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The workshop on “Randomness, Structure, and
Causality: Measures of Complexity from Theory
to Applications” was held at the Santa Fe Insti-
tute in January 2011. This Focus Issue records
work that was presented at and stimulated by
this workshop. The contributions treat both fun-
damental questions in the theory of complex sys-
tems and information theory and their applica-
tion to a wide range of disciplines including biol-
ogy, linguistics, computation, and dynamical sys-
tems.

I. INTRODUCTION

In 1989, the Santa Fe Institute (SFI) hosted a
workshop—Complexity, Entropy, and the Physics of In-
formation—on fundamental definitions of complexity.
This workshop and the proceedings that resulted [1] stim-
ulated a great deal of thinking about how to define com-
plexity. In many ways—some direct, many indirect—the
foundational theme of the workshop colored much of the
evolution of complex systems science since then. Com-
plex systems science has considerably matured as a field
in the intervening decades. As a result, it struck us that
it was time to revisit fundamental aspects of this nascent
field in a workshop. Partly, this was to take stock; but
it was also to ask what innovations are needed for the
coming decades, as complex systems ideas continue to
extend their influence in the sciences, engineering, and
humanities.

The workshop’s goal was to bring together researchers
from a variety of fields to discuss structural and dynami-
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cal measures of complexity appropriate for their field and
the commonality between these measures. Some of the
questions addressed were:

1. Are there fundamental measures of complexity that
can be applied across disciplines or are measures of
complexity necessarily tied to particular domains?

2. How is a system’s causal organization, reflected in
models of its dynamics, related to its complexity?

3. Are there universal mechanisms at work that lead
to increases in complexity or does complexity arise
for qualitatively different reasons in different set-
tings?

4. Can we reach agreement on general properties that
all measures of complexity must have?

5. How would the scientific community benefit from a
consensus on the properties that measures of com-
plexity should possess?

6. Some proposed measures of complexity are difficult
to effectively compute. Is this problem inherent in
measures of complexity generally or an indication
of an unsuitable measure?

The Santa Fe Institute hosted 20 workshop partici-
pants in mid-January 2011. It turned out to be a stimu-
lating and highly interdisciplinary group with represen-
tation from physics, biology, computer science, social sci-
ence, and mathematics. An important goal was to under-
stand the successes and difficulties in deploying complex-
ity measures in practice. And so, participants came from
both theory and experiment, with a particular emphasis
on those who have constructively bridged the two.

Since the 1989 SFI workshop, a number of distinct
strands have developed in the effort to define and mea-
sure complexity. Several of the well developed strands
are based on:

• Predictive information and excess entropy [2–7],
• Statistical complexity and causal structure [8–10],
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• Logical depth and computational complexity [11–
15], and

• Effective complexity [16, 17].

While these measures are broadly based on information
theory or the theory of computation, the full set of con-
nections and contrasts between them has not been suffi-
ciently well fleshed out. Some have sought to clarify the
relationship among these measures [7, 17–21] and one
goal of the workshop was to foster this kind of compar-
ative work by bringing together researchers developing
various measures.

A number of lessons devolved from these early efforts,
though. Several come immediately to mind:

1. There are two quite different but complementary
meanings of the term “complexity”. The term is
used both to indicate randomness and structure.
As workshop discussions repeatedly demonstrated,
these are diametrically opposed concepts. Conflat-
ing them has led to much confusion.

2. Moreover, a correct understanding of complexity
reveals that both are required elements of complex
systems. In particular, we now have a large number
of cases demonstrating that structural complexity
arises from the dynamical interplay of tendencies to
order and tendencies to randomness. Organization
in critical phenomena arising at continuous phase
transitions is only one example—and a static ex-
ample at that. Much of the work described in the
Focus Issue addresses the interplay of randomness
and structure in complex systems.

3. Even if one concentrates only on detecting and
measuring randomness, one must know how the un-
derlying system is organized. The flip side is that
missing underlying structure leads one to conclude
that a process is more random than it really is.

4. Elaborating on the original concept of extracting
“Geometry from a Times Series” [22], we now know
that processes do tell us how they are best repre-
sented. This, in turn, lends credence to the original
call for “artificial science” [8]—a science that auto-
matically builds theories of natural systems.

The lessons echoed throughout the workshop and can be
seen operating in the Focus Issue contributions.

A second motivation for the workshop was to bring to-
gether workers interested in foundational questions—who
were mainly from the physics, mathematics, and com-
puter science communities—with complex systems scien-
tists in experimental, data-driven fields who have devel-
oped quantitative measures of complexity, organization,
and emergence that are useful in their fields. The range
of data-driven fields using complexity measures is impres-
sively broad: ranging from molecular excitation dynam-
ics [23] and spectroscopic observations of the conforma-
tional dynamics of single molecules [24] through model-
ing subgrid structure in turbulent fluid flows [25] and new

visualization methods for emergent flow patterns [26] to
monitoring market efficiency [27] and the organization of
animal social structure [28]. In this light, the intention
was to find relations between the practically motivated
measures and the more general and fundamentally moti-
vated measures. Can the practically motivated measures
be improved by an appreciation of fundamental princi-
ples? Can fundamental definitions be sharpened by con-
sidering how they interact with real-world data?

The workshop’s goal was to re-ignite the efforts that
began with Complexity, Entropy, and the Physics of In-
formation workshop. A new level of rigor, in concepts
and in analysis, is now apparent in how statistical me-
chanics, information theory, and computation theory can
be applied to complex systems. The meteoric rise of both
computer power and machine learning has led to new al-
gorithms that address many of the computational diffi-
culties in managing data from complex systems and in
estimating various complexity measures. Given progress
on all these fronts, the time was ripe to develop a much
closer connection between fundamental theory and appli-
cations in many areas of complex systems science.

II. OVERVIEW OF CONTRIBUTIONS TO THE
FOCUS ISSUE

The Focus Issue reflects the work of a highly interdis-
ciplinary group of contributors representing engineering,
physics, chemistry, biology, neuroscience, cognition, com-
puter science, and mathematics. An important goal was
to understand the successes and difficulties in deploying
these concepts in practice. Here is a brief preview of
those contributions.

A Geometric Approach to Complexity by Nihat Ay:
Ay develops a thorough-going mathematical treatment
of the complexity question, from the point of view of
the relationship of whole versus the parts. This builds a
bridge to the differential geometric approach to statisti-
cal inference pioneered by Amari in artificial neural net-
works. New here, Ay connects the approach to Markov
processes, going beyond merely thinking of in terms of
“nodes on a graph”.

Partial Information Decomposition as a Spatiotempo-
ral Filter by Benjamin Flecker, Wesley Alford, John
Beggs, Paul Williams, and Randall Beer: The authors
apply their new method of partial information decom-
position to analyze the spacetime information dynam-
ics generated by elementary cellular automata. This re-
frames recent efforts to develop a theory of local infor-
mation storage, transfer, and modification. They show
that prior approaches can be reinterpreted and recast
into a clearer form using partial information decompo-
sition. In particular, one that does not require an arbi-
trarily selected threshold for detection. Importantly, the
decomposition suggests a new level of semantic analysis
of what would otherwise be mere syntactic information.
The authors compare alternative approaches to captur-
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ing the emergent structures in several elementary cellular
automata. The contribution gives a concrete example of
why and how the partial information decomposition is a
valuable addition to the field of multivariate information
theory.

Excess Entropy in Natural Language: Present State
and Perspectives by Lukasz Debowski: Debowski ex-
plains various empirically observed phenomena in quan-
titative linguistics, using information theory and a math-
ematical model of human communication in which texts
are assumed to describe an infinite set of facts in a highly
repetitive fashion. He develops a relation between Her-
dan’s law on the power-law growth of the number of dis-
tinct words used in a text of length n and Hilberg’s con-
jecture on the power-law growth of n-symbol block en-
tropies and mutual informations. Debowski introduces
a stationary time series, the “Santa Fe process” that il-
lustrates these ideas. Finally, Debowski proposes that
maximizing mutual information (excess entropy) between
adjacent text blocks leads to the emergence of random hi-
erarchical structures. Overall, the result is a macroscopic
view of the human communication system.

Effective Theories for Circuits and Automata by Simon
DeDeo: DeDeo proposes a method to construct effec-
tive, coarse-grained theories from an underlying detailed
mechanistic theory. This is developed in the setting of
finite-state automata, with a given automaton standing
in as the detailed “theory” for a phenomenon and the
words recognized by the automaton being the possible
“behaviors”. The main technical tools come from semi-
group theory and, in particular, one of its main results—
the Krohn-Rhodes decomposition. The overall result is
a pragmatic demonstration of the utility for nonlinear
dynamics and the physical sciences of a hitherto little
known but powerful mathematical formalism.

Information Symmetries in Irreversible Processes by
Chris Ellison, John Mahoney, Ryan James, James
Crutchfield, and Jörg Reichardt: The authors intro-
duce the notion of dynamical irreversibility that, as
they note, extends thermodynamically irreversible pro-
cesses to nonequilibrium steady states. They find that
most processes are dynamically irreversible: Most finite-
memory processes appear statistically and structurally
different in forward and reverse time. The methods in-
troduced are constructive and lead directly to algorithms
that efficiently estimate a number of complexity mea-
sures.

Local Information Measures for Spin Glasses by
Matthew Robinson, David Feldman, and Susan McKay:
The authors consider a disordered spin model from the
perspective of local entropy densities—a novel way of
characterizing disordered systems. They demonstrate the
power of information-theoretic methods in the setting of
quenched randomness. These methods have been proved
valid for homogeneous systems, but their correctness had
not been verified for diluted systems. The authors pro-
vide numerical evidence for just this and explore the con-
sequences.

Challenges for Empirical Complexity Measures: A
Perspective from Social Dynamics and Collective Social
Computation by Jessica Flack and David Krakauer: The
authors seek to understand social dynamics in animal
systems and construct useful measures of complexity for
these systems. The context for this work is the behavior
of a well studied group of macaque monkeys for which
there is a data set consisting of a series of fights and
the individuals involved in the fights. The authors con-
sider the predictive power of various rules that might be
used by individuals to decide whether to enter a fight
and how different classes of rules lead to differing col-
lective behavior such as the fraction of fights of various
sizes. They then discuss the general question of ap-
propriate measures of complexity at different levels of
description—individual, small groups of interacting indi-
viduals, and societal—and how these relate to the com-
putational power of the individual organisms.

Anatomy of a Bit: Information in a Time Series Mea-
surement by Ryan James, Chris Ellison, and Jim Crutch-
field: The authors deconstruct the information contained
in a single measurement, showing that there is a variety
of different kinds of information, even in a single bit.
There is information that is fleeting, created in the mo-
ment and forgotten forever. There is information that
is created, but then becomes stored in the system, af-
fecting its future behavior. They do this by surveying
multivariate information measures, showing how to ex-
tend familiar measures of uncertainty and storage. Most
surprisingly, their purely informational analysis identifies
one kind of information that, strictly speaking, falls out-
side of information theory proper. This is information
that is not carried in the current observation, but that is
somehow stored by the system. It’s existence indicates
why we must build models.

Darwinian Demons, Evolutionary Complexity and In-
formation Maximization by David Krakauer: Krakauer
draws parallels between natural selection in evolutionary
biology and Maxwell’s demon in thermodynamics and
how both take a system away from thermodynamic equi-
librium at the expense of dissipation—mortality in the
case of natural selection. He demonstrates bounds on
the information encoded in the genome based on both
the richness of the environment and the error rate of re-
production. The paper then discusses how these bounds
can be circumvented by learning and plasticity and how
these mechanisms can also be understood in the general
framework of selective demons. Finally, he discusses the
mutual information between the organism and its envi-
ronment and how this form of complexity can increase
indefinitely via niche construction.

Natural Complexity, Computational Complexity and
Depth by Jon Machta: Machta surveys the notion of
parallel computational depth as a measure of complex-
ity. After reviewing concepts from statistical physics
and computational complexity theory, he compares depth
with two prominent statistical measures of complexity. In
the context of several examples, he concludes that there
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is structure, related to embedded computation, that is
picked up by the parallel depth, but not by entropy-based
measures.

How Hidden is a Hidden Process? A Primer on Cryp-
ticity and Entropy Convergence by John Mahoney, Chris
Ellison, Ryan James, and Jim Crutchfield: The authors
explore the difference between a process’s internal stored
information and the information that is directly observ-
able. They show that this difference, the crypticity, is
related to a number of other, more familiar, system prop-
erties, such as synchronizability, statistical complexity,
excess entropy, and entropy convergence. They provide
a detailed analysis of spin systems from this perspective.

Ergodic Parameters and Dynamical Complexity by Rui
Villela-Mendes: Vilela-Mendes develops ties between the
fields of dynamical systems, ergodic theory, and informa-
tion theory. In particular, he extends the mathemati-
cal framework of the well known spectrum of Lyapunov
exponents to include other information measures—most
notably, the excess entropy, a measure of system mem-
ory. The author begins by noting that the Lyapunov
spectra of a dynamical system throws away much infor-
mation about the invariant measure when time averages
are taken. He then proposes several ways to extend “co-
cycle” statistics to capture more of the dynamical be-
havior. A number of interesting examples and methods
are presented. He introduces a “structure index,” which
might indicate when a system is temporally structured,
containing subsystems with long-time correlations. The
paper also presents a method for characterizing a “phase
transition” between the random regime and the “small
worlds” regime of a network, as coupling strengths are
changed. Furthermore, self-organized criticality is exam-
ined from the point of view of exponent spectra.

Quantum Computation of Structural Complexity by
Janet Anders and Karoline Wiesner: The authors re-
view several of the distinctions between quantum and
classical systems and then point out, via simple exam-
ples, how ideas in complexity theory should be modified
to include quantum effects. They define a quantum sta-
tistical complexity and show that it less than or equal to
the standard, classical statistical complexity. They also
demonstrate a simple example for which entanglement
permits a computation that is classically impossible.

III. CLOSING REMARKS

The workshop hosted a number of additional talks, not
represented in this collection. Nevertheless, their con-
tributions to the workshop itself were invaluable. The
speakers and titles are as follows:

• Tony Bell (U. C. Berkeley): “Learning Out of Equi-
librium”;

• Luis Bettencourt (LANL): “Information Aggrega-

tion in Correlated Complex Systems and Optimal
Estimation”;

• Gregory Chaitin (IBM): “To a Mathematical The-
ory of Evolution and Biological Creativity”;

• James Crutchfield (U. C. Davis): “Framing Com-
plexity”;

• Melanie Mitchell (Portland State U.): “Automatic
Identification of Information-Processing Structures
in Cellular Automata”;

• Cris Moore (U. New Mexico): “Phase Transitions
and Computational Complexity”;

• Rob Shaw (Protolife, Inc.): “Dominoes, Ergodic
Flows”; and

• Susanne Still (U. Hawaii): “Statistical Mechanics
of Interactive Learning”.

This Focus Issue is a permanent record of an otherwise
ephemeral event. (See also http://csc.ucdavis.edu/

~chaos/share/rsc/RSC/Home.html.) We hope that
some of the workshop’s spirit of creativity comes through.
We would be particularly honored if the contributions
here stimulate further research along these lines. In no
sense are we at an end-point, despite the long history
of these research themes. While there are a number of
concrete new results presented, there is much more to
do. The challenge has not diminished; rather it’s grown
in sophistication and clarity. We believe that a physics
of pattern and how pattern arises from the interplay of
structure and randomness is closer than ever.
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