Local information transfer as a
spatiotemporal filter for complex systems. Phys. Rev. E, 77(2):026110, 2008.

[236] J. Lizier, M. Prokopenko, and A. Zomaya. Information modification and particle
collisions in distributed computation. CHAOS, 20(3):037109, 2010.

[237] B. Flecker, W. Alford, J. M. Beggs, P. L. Williams, and R. D. Beer. Partial infor-
mation decomposition as a spatiotemporal filter. CHAOS, 21(3):037104, 2011.

[238] J.T. Lizier, B. Flecker, and P.L. Williams. Towards a synergy-based approach to
measuring information modification. In Artificial Life (ALIFE), 2013 IEEE Sympo-
sium on, pages 43–51. IEEE, 2013.

[239] R. G. James, N. Barnett, and J. P. Crutchfield. Information flows? A critique of
transfer entropies. Phys. Rev. Lett., 116(23):238701, 2016.

[240] R. G. James and J. P. Crutchfield. Multivariate dependence beyond shannon infor-
mation. Entropy, 19:531, 2017.

[241] K. Eloranta and E. Nummelin. The kink of cellular automaton rule 18 performs a
random walk. J. Stat. Phys., 69:1131–1136, 1992.

[242] N. Boccara, J. Nasser, and M. Roger. Particlelike structures and their interac-
tions in spatiotemporal patterns generated by one-dimensional deterministic cellular-
automaton rules. Phys. Rev. A, 44:866, 1991.

[243] K. Eloranta. The dynamics of defect ensembles in one-dimensional cellular au-
tomata. J. Stat. Phys., 76(5/6):1377–1398, 1994.

[244] Y. Liu, E. Racah, Prabhat, J. Correa, A. Khosrowshahi, D. Lavers, K. Kunkel,
M. Wehner, and W. Collins. Application of deep convolutional neural networks for
detecting extreme weather in climate datasets. arXiv:1605.01156.

[245] P. Baldi, P. Sadowski, and D. Whiteson. Searching for exotic particles in high-energy
physics with deep learning. Nature Comm., 5:4308, 2014.

222

[246] Gordon Bell, Tony Hey, and Alex Szalay. Beyond the data deluge. Science,
323(5919):1297–1298, 2009.

[247] Jonathan T. Overpeck, Gerald A. Meehl, Sandrine Bony, and David R. Easterling.
Climate data challenges in the 21st century. Science, 331(6018):700–702, 2011.

[248] L. C. Gillet, A. Leitner, and R. Aebersold. Mass spectrometry applied to bottom-up
proteomics: Entering the high-throughput era for hypothesis testing. Annual Review
of Analytical Chemistry, 9:449–472, 2016.

[249] Eric Mjolsness and Dennis DeCoste. Machine learning for science: State of the art
and future prospects. Science, 293(5537):2051–2055, 2001.

[250] Pedro Larranaga, Borja Calvo, Roberto Santana, Concha Bielza, Josu Galdiano,
Inaki Inza, José A Lozano, Rubén Armananzas, Guzmán Santafé, Aritz Pérez, and
Victor Robles. Machine learning in bioinformatics. Briefings in Bioinformatics,
7(1):86–112, 2006.

[251] Keith T Butler, Daniel W Davies, Hugh Cartwright, Olexandr Isayev, and Aron
Walsh. Machine learning for molecular and materials science. Nature, 559(7715):547,
2018.

[252] Nicola Jones. How machine learning could help to improve climate forecasts. Nature
News, 548(7668):379, 2017.

[253] Jordan Venderley, Vedika Khemani, and Eun-Ah Kim. Machine learning out-of-
equilibrium phases of matter. Phys. Rev. Lett., 120:257204, Jun 2018.

[254] Seonwoo Min, Byunghan Lee, and Sungroh Yoon. Deep learning in bioinformatics.
Briefings in Bioinformatics, 18(5):851–869, 2017.

[255] Giuseppe Carleo and Matthias Troyer. Solving the quantum many-body problem
with artificial neural networks. Science, 355(6325):602–606, 2017.

[256] Markus Reichstein, Gustau Camps-Valls, Bjorn Stevens, Martin Jung, Joachim
Denzler, Nuno Carvalhais, and Prabhat. Deep learning and process understand-
ing for data-driven Earth system science. Nature, 566(7743):195, 2019.

[257] Wahid Bhimji, Steven Andrew Farrell, Thorsten Kurth, Michela Paganini, Prabhat,
and Evan Racah. Deep neural networks for physics analysis on low-level whole-
detector data at the LHC. In Journal of Physics: Conference Series, volume 1085,
page 042034. IOP Publishing, 2018.

[258] Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James
Arnemann, Lei Shao, Siyu He, Tuomas Kärnä, Diana Moise, Pennycook, Kristyn
Maschhoff, Jason Sewall, Nalini Kumar, Shirley Ho, Michael F. Ringenburg, Prab-
hat, and Victor Lee. CosmoFlow: Using deep learning to learn the universe at scale.
In SC18: International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 819–829. IEEE, 2018.

223

[259] Michael F Wehner, G Bala, Phillip Duffy, Arthur A Mirin, and Raquel Romano.
Towards direct simulation of future tropical cyclone statistics in a high-resolution
global atmospheric model. Advances in Meteorology, 2010, 2010.

[260] George D Montanez and Cosma Rohilla Shalizi. The LICORS cabinet: Nonpara-
metric algorithms for spatio-temporal prediction. arXiv preprint arXiv:1506.02686,
2015.

[261] H. Jaeger. The echo state approach to analysing and training recurrent neural
networks-with an erratum note. Bonn, Germany: German National Research Center
for Information Technology GMD Technical Report, 148(34):13, 2001.

[262] T. A. OBrien, K. Kashinath, N. R. Cavanaugh, W. D. Collins, and J. P. OBrien.
A fast and objective multidimensional kernel density estimation method: fastKDE.
Computational Statistics & Data Analysis, 101:148 – 160, 2016.

[263] Zahra Ronaghi, Rollin Thomas, Jack Deslippe, Stephen Bailey, Doga Gursoy,
Theodore Kisner, Reijo Keskitalo, and Julian Borrill. Python in the nersc exas-
cale science applications program for data. In Proceedings of the 7th Workshop on
Python for High-Performance and Scientific Computing, page 4. ACM, 2017.

[264] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seed-
ing. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

[265] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, et al. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Kdd,
volume 96, pages 226–231, 1996.

[266] Ian Jolliffe. Principal Component Analysis. Springer, 2011.

[267] Alexis Tantet, Fiona R. van der Burgt, and Henk A. Dijkstra. An early warn-
ing indicator for atmospheric blocking events using transfer operators. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 25(3):036406, 2015.

[268] X. Xia and B. Kulis. W-net: A deep model for fully unsupervised image segmenta-
tion. arXiv preprint arXiv:1711.08506, 2017.

[269] Parallel k-means data clustering. http://www.ece.northwestern.edu/~wkliao/

Kmeans/index.html, Accessed: 2019-04-08.

[270] Parallel k-means data clustering for large data sets. http://www.ece.

northwestern.edu/~wkliao/Kmeans/kmeans_int64.html, Accessed: 2019-04-08.

[271] Sunwoo Lee, Wei-keng Liao, Ankit Agrawal, Nikos Hardavellas, and Alok Choud-
hary. Evaluation of k-means data clustering algorithm on intel xeon phi. In 2016
IEEE International Conference on Big Data (Big Data), pages 2251–2260. IEEE,
2016.

[272] Liandeng Li, Teng Yu, Wenlai Zhao, Haohuan Fu, Chenyu Wang, Li Tan, Guangwen
Yang, and John Thomson. Large-scale hierarchical k-means for heterogeneous many-
core supercomputers. In SC18: International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 160–170. IEEE, 2018.

224

http://www.ece.northwestern.edu/~wkliao/Kmeans/index.html
http://www.ece.northwestern.edu/~wkliao/Kmeans/index.html
http://www.ece.northwestern.edu/~wkliao/Kmeans/kmeans_int64.html
http://www.ece.northwestern.edu/~wkliao/Kmeans/kmeans_int64.html

[273] Md Mostofa Ali Patwary, Suren Byna, Nadathur Rajagopalan Satish, Narayanan
Sundaram, Zarija Lukić, Vadim Roytershteyn, Michael J Anderson, Yushu Yao,
Pradeep Dubey, et al. Bd-cats: big data clustering at trillion particle scale. In
SC’15: Proceedings of the International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, pages 1–12. IEEE, 2015.

[274] Mostofa Ali Patwary, Diana Palsetia, Ankit Agrawal, Wei-keng Liao, Fredrik
Manne, and Alok Choudhary. Scalable parallel optics data clustering using graph
algorithmic techniques. In Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, page 49. ACM, 2013.

[275] Inc. Petuum. Scalable clustering for exploratory
data analysis. https://medium.com/@Petuum/

scalable-clustering-for-exploratory-data-analysis-60b27ea0fb06, Ac-
cessed: 2019-04-08.

[276] Yike Guo and Robert Grossman. A fast parallel clustering algorithm for large spatial
databases, high performance data mining. 2002.

[277] Xu Hu, Jun Huang, Minghui Qiu, Cen Chen, and Wei Chu. Ps-dbscan: An ef-
ficient parallel dbscan algorithm based on platform of ai (pai). arXiv preprint
arXiv:1711.01034, 2017.

[278] Md Mostofa Ali Patwary. Pdsdbscan source code. Web page http://users. eecs.
northwestern. edu/˜ mpatwary/Software. html, 2015.

[279] Markus Götz, Christian Bodenstein, and Morris Riedel. Hpdbscan: highly parallel
dbscan. In Proceedings of the workshop on machine learning in high-performance
computing environments, page 2. ACM, 2015.

[280] Intel. Fast, scalable and easy machine learning with daal4py. https://

intelpython.github.io/daal4py/index.html, Accessed: 2019-04-08.

[281] NASA. Jupiter cloud sequence from cassini. https://svs.gsfc.nasa.gov/

cgi-bin/details.cgi?aid=3610, Accessed: 2019-03-14.

[282] M. Farazmand. An adjoint-based approach for finding invariant solutions of navier-
stokes equations. J. Fluid Mech., 795:278–312, 2016.

[283] Michael F. Wehner, Kevin Reed, Fuyu Li, Prabhat, Julio Bacmeister, Cheng-Ta
Chen, Chris Paciorek, Peter Gleckler, Ken Sperber, William D. Collins, Andrew
Gettelman, and Christiane Jablonowski. The effect of horizontal resolution on sim-
ulation quality in the community atmospheric model, cam5.1. Journal of Modeling
the Earth System, 06:980–997, 2014.

[284] Sergey Maidanov. Performing numerical analysis and data ana-
lytics with python at scale. https://www.ixpug.org/documents/

1526053887xpug-maidanov-scalablescience.pdf, Accessed: 2019-04-08.

[285] Brenden Epps. Review of vortex identification methods. In 55th AIAA Aerospace
Sciences Meeting, page 0989, 2017.

225

https://medium.com/@Petuum/scalable-clustering-for-exploratory-data-analysis-60b27ea0fb06
https://medium.com/@Petuum/scalable-clustering-for-exploratory-data-analysis-60b27ea0fb06
https://intelpython.github.io/daal4py/index.html
https://intelpython.github.io/daal4py/index.html
https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=3610
https://svs.gsfc.nasa.gov/cgi-bin/details.cgi?aid=3610
https://www.ixpug.org/documents/1526053887xpug-maidanov-scalablescience.pdf
https://www.ixpug.org/documents/1526053887xpug-maidanov-scalablescience.pdf

[286] Alireza Hadjighasem and George Haller. Geodesic transport barriers in Jupiter’s
atmosphere: Video-based analysis. Siam Review, 58(1):69–89, 2016.

[287] G. Haller, A. Hadjighasem, M. Farazmand, and F. Huhn. Defining coherent vortices
objectively from the vorticity. Journal of Fluid Mechanics, 795:136–173, 2016.

[288] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey on unsupervised
outlier detection in high-dimensional numerical data. Statistical Analysis and Data
Mining: The ASA Data Science Journal, 5(5):363–387, 2012.

[289] R. B. Marimont and M. B. Shapiro. Nearest Neighbour Searches and the Curse of
Dimensionality. IMA Journal of Applied Mathematics, 24(1):59–70, 08 1979.

[290] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. OP-
TICS: Ordering points to identify the clustering structure. In ACM Sigmod record,
volume 28, pages 49–60. ACM, 1999.

[291] Leland McInnes, John Healy, and Steve Astels. hdbscan: Hierarchical density based
clustering. The Journal of Open Source Software, 2(11):205, 2017.

226

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Pattern and Structure
	In Nature
	Near Equilibrium
	Far From Equilibrium

	In Data
	Machine Learning
	Representation Learning

	In Theory
	Computational Mechanics

	In Cellular Automata
	In Complex Fluid Flows
	Extreme Weather and Climate Change

	Complexity, Emergence, and Computation
	A Quick Example: Mechanisms of Instability in Bénard Convection

	Mathematical Preliminaries
	Theory of Computation and Complex Dynamical Systems
	Physics of Computation
	Dynamical Structure Modeling

	Measurement Theory
	Measurements of a Dynamical System

	Symbolic Dynamics
	Shift Spaces
	Stochastic Processes

	Spatiotemporal Processes
	Topology of Configurations
	Dynamics
	Shift Spaces in Spacetime
	Spacetime Stochastic Processes

	Computational Mechanics
	Temporal Presentations
	Causal States and the Causal Equivalence Relation
	Causal State Transitions
	Basic Measures
	Topological Machines
	An Example: The Even Shift
	Algebraic Theory of Patterns as Generalized Symmetries

	Spatiotemporal Presentations
	Global -Machine
	Local Causal States

	Cellular Automata: Domain Patterns
	Cellular Automata
	Elementary Cellular Automata

	Topological Reconstruction
	Automata-Theoretic CA Evolution
	CA Domains
	DPID Patterns: Spacetime Invariant Sets
	Local Causal State Symmetries
	Domain Classification: Explicit vs Hidden Symmetry

	Cellular Automata: Domain Subdynamics
	Additive CAs
	CA Subdynamics
	Lookup Table Linearizations
	Language-Restricted Lookup Tables

	Domain-Restricted Lookup Tables and Their Linearizations
	Additive CAs Produce Only Domains
	Causal asymmetry of Rule 60

	Explicit Symmetry Domains
	Hidden Symmetry Domains and ECA Rule 90
	Invariant Subshifts of Rule 90
	Rule 22

	A Non-Additive Domain
	Conclusion
	Appendices
	Proof of Theorem 1

	Cellular Automata: Coherent Structures
	Structures as Domain Deviations
	Explicit Symmetry CAs
	ECA 54's Domain
	ECA 54's Structures
	ECA 110

	Hidden Symmetry CAs
	ECA 18's Domain
	ECA 18's Structures

	Remarks
	Conclusion

	Coherent Structures in Complex Fluid Flows
	Reconstruction and Approximations
	Setup
	Reconstruction Formalism
	Reconstruction Algorithm
	Distributed Reconstruction Pipeline

	DisCo – HPC Implementation in Python
	Contributions
	Related Work
	Challenges of Lightcone Clustering
	Experimental Setup
	Performance Results
	Hero Run
	Intel Legal Disclaimers

	Lagrangian Coherent Structures
	Reconstruction Parameters
	2D Turbulence
	Clouds of Jupiter
	Lightcone Clustering Revisited

	Extreme Weather Events

