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Abstract

Computationat levelsbeyondstorageandtransmissionof informationappearsin physical
systemsat phasetransitions.We investigatethis phenomenonusingminimal computational
modelsof dynamicalsystemsthat undergo a transitionto chaosasa function of a nonlinearity
parameter.For period-doublingandband-merging cascades,we deriveexpressionsfor the
entropy,the interdependenceof � -machinecomplexityandentropy,andthe latentcomplexity
of the transitionto chaos.At the transitiondeterministicfinite automatonmodelsdiverge in
size. Although thereis no regularor context-freeChomskygrammarin this case,we give
finite descriptionsat the highercomputationallevel of context-freeLindenmayersystems.We
constructa restrictedindexedcontext-freegrammarand its associatedone-way
nondeterministicnestedstackautomatonfor the cascadelimit language.

This analysisof a family of dynamicalsystemssuggestsa complexity theoreticdescriptionof
phasetransitionsbasedon the informationaldiversity andcomputationalcomplexityof
observeddatathat is independentof particularsystemcontrol parameters.The approachgives
a muchmorerefinedpictureof the architectureof critical statesthan is availablevia
correlationfunctions,mutual information,andstatisticalmechanicsgenerally.The analytic
methodsestablishquantitativelythe longstandingobservationthat significant computationis
associatedwith the critical statesfound at the borderbetweenorderandchaos.
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Computation at the Onset of Chaos

Beyond a Clock and a Coin Flip
Theclock andthecoin flip signify the two bestunderstoodbehaviorsthata physicalsystem

can exhibit. Utter regularity and utter randomnessare the dynamical legacy of two millenia
of physical thought. Only within this century, however, has their fundamentalplace been
established.Today,realisticmodelsof time-dependentbehaviornecessarilyincorporateelements
of both.

The regularity and Laplaciandeterminismof a clock are fundamentalto much of physical
theory. Einstein’scarefulphilosophicalconsiderationof theroleof time is anoteworthyexample.
The useof a mechanicaldeviceto mark regulareventsis the cornerstoneof relativity theory.†

A completelypredictablesystem,which we shall denoteby ��� , is essentiallya clock; the hands
indicate the currentstateand the mechanismadvancesthem to the next statewithout choice.
For a predictablesystemsomefixed patternis repeatedevery (say) t seconds.

Diametricallyopposed,thecoin flip, a picaresqueexampleof ideal randomness,is thebasic
modelunderlyingprobabilityandergodictheories.Thenextstatein sucha systemis statistically
independentof the precedingand is reachedby exercisingmaximumchoice. In ergodic theory
the formal modelof the coin flip is the Bernoulli flow ��� , a coin flip every t seconds.

We take ��� and ��� asthe basicprocesseswith which to modelthe complexityof nonlinear
dynamicalsystems.In attemptingto describea particularsetof observations,if we find thatthey
repeatthenwe candescribethemashavingbeenproducedby somevariantof ��� . Whereas,if
they are completelyunpredictablethen their generatingprocessis essentiallythe sameas ��� .
Any realsystemS, of course,will containelementsof bothandsonaturallywe askwhetherit is
alwaysthecasethatsomeobservedbehaviorcanbedecomposedinto theseseparatecomponents.
Is �	�
��� ��� ? Both ergodicandprobability theoriessaythat this cannotbedonesosimply in
general.Ornsteinshowedthat thereareergodicsystemsthatcannotbeseparatedinto completely
predictableand completelyrandomprocesses.1 The Wold-Kolmogorovspectraldecomposition
statesthatalthoughthefrequencyspectrumof a stationaryprocessconsistsof a singularspectral
componentassociatedwith periodic and almostperiodic behaviorand a broadbandcontinuous
componentassociatedwith an absolutelycontinuousmeasure,there remain other statistical
elementsbeyondthese.2,3,4

What is this otherbehavior,capturedneitherby clocksnor by coin flips? A partial answer
comesfrom computationtheory and is the subjectof the following.

The most generalmodel of deterministic computationis the universal Turing machine
(UTM).‡ Any computationalaspectof a regular processlike � � can be programmedand so
modeledwith this machine. In order that the Turing machinereadily model processeslike ���
we augmentit with a randomregisterwhosestateit sampleswith a specialinstruction.§ The
resultis theBernoulli-Turing machine(BTM). It capturesboth thecompletelypredictablevia its
subsetof deterministicoperationsand the completelyunpredictableby accessingits stochastic

† It is not an idle speculationto wonderwhat happen’sto Einstein’suniverseif his clock containsan irreducibleelementof randomness,or
morerealistically, if it is chaotic.

‡ This statementis somethingof an article of faith that is formulatedby the Church-Turing Thesis:any reasonablyspecifiablecomputationcan
be articulatedasa programfor a UTM.5

§ This registercanalsobe modeledwith a secondtapecontainingrandombits. In this case,the resultingmachineis referredto asan “Random
Oracle” Turing Machine.6 What we havein mind, althoughformally equivalent,is that the machinein questionis physically coupledto an
informationsourcewhosebits arerandomwith respectthe computationat hand.Thus,we do not requireideal randombits.
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register. If the data is completelyrandom,a BTM modelsit most efficiently by guessing.A
BTM readsand prints the contentsof its “Bernoulli” register,rather than implementingsome
large deterministiccomputationto generatepseudo-randomnumbers.What arethe implications
for physicaltheory?A variantof the Church-Turing thesisis appropriate:the Bernoulli-Turing
machineis powerfulenoughto describeeventhe“otherstuff” of ergodicandprobabilitytheories.

Let us delve a little further into theseconsiderationsby drawing parallels. One goal here
is to infer how much of a data streamcan be ascribedto a certain set of models ��������� .
This modelbasisinducesa setof equivalencesin the spaceof stationarysignals.Thus,starting
with the abstractnotionsof strict determinismand randomness,we obtain a decompositionof
that space.A quantitythat is constantin eachequivalenceclassis an invariantof the modeling
decomposition. Of course,we are also interestedin those caseswhere the model basis is
inadequate;wheremore of the computationalpowerof the BTM must be invoked. When this
occurs,it hints that themodelbasisshouldbeexpanded.This will thenrefinethedecomposition
and lead to new invariants.

An analogous,but restrictedtype of decompositionis alsopursuedformally in ergodic and
computationtheoriesby showing how particular examplescan be mappedonto one another.
The motivationsbeingthat the structureof the decompositionis a representationof thedefining
equivalenceconceptand, furthermore,the latter can be quantifiedby an invariant. A classic
problemin ergodic theory hasbeento identify thosesystemsthat are isomorphicto ��� . The
associatedinvariantusedfor this is themetricentropy,introducedinto dynamicalsystemstheory
by Kolmogorov7,8 and Sinai9 from Shannon’sinformation theory.10 Two Bernoulli processes
areequivalentif theyhavethesameentropy.1 Similarly, in computationtheorytherehasbeena
continuingeffort to establishan equivalencebetweenvarioushard-to-solve,but easily-verified,
problems. This is the classof nondeterministicpolynomial (NP) problems. If one can guess
the correct answer,it can be verified as such in polynomial time. The equivalencebetween
NP problems,calledNP-completeness,requiresthat within a polynomialnumberof TM stepsa
problemcanbereducedto onehardestproblem.6 Theinvariantof this polynomial-timereduction
equivalenceis the growth rate, as a function of problemsize, of the computationrequiredto
solve the problem. This growth rate is called the algorithmic complexity.*

The complementaritybetweenthesetwo endeavorscan be mademore explicit when both
are focusedon the single problemof modelingchaoticdynamicalsystems.Ergodic theory is
seento classify complicatedbehaviorin terms of information productionproperties,e.g. via
the metric entropy. Computationtheory describesthe samebehaviorvia the intrinsic amount
of computationthat is performedby the dynamical system. This is quantified in terms of
machinesize(memory)andthenumberof machinestepsto reproducebehavior.† It turnsout, as
explainedin moredetailbelow,that this typeof algorithmicmeasureof complexityis equivalent
to entropy. As a remedyto this we introducea complexity measurebasedon BTMs that is
actually complementaryto the entropy.

* In fact, the invariantactuallyusedis a much coarsenedversionof the algorithmiccomplexity: a polynomial time reductionis requiredonly
to preservethe exponentialcharacterof solving a hardproblem.

† We note that computationtheory alsoallows one to formalize how much effort is requiredto infer a dynamicalsystemfrom observeddata.
Although related,this is not our presentconcern.11
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The emphasisin the following is that the tools of eachfield are complementaryand both
approachesare necessaryto completelydescribephysicalcomplexity. The basicresult is that
if one is careful to restrict the classof computationalmodelsassumedto be the leastpowerful
necessaryto capturebehavior,thenmuchof the abstracttheoryof computationandcomplexity
canbe constructivelyimplemented.* From this viewpoint,phasetransitionsin physicalsystems
areseento supporthigh levelsof computation.And conversely,computersareseento bephysical
systemsdesignedwith a subsetof “critical” degreesof freedom that support computational
fluctuations.

The discussionhas a top-down organizationwith three major parts. The first, consisting
of this section and the next, introducesthe motivations and general formalism of applying
computationalideasto modelingdynamicalsystems.The secondpart developsthe basictools
of � -machinereconstructionanda statisticalmechanicaldescriptionof themachinesthemselves.
The third part applies the tools to the particular classof complex behaviorseenin cascade
transitionsto chaos.A few wordson further applicationsconcludethe presentation.

Conditional Complexity
Thebasicconceptof complexitythatallowsfor dynamicalsystemsandcomputationtheories

to beprofitably linked relieson a generalizednotionof structurethatwe will refer to generically
as “symmetry”. In addition to repetitivestructure,we also considerstatisticalregularity to be
oneexampleof symmetry.The ideais that a dataset is complexif it is the compositeof many
symmetries.

To connectback to the precedingdiscussion,we take as two basicdynamicalsymmetries
those representedby the model basis

���������
. A complex processwill have, at the very

least,somenontrivial combinationof thesecomponents.Simply predictablebehaviorandpurely
randombehaviorwill not be complex.The correspondingcomplexityspectrumis schematically
illustrated in figure 1.

H

C

0 1
0

Figure 1 The complexity spectrum:complexity 	 as a function of the diversity of patterns.The
latter is measuredwith the (normalized)Shannonentropy 
 . Regulardatahavelow entropy;very
randomdatahavemaximal entropy. However,their complexitiesare both low.

Moreformally, wedefinetheconditionalcomplexity �
��� ��� to betheamountof information
in equivalenceclassesinducedby the symmetry � in the data � plus the amountof datathat

* At the highestcomputationlevel of universalTuring machines,descriptionsof physicalcomplexityaresimply not constructivesincefinding
the minimal TM programfor a given problemis undecidablein general.5
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is “unexplained”by � . If we had someway of enumeratingall symmetries,then the absolute
complexity ������� would be

�������
	���
������� ����� ���

And we would say that an object is complexif, after reduction,it is its own symmetry. In that
case,thereareno symmetriesin the object,other than itself.† If � is the bestmodelof itself,
then thereis no unexplaineddata,but the model is large: ����� ��� ����
���� �!����� . Conversely,
if thereis no model, then all of the datais unexplained: ����� � �"��
#���$�%����� . The infimum
formalizesthe notion of consideringall possiblemodel “bases”and choosingthosethat yield
the most compactdescription.‡

This definition of conditional modeling complexity mirrors that for algorithmic
randomness16,17,18,19,20 and is closely related to computational approachesto inductive
inference.21 A string & is randomif it is its own shortestUTM description. The latter is a
complexity measurecalled the Chaitin-Kolmogorovcomplexity '(��&)� of the string & . In the
above notation '(��&)�*	 ����& +-,/.0� . The class of “symmetries” referred to here are those
computableby a deterministicUTM. After factoring theseout, any residual “unidentified”
or “unexplained” data is taken as input to the UTM program. With respectto the inferred
symmetries,this data is “noise”. It is included in measuringthe size of the minimal UTM
representation.'(��&1� measuresthe size of two components:an emulationprogramand input
data to that emulation. To reconstruct& the UTM first readsin the programportion in order
to emulatethe computationalpart of the description. This computesthe inferred symmetries.
The (emulated)machinethenqueriesthe input tapeasnecessaryto disambiguateindeterminant
branchingsin thecomputationof & . '(��&)� shouldnot be confusedwith the proposedmeasureof
physicalcomplexity basedon BTMs, ����& 23,4.0� , which include statisticalsymmetries.There
is, in fact, a degeneracyof terminologyherethat is easilydescribedandavoided.

Considerthe data in questionto be an orbit 5�6$�7598:� of duration t starting at state 5�8 of
a dynamicalsystemadmitting an absolutelycontinuousinvariant measure.§ The algorithmic
complexity22 �;5�6<�75�8)�=� is the growth rate of the Chaitin-Kolmogorovcomplexity with longer
orbits

�75�6$�75>8)�=�
	?�@�BA6;C3D
'(�75�6<�75�8)�=�E

Note that this artifice removesconstantterms in the Chaitin-Kolmogorovcomplexity, suchas
thosedue to the particular implementationof the UTM, and gives a quantity that is machine
independent.Then,thealgorithmiccomplexityis thedynamicalsystem’smetricentropy,except

† Or, said anotherway, the complexobject is only describedby a large numberof equivalenceclassesinducedby inappropriatesymmetries.
The latter canbe illustratedby consideringan inappropriatedescriptionof a simple object. A squarewavesignal is infinitely complexwith
respectto a Fourierbasis.But this is not an intrinsic propertyof squarewaves,only of the choiceof modelbasis.Thereis a modelbasisthat
givesa very simpledescriptionof a squarewave.

‡ This computationalframework for modeling also applies, in principle, to estimatingsymbolic equationsof motion from noisy continuous
data.12 Generally,minimization is an applicationof Occam’sRazor in which the descriptionis consideredto be a “theory” explaining the
data.13 Rissanen’sminimumdescriptionlengthprinciple,thecodingtheoreticversionof this philosophicalaxiom,yieldsasymptoticallyoptimal
representations.14,15

§ In informationtheoretictermswe arerequiringstationarityandergodicity of the source.
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for orbits starting at a measurezero set of initial conditions. Thesestatementsconnectthe
notion of complexityof singlestringswith that of the ensembleof typical orbits. The Chaitin-
Kolmogorov complexity is the sameas informationalmeasuresof randomness,but is distinct
from theBTM complexity.* To avoidthis terminologicalambiguityweshallminimizereferences
to algorithmic and Chaitin-Kolmogorovcomplexitiessince in most physical situations they
measurethe samedynamicalpropertycapturedby the information theoreticphrase“entropy”.
“Complexity” shall refer to conditionalcomplexitywith respectto BTM computationalmodels.
We could qualify it further by using “physical complexity”, but this is somewhatmisleading
since it appliesequally well outsideof physics.†

We are not awareof any meansof enumeratingthe spaceof symmetriesandso the above
definitionof absolutecomplexity,while of theoreticalinterest,is of little immediateapplication.
Nonetheless,we canposit that symmetries� be effectively computablein order to be relevant
to scientific investigation.According to the physicalvariant of the Church-Turing thesis,then,
� canbe implementedon a BTM. Which is to say that as far as realizability is concerned,the
unifying classof symmetrieswe havein mind is representedby operationsof a BTM. Although
the mathematicalspecificationfor a BTM is small; its rangeof computationis vast; at least
as large as the underlyingUTM. It is, in fact, unnecessarilypowerful so that many questions,
suchas finding a minimal programfor given data,are undecidableand many quantities,such
as the conditional complexity ����� ���
	�� , are noncomputable.More to the point, adopting
too generala computationalmodel results in there being little to say about a wide rangeof
physical processes.

Practicalmeasuresof complexity are basedon lower levels of Chomsky’scomputational
hierarchy.‡ Indeed, Turing machinesappearonly at the pinnacle of this gradedhierarchy.
The following concentrateson deterministicfinite automata(DFA) and stack automata(SA)
complexity, the lowest two levels in the hierarchy. DFAs representstrictly clock andcoin flip
modeling. SAs are DFAs augmentedby an infinite memory with restrictedpushdownstack
access.We will demonstratehow DFA modelsbreakdown at a chaoticphasetransitionand
how higher levelsof computationalmodelarisenaturally. Estimatingcomplexity typesbeyond
SAs, suchas linear boundedautomata(LBA), is fraughtwith certainintriguing difficulties and
will not be attemptedhere. Nonetheless,setting the problem context as broadly as we have
just doneis useful to indicatethe eventualgoalswe havein mind and to contrastthe present
approachto other longstandingproposalsthat UTMs arethe appropriateframeworkwith which
to describethe complexityof naturalprocesses.§ Evenwith the restrictionto Chomsky’slower
levelsa gooddealof progresscanbe madesince,aswill becomeclear,contemporarystatistical
mechanicsis largely associatedwith DFA modeling.

* We are necessarilyskipping over a numberof details,suchas how the state 
�� is discretizedinto a string over a finite alphabet.The basic
point madeherehasbeenemphasizedsometime ago.22,23

† This definitionof complexityandits basicpropertiesasrepresentedin figure1 werepresentedby thefirst authorat the InternationalWorkshop
on “DimensionsandEntropiesin ChaoticSystems”, Pecos,New Mexico, 11-16September1985.

‡ Furtherdevelopmentof this topic is given elsewhere.24,25

§ We have in mind Kolmogorov’s work19 over many years that often emphasizesdynamicaland physical aspectsof this problem. Also,
Bennett’snotion of “logical depth” andhis analysisof physicalprocessestypically employUTM models.26 Wolfram’s suggestion27 that the
computationalpropertiesof intractability and undecidabilitywill play an important role in future theoreticalphysicsassumesUTMs as the
modelbasis.More recently,Zurek28 hastakenup UTM descriptionsof thermodynamicprocesses.The informationmetricusedtherewasalso
developedfrom a conditionalcomplexity.29

5



J. P. Crutchfieldand K. Young

Reconstructing -Machines
To effectively measureintrinsic computationalpropertiesof a physicalsystemwe infer an � -

machinefrom a datastreamobtainedvia a measuringinstrument.30 An � -machineis a stochastic
automatonof the minimal computationalpoweryielding a finite descriptionof the datastream.
Minimality is essential.It restrictsthe scopeof propertiesdetectedin the � -machineto be no
larger than thosepossessedby the underlyingphysicalsystem. We will assumethat the data
streamis governedby a stationarymeasure.That is, the probabilitiesof fixed lengthblocksof
measurementsexist and are time-translationinvariant.

The goal, then,is to reconstructfrom a given physicalprocessa computationallyequivalent
machine.The reconstructiontechnique,discussedin the following, is quite generalandapplies
directly to themodelingtaskfor forecastingtemporalor spatio-temporaldataseries.Theresulting
minimal machine’sstructureindicatesthe inherentinformationprocessing,i.e. transmissionand
computation,of the original physicalprocess.The associatedcomplexitymeasurequantifiesthe
� -machine’sinformationalsize; in onelimit, it is the logarithmof thenumberof machinestates.
The machine’sstatesareassociatedwith historicalcontexts,calledmorphs,that areoptimal for
forecasting. Although the simplest(topological) representationof an � -machineat the lowest
computationallevel (DFAs) is in the form of labeled directedgraphs,the full development
capturestheprobabilistic(metric)propertiesof thedatastream.Our complexitymeasureunifies
a numberof disparateattemptsto describethe information processingof nonlinearphysical
systems.12,22,31,32,33,34,35,36,37The following two sectionsdevelopthe reconstructionmethodfor
the machinesand their statisticalmechanics.

The initial task of inferring automatafrom observeddata falls under the purview of
grammaticalinferencewithin formal learningtheory.11 Theinferencetechniqueusesa particular
choice

�
of symmetrythat is appropriateto forecastingthe datastreamin orderto estimatethe

conditionalcomplexity ����� ���
. The aim is to infer generalized“states” in the datastreamthat

are optimal for forecasting. We will identify thesestateswith measurementsequencesgiving
rise to the sameset of possiblefuture sequences.|| Using the temporaltranslationinvariance
guaranteedby stationarity,we identify thesestatesusing a sliding window that advancesone
measurementat a time through the sequence.This leadsto the secondstep in the inference
technique,theconstructionof a parsetreefor themeasurementsequenceprobabilitydistribution.
This is a coarse-grainedrepresentationof the underlying process’smeasurein orbit space.
The state identification requirementthen leads to an equivalencerelation on the parsetree.
The machinestatescorrespondto the inducedequivalenceclasses;the statetransitions,to the
observedtransitionsin the treebetweenthe classes.We now give a more formal development
of the inferencemethod.

The first stepis to obtain a datastream. The main modelingansatzis that the underlying
processis governedby a noisy discrete-timedynamicalsystem

	
���
���� 	� � 	
�� ��� 	� ��� 	
�� �
where � is the � -dimensionalspaceof states,

	
���� 
 �� ��
 �� ��� �!� ��
�"$# �� is the system’sinitial
state,

	�
is the dynamic, the governingdeterministicequationsof motion, and

	� � represents

|| We notethat the sameconstructioncanbe donefor pastpossibilities.We shall discussthis alternativeelsewhere.
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external time-dependentfluctuations. We shall concentrateon the deterministiccasein the
following. The (unknowable)exactstatesof theobservedsystemaretranslated* into a sequence
of symbolsvia a measurementchannel.39 This processis describedby a parametrizedpartition

����� ���	�

���

�����
������������� ����� ��� � �"!#�$�%�&�(')�+*,*+*,�.- /

of the statespace
�

, consistingof cells
���

of volume 0�1 that are sampledevery 2 time units.
A measurementsequenceconsistsof the labelsfrom the successiveelementsof

�3�
visited over

time by the system’sstate. Using the instrument 4 � �3�$� 2 , a sequenceof states 5687 is
mappedinto a sequenceof symbols 9 7 � 9 7 : , where : � ')�,*,*+*+�;- /

is the alphabet
of labelsfor the

- 0 � 1 partition elements.12 A commonexample,to which we shall return
nearthe end,is the logistic mapof the interval, 687=< 
 �?> 6878@ / 6A7CB , observedwith the binary
generatingpartition

�EDF � GH'JI��,ILK B �=GLIMKN�=/OIQP whoseelementsare labeledwith : � 'C�,/
.22 The

computationalmodelsreconstructedfrom such data are referredto as 0 -machinesin order to
emphasizetheir dependenceon the measuringinstrument 4 .

Giventhedatastreamin theform of a longmeasurementsequenceR � 9 � 9 
 9=S � 9 � : ,
the secondstep in machineinferenceis the constructionof a parsetree. A tree T � U#�$V
consistsof nodes

UW� XY�
anddirected,labeledlinks

V�� Z��
connectingthemin a hierarchical

structurewith no closedpaths. The links are labeledby the measurementsymbols 9 : . An[
-level subtreeT]\7 is a tree that startsat node

X
and containsall nodesbelow

X
that can be

reachedwithin
[

links. To constructa tree from a measurementsequencewe simply parse
the latter for all length

[
sequencesand from this constructthe tree with links up to level

[
that are labeledwith individual symbolsup to that time. We refer to length

[
subsequences

9,\ � 9 � 9 � 9 � < \ ��

� 9 �E� @ R B � as

[
-cylinders.† Hencean

[
level treehasa length

[
path

correspondingto eachdistinct observed
[

-cylinder. Probabilisticstructureis addedto the tree
by recordingfor eachnode

XY�
the number ^ � @ [ B of occurrencesof the associated

[
-cylinder

relative to the total numberN(L) observed,

_)`7ba @ [ B � ^
� @ [ B
^ @ [ B

This gives a hierarchical approximationof the measurein orbit space
� cedgfih

. Tree
representationsof datastreamsarecloselyrelatedto thehierarchicalalgorithmusedfor estimating
dynamicalentropies.22,39

At the lowestcomputationallevel 0 -machinesarerepresentedby a classof labeled,directed
multigraph,or l-digraphs.40 They arerelatedto the Shannongraphsof informationtheory,10 to
Weiss’ssoficsystemsin symbolicdynamics,41 to discretefinite automatain computationtheory,5

and to regularlanguagesin Chomsky’shierarchy.42 Here we are concernedwith probabilistic
versionsof these. Their topological structureis describedby an l-digraph j � ki�ml

that
consistsof vertices

kn� ob�
anddirectededges

lp� q��
connectingthem,eachof the latter

is labeledby a symbol 9 : .
* We ignorefor brevity’s sakethe questionof extractingfrom a singlecomponent r;st an adequate reconstructed state space.38

† The picture here is that a particular u -cylinder is a name for that bundle of orbits v;wx t+y each of which visited the sequence of partition elements
indexed by the u -cylinder.
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To reconstructa topological � -machinewe defineanequivalencerelation,subtreesimilarity,
denoted , on the nodesof the tree

�
by the condition that the L-subtreesare identical:� ��������	�

����
�������� ������ ������

Subtreeequivalencemeansthat the link structureis identical. This equivalencerelationinduces
on
�

, andsoon themeasurementsequences, a setof equivalenceclasses � �� �"! �$#"%'&(&(&'%*)
given by

� �+ � � , � � � �+ 	�
-�.� � � �+ ��/0� � �
We refer to the archetypalsubtreelink structurefor eachclassasa “morph”. An l-digraph 1 �
is thenconstructedby associatinga vertex to eachtree nodeL-level equivalenceclass;that is,2 � � �� . Two vertices 354 and 3 + are connectedby a directededge 6 �87 3�4 3 +:9 if the
transitionexists in

�
betweennodesin the equivalenceclasses,� � � � � � � 4 % � � � �+

The correspondingedge is labeled by the symbol(s) ; < associatedwith the tree links
connectingthe tree nodesin the two equivalenceclasses= � 6 �>7 3 4 % 3 +@? ; 9 � 3 4 A 3 + ��/B� A �C� ? � � � 4 % �C� � �+ % ; <

In this way, � -machinereconstructiondeducesfrom thediversityof individual patternsin the
datastream“generalizedstates”,themorphs,associatedwith thegraphvertices,thatareoptimal
for forecasting.The topological � -machinessoreconstructedcapturetheessentialcomputational
aspectsof the datastreamby virtue of the following instantiationof Occam’sRazor.

Theorem: Topologicalreconstructionof 1 � producestheminimal anduniquemachinerec-
ognizingthe languageandthegeneralizedstatesspecifiedup to D -cylindersby themeasurement
sequence.

Thegeneralizationto reconstructingmetric � -machinesthatcontaintheprobabilisticstructure
of the datastreamfollows by a straightforwardextensionof subtreesimilarity. Two D -subtrees
are E -similar if they are topologically similar and their correspondinglinks individually are
equallyprobablewithin some E F . Thereis alsoa motivatingtheorem:metric reconstruction
yields minimal metric � -machines.

In order to reconstructan � -machineit is necessaryto havea measureof the “goodnessof
fit” for determining� , G , E , andthe level D of subtreeapproximation.This is givenby thegraph
indeterminacy,which measuresthe degreeof ambiguity in transitionsbetweengraphvertices.
The indeterminacy39 HJI of a labeleddigraph 1 is defined asthe weightedconditionalentropy

HJI � K(LNMPO K A L�QROS7 ; 3 9 K � LNMTO 3
� 3 ? ; �U�"V O 3 � 3 ? ;

where OW7 3 � 3 ? ; 9 is the transition probability from vertex 3 to 3 � along an edgelabeledwith
symbol ; , OS7 ; 3 9 is the probability that ; is emittedon leaving 3 , and O K is the probability of
vertex 3 . A deterministically-accepting� -machineis reconstructiblefrom D -level equivalence
classesif H IYX vanishes. Finite indeterminacy,at somegiven D % � % G % E indicatesa residual
amountof extrinsicnoiseat that level of approximation.In this case,the optimal machinein a
setof machinesconsistentwith the datais the smallestthat minimizesthe indeterminacy.11
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Statistical Mechanics of -Machines
Many of the importantpropertiesof thesestochasticautomatamodelsare given concisely

usingastatisticalmechanicalformalismthatdescribesthecoarse-grainedscalingstructureof orbit
space. We recall somedefinitionsand resultsnecessaryfor our calculations.30 The statistical
structureof an � -machineis given by a parametrizedstochasticconnectionmatrix

����� ���
	 �
�
���

��� ����

that is the sum over each symbol � � in the alphabet � �
����� ��������� � �"! #%$&!'� �)(+* of the statetransitionmatrices

�,� �-�� � . �0/21�354 �76
8:9 6<;-= ���

for the vertices > � ?
. We will distinguishtwo subsetsof vertices. The first

?�@
consistsof

thoseassociatedwith transientstates;the second
?BA

, consistsof recurrentstates.

The C -order total Renyi entropy,43 or “free information”, of the measurementsequenceup
to D -cylinders is given by

EF�HG D0I �JG�# CKI (MLONQP%RTS �UG D0I
where the partition function is

S �HG D0I �
�<V �XW-�<V Y

. �Z/[1�3�4 � � V �

with the probabilities \ G � ]^I definedon the D -cylinders ��] . The Renyi specificentropy, i.e.
entropyper measurement,is approximated22 from the D -cylinder distributionby

_ �UG D0I � D (ML EF�UG D0I
Pa` _�b� G D0I ��EF�UG D0I EF�UG D # I

and is given asymptoticallyby

_ ��� NQcQd]ae�f
_ �UG D0I

The parameterC hasseveralinterpretations,all of interestin the presentcontext. From the
physicalpoint of view, C Gg�h# i I playsthe role of the inversetemperature

i
in the statistical

mechanicsof spin systems.44 The spin statescorrespondto measurements;a configurationof
spins on a spatial lattice to a temporal sequenceof measurements.Just as the temperature
increasesthe probability of different spin configurationsby increasingthe numberof available
states,C accentuatesdifferentsubsetsof measurementsequencesin the asymptoticdistribution.
Fromthepoint of view of BayesianinferenceC is a Lagrangemultiplier specifyinga maximum
entropydistribution consistentwith the maximumlikelihood distribution of observedcylinder
probabilities.45 Following symbolic dynamicsterminology, C �j�

will be referredto as the
topologicalor countingcase;C �J#

, asthemetricor probabilisticcaseor high temperaturelimit.

9
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Varying � movescontinuouslyfrom topologicalto metricmachines.Originally in his studiesof
generalizedinformationmeasures,Renyi introduced� asjust this typeof interpolationparameter
andnotedthat the � -entropyhasthe characterof a Laplacetransformof a distribution.43 Here
thereis the somewhatpragmatic,andpossiblymore important,requirementfor � : it gives the
properalgebraof trajectoriesin orbit space.That is, � is necessaryfor computingmeasurement
sequenceprobabilitiesfrom the stochasticconnectionmatrix

���
. Without it, productsof

���
fail

to distinguishdistinct sequences.

An � -machine’sstructuredeterminesseveralkey quantities.The first is the stochasticDFA
measureof complexity. The � -order graphcomplexity is defined as

� ���	��
 �
����������� ������� ��

wherethe probabilities� � aredefinedon the vertices �  of the � -machine’sl-digraph. The
graphcomplexity is a measureof an � -machine’sinformation processingcapacityin termsof
the amountof information storedin the morphs. As mentionedbriefly later, the complexity
is relatedto the mutual information of the pastand future semi-infinitesequencesand to the
convergence46,31 of theentropyestimates! �"�$# � . It canbe interpreted,then,asa measureof the
amountof mathematicalwork necessaryto producea fluctuationfrom asymptoticstatistics.

The entropiesand complexitiesare dual in the sensethat the former is determinedby the
principal eigenvalue% � of

�&�
,

! �'�	��
 �(� �)� �*���,+�% �
and the latter by the associatedleft eigenvectorof

� �
-� �'� � ��/. � 0

that gives the asymptoticvertex probabilities.

The specific entropy is also given directly in terms of the stochasticconnectionmatrix
transition probabilities

! �'� �1�1� � ��
 � �2�3� 46587�9
: 7<;

� � � �,=?>�@

A complexitybasedon the asymptoticedgeprobabilities
-�BA � �BA .DC E

canalsobe defined

� A� �	��
 �F�<�)�B�*��� A �1GH�
�A

-�IA is givenby the left eigenvectorof the � -machine’sedgegraph.The transitioncomplexity
� A�

is simply relatedto the entropyand graphcomplexity by

� A� � � �KJ ! �
Thereare, thus,only two independentquantitiesfor a finite DFA � -machine.11

10



Computation at the Onset of Chaos

The two limits for � mentionedabovewarrantexplicit discussion.For the first, topological
case

� ������� , �
	 is the l-digraph’s connectionmatrix. The Renyi entropy ��	
����������	 is the
topologicalentropyh. And the graphcomplexity is

� 	 ��� ��������� �
This is

� ��� � �"! � : the sizeof the minimal DFA description,or “program”, requiredto produce
sequencesin the observedmeasurementlanguageof which

�
is a member. This topological

complexitycountsall of thereconstructedstates.It is similar to theregularlanguagecomplexity
developedfor cellular automatongeneratedspatial patterns.32 The DFAs in that casewere
constructedfrom known equationsof motion andan assumedneighborhoodtemplate.Another
relatedtopologicalcomplexitycountsjust the recurrentstates�$# . The distinctionbetweenthis
and

� 	 shouldbe clear from the contextin which they areusedin later sections.

In the second,metric case
� �%�'&(� , ��) becomesthe metric entropy

�+*,�-�/.�0)2143 ��)$�
5 ��)5 �

The metric complexity

� *4�6��.70)�183 � )
� 9;:=<4> 9 �����?> 9

is the Shannoninformation containedin the morphs.‡ Following the precedingremarks,the
metric entropyis alsogiven directly in termsof the stochasticconnectionmatrix

�+*4� 9=:=< > 9 @BADCFEGHCJI
> K K2LHMON �����?> K KPLHMQN

A centralrequirementin identifying modelsfrom observeddatais thata particularinference
methodologyproducesa sequenceof hypothesesthat converge to the correct one describing
the underlyingprocess.The complexitycanbe usedasa diagnosticfor this sinceit is a direct
measureof thesizeof thehypothesizedstochasticDFA at a givenreconstructioncylinder length.
The identificationmethodoutlined in the precedingsectionconvergeswith increasingcylinder
length if the rate of changeof the complexity vanishes.If, for example,

R )
� ��.70S 1UT
V(WYX[Z S�\]

vanishes,then the noisy dynamicalsystemhasbeenidentified. If it doesnot vanish, then R )
is a measureof the rate of divergenceof the model size and so quantifiesa higher level of
computationalcomplexity. In this case,the model basismust be augmentedin an attemptto
find a finite descriptionat somehigher level. The following sectionswill demonstratehow
this can happen. A more completediscussionof reconstructingvarioushierarchiesof models
is found elsewhere.25

‡ Cf. “set complexity” version of the regular language complexity36 and “diversity” of undirected, unlabeled trees.35
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Period-Doubling Cascades
To give this generalframework substanceand to indicate the importanceof quantifying

computationin physical processes,the following sectionsaddressa concreteproblem: the
complexityof cascadetransitionsto chaos.The onsetof chaosoften occursasa transitionfrom
an ordered(solid) phaseof periodicbehaviorto a disordered(gas)phaseof chaoticbehavior.A
cascadetransitionto chaosconsistsof a convergentsequenceof individual “bifurcations”, either
pitchfork (period-doubling)in the periodicregimesor band-merging in the chaoticregimes.*

The canonicalmodel classof thesetransitionsis parametrizedtwo-lap mapsof the unit
interval, ��������� 	�
 ����
������ ��������� , with negativeSchwartzianderivative; that is, thosemaps
with two monotonepiecesand admitting only a single attractor. We assignto the domainof
eachpiecethe lettersof the binary alphabet��� ����� . The sequencespace��� consistsof all
0-1 sequences.Someof thesemaps,suchas the piecewise-lineartent mapdescribedin a later
section,neednot havethe period-doublingportion of the cascade.Iteratedmapsarecanonical
modelsof cascadetransitionsin the sensethat the samebifurcation sequenceoccurring in a
setof nonlinearordinarydifferentialequations(say) is topologicallyequivalentto that found in
someparametrizedmap.47,48,49

Although � -machinesweredevelopedin thecontextof reconstructingcomputationalmodels
from dataseries,the underlying theory providesan analytic approachto calculatingentropies
andcomplexitiesfor a numberof dynamicalsystems.This allows us to derive in the following
explicit boundson the complexity and entropyfor cascaderoutesto chaos.

We focuson the periodicbehaviornearpitchfork bifurcationsandchaoticbehaviorat band-
mergings with arbitrary basicperiodicity.50,51 In distinction to the descriptionof universality
of the period-doublingrouteto chaosin termsof parametervariation,52 we havefound a phase
transitionin complexitythatis not explicitly dependenton controlparameters.30 Therelationship
betweenthe entropyandcomplexityof cascadescanbe saidto be super-universalin this sense.
This is similar to thetopologicalequivalenceof unimodalmapsof theinterval,53,54,55,56,57except
that it accountsfor statisticalandcomputationalstructuresassociatedwith the behaviorclasses.

In this and the next sectionswe derive the total entropyand complexity as a function of
cylinder length � for the set of � -machinesdescribingthe behaviorat the different parameter
valuesfor the period-doublingand band-merging cascades.The sectionsfollowing this then
developseveralconsequences,viz. theorderandthe latentcomplexityof thecascadetransition.
With thesestatisticalmechanicalresultsestablished,the discussionturns to a detailedanalysis
of the higher level computationat the transition itself.

In theperiodicregimebelowtheperiodicity  !�"� cascadetransitionwe find the � -machines
for # -orderperiod-doubling$&% $&% �'� 
 #(�)�����*��$+�-,.
 shownin figures2 - 5.

Figure 2 Topological l-digraph for period 1 attractor.

Figure 3 Topological l-digraph for period 2 attractor.

* The latter arenot, strictly speaking,bifurcationsin which an eigenvalueof the linearizedproblemcrossesthe unit circle. The more general
senseof bifurcation is nonethelessa usefulshorthandfor qualitativechangesin behaviorasa function of a control parameter.
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Figure 4 Topological l-digraph for period 4 attractor.

Figure 5 Topological l-digraph for period 8 attractor.

For periodic behaviorthe measureon the � -cylinders � � is uniform; as is the measure
on the recurrent � -machinestates

���
. Considerbehaviorwith period �	��
 ��
 at a given� -orderperiod-doublingwith basiccascadeperiodicity 
 . The uniformity allows us to directly

estimatethe total entropyin termsof the number ������� ��� of � -cylinderswith �����
��� ����� ��� �����  �"!$#&%('*) +-,�.0/�+�,21

3 � �4� � �

�����  � !$# %5'*) �6����� ���
� � ����� ���

� %5'*) �7�8��� ���
For periodic behaviorand assuming�9�:� the numberof � -cylinders is given by the period
�6����� ��� �;� . Thetotal entropyis then

��� ����� ��� � %<'0) � . Notethat, in this case,= � vanishes.

Similarly, the complexity is given in termsof the number >&?@� �A�
of recurrentstates

B � �C�D�  �"!E#&%5'*) FG.2H
3 � F

�C�D�  � !E# %5'*) �AI #D! �
� %5'*) >&?

The number >&? of verticesis also given by the period for periodic behaviorand so we findB � � %<'0) � . Thus,for periodicbehaviortherelationshipbetweenthetotal andspecific entropies
and complexity is simple

B � � �J�
'0K B � �L�M= � ��� �

This relationshipis generallytrue for periodic behaviorand is not restrictedto the situation
wheredynamicalsystemshaveproducedthe data. Wherenotedin the following we will also
use

BON � %5'*) � to measurethe total numberof machinestates.

Chaotic Cascades
In the chaoticregimethe situationis muchmore interesting.The � -machinesat periodicity


J��� and � -orderband-mergings� 
 � 
 !E# � � �QPR�2�*�S�T�"U , areshownin figures6 - 9.

Figure 6 Topological l-digraph for single bandchaoticattractor.

Figure 7 Topological l-digraph for 2 V 1 bandchaoticattractor.
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Figure 8 Topological l-digraph for 4 � 2 bandchaoticattractor.

Figure 9 Topological l-digraph for 8 � 4 bandchaoticattractor.

The graph complexity is still given by the number
���

of recurrentstatesas above. The
main analytic task comesin estimatingthe total entropy. In contrastto the periodic regime
the numberof distinct subsequencesgrows with � -cylinder length for all � . Asymptotically,
the growth rate of this count is given by the specifictopologicalentropy. In order to estimate
the total topological entropy at finite � , however,more careful counting is requiredthan in
the periodic case. This sectiondevelopsan exact counting techniquefor all cylinder lengths
that appliesat chaoticparametervalueswherethe orbit ���	��
���
 of the critical point 
�� , where
������
 � 
���� , is asymptoticallyperiodic. Theseorbits are unstableand embeddedin the chaotic
attractor. The set of suchvaluesis countable. At these(Misiurewicz) parametersthere is an
absolutelycontinuousinvariant measure.58

Thereis an additionalproblemwith the argumentsusedin the periodic case.The uniform
distribution of cylinders no longer holds. The main consequenceis that we cannot simply
translatecounting ����������
 directly into anestimateof ���! "$# �����%��
 . Onemeasureof thedegree
to which this is the caseis given by the differencein the topologicalentropy & and the metric
entropy &�' .22

Approximations for the total Renyi entropy can be developedusing the exact cylinder

countingmethodsoutlinedbelowandthemachinestateandtransitionprobabilitiesfrom (*),+.-� .
The centralidea for this is that the statesrepresenta Markov partition of the symbolsequence
space /0� . There are invariant subsetsof /1� , each of which converges at its own rate to
“equilibrium”. Each subsetobeys the Shannon-McMillantheorem59 individually. At each
cylinder length eachsubsetis associatedwith a machinestate. And so the growth in the total
entropyin eachsubsetis governedby the machine’sprobabilisticproperties.Sincethe cylinder
countingtechniquecapturesa sufficient amountof the structure,however,we will not develop
the total Renyi entropyapproximationshereandinsteadfocuson the total topologicalentropy.

We now turn to an explicit estimateof �2��������
 for variouscases.Although the techniques
apply to all Misiurewiczparameters,we shallwork throughtheperiodicity 34�65 2 1, 4 2,
and1 0 band-merging transitions(figure 6 - 9) in detail, andthenquotethe generalformula
for arbitrary order of band-merging.

The tree for 2 1 bandmerging � -cylindersis shownin figure 10.
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1

1

1

10

0

0

0

1

1

1

1

Figure10 Parsetreeassociatedwith two chaoticbandsmerging into one. Treenodesareshownfor the
transientspineonly. The subtreesassociatedwith asymptoticbehavior,andso alsowith the equivalenceclasses
correspondingto recurrentgraphvertex 1 in figure 7, are indicatedschematicallywith triangles.
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Figure11 Subtreeof nodesassociatedwith asymptoticverticesin l-digraph for two bandsmerging to one.

An exactexpressionfor ���������
	 derivesfrom splitting theenumerationof unique� -cylinders
asrepresentedon the treeinto recurrentandtransientparts.For two bands,Figure10 illustrates
thetransientspine,thesetof treenodesassociatedwith transientgraphstates,while schematically
collapsingthatportionof the treeassociatedwith asymptoticgraphvertices.The latter is shown
in Figure 11. As will becomeclear the structureof the transientspine in the tree determines
the organizationof the counting method.

The sum for the ����
 level, i.e. for the numberof � -cylinders,is

���������
	������
� �
�����

� � �
���! �
�"���

� �

where # is the largestnon-negativeintegerlessthan # . The secondterm on the right counts
the numberof treenodesthat branchat evennumberedlevels,the third term is the numberthat
branchat odd levels, and the first term countsthe transientspine that addsa single cylinder.
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For � �
andeven,this canbe developedinto a renormalizedexpressionthat yields a closed

form as follows

��� �����
	��
��� �
������
�����

� �

�
��� � ��� �
���
��
�����

� � � � ������

�
��� � ��� �����
	 � � �
� � �!� ������	"� � � � � �$#&%

For � �
andodd, we find

��� ������	'�)( � ���+*� � . This givesan upperboundon the growth
envelopeas a function of � . The former, a lower bound.
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Figure 12 Transientspinefor 4 , 2 bandattractor. The asymptoticsubtreesare
labeledwith the associatedl-digraph vertex. (Comparefigure 8.)

The analogousexpressionfor the 4 2 bandcylinder count can be explicitly developed.
Figure 12 showsthe transientspineon the tree that determinesthe countingstructure. In this
case,the sum is

-!.0/�132 4657298:2 ;�<�== 8>2 ;�<�== 8 ;�<
?=
@�A�B

2 @ 8 ;�<
CD
@�AEB

2 @ 8 ;�<�==
@�A�B

2 @ 8 ;�<GFD
@�A�B

2 @

Thereare seventermson the right handside. In order they accountfor

1. The two transientcycles,begunon 0 and1, eachof which contributes1 nodeper level;
2. Cycleson the attractorthat arefed into the attractorvia non-periodictransients(secondand

third terms);
3. Sumover treenodesthat branchby a factor of 2 at level H 8JI+K�1 H 57LM1�IN1�OP1�Q

, respectively.
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The sum greatly simplifies upon rescaling the indices to obtain a self-similar form. For� ����� and �����	� , we find


�� ��
��	����� ������������ � ������
�! #"

� � � ���%$$
�& #"

� �

���'�(� �)� ������
�& *"

� �

���'�(� �)�+�
������
�& *"

� � ����
���'�+� 
,� ��
-�.� � �0/1��

2	3 
4� ��
-�5�����56�� �� �
Thereare threeother phasesfor the upperboundas a function of � .

For completenesswe notethat this approachalsoworks for the singleband
�87 ��9.� case


,� ��
�9.�:�;�)�(<>=
?

�& *"
� �

�;�)� �'��� <>=
?

�! #"
� � � < �

�@� 
4� ��
�9.� � <2	3 
,� ��
�9.�:�@� <
The precedingcalculationswere restricted by the choice of a particular phaseof the

asymptoticcycleatwhich to countthecylinders.With a little moreeffort ageneralexpressionfor
all phasesis found. Noting thesimilarity of thel-digraphstructuresbetweendifferentorderband-
mergings and generalizingthe precedingrecursivetechniqueyields an expressionfor arbitrary
orderband-merging. This takesinto accountthe fact that the generationof new � -cylindersvia
branchingoccursat differentphaseson the variouslimbs of the transientspine.The numberof� -cylindersfrom the exactenumerationfor the A �B�C�ED �%D =

?
band-merging is


4� ��
 7 �F� � <
7 �G9

� D H
<.I D

� < 6��5J � =
? 7 �G9

where ��KL���M� D and H <	I D
� � ���;N�O�P� =

Q
< and N�R�@� = D

� �TSU2WVX� D � accountfor the effect of
relative branchingphasesin the spine. This coefficient is bounded

H D � <
� Y&Z\[]
<	I D_^
 *"-` H <	I D

�;�
H D)a-b � c�dWe]

<	I DX^
 *"�` H <	I D

�Gf � =
gh �.ij9>k	9.k	k	9>�
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The secondbound follows from noting that the maximum occurs when, for example, ������������
	��
. Note that the maximumand minimum valuesof the prefactorare independentof

the phaseand of � and 
 . We will ignore the detailedphasedependenceand simply write �
insteadof ����� � and considerthe lower boundcaseof ����� .

Recalling that �����������  "! �#
 , we have$&% �(')� �+*-, � � ��.�/�0 , � 	��
and the total (topological) entropy is given by1 � % �('2�3����� . $4% �('1 � % �('2�5��� � ����� . � ��.6/�0 , � 	��
wherewe haveset �7�8� . Thefirst termrecoversthelinearinterdependencethatderivesfrom the
asymptoticperiodicity; cf. the period-doublingcase.The secondterm is due to the additional
featureof chaotic behavior that, in the band-merging case,is reflectedin the branchingand
transientsin the l-digraphstructure. In termsof the modelingdecompositionintroducedat the
beginning,thefirst termcorrespondsto theperiodicprocess9;: andthebranchingportionof the
secondterm, to componentsisomorphicto the Bernoulli process<=: .

From the developmentof the argument,we seethat the factor
�>	?�

in the exponentcontrols
the branchingrate in the asymptoticcycle and so shouldbe relatedto the rate of increaseof
the numberof cylinders. The topologicalentropyis the growth rate of

1 � andso cannow be
determineddirectly @

� % 
A'2� ��BDC��EGF
1 � % �('� � � 	?�

Rewriting the generalexpressionfor the lower boundin a chaoticcascademakesit clear how
@
� controls the total entropy $4% �)HI
A')�J -! � ��K � 	L�

where

@
� MNPO is the branchingratio of the numberof verticesf that branchto the total number -! of recurrentstates.

The abovederivation usedperiodicity QR�S� . For generalperiodicity band-merging, we
have  "!T��Q ���

and UV�W� . It is clear that the expressionworks for a muchwider rangeof X -
machineswith isolatedbranchingwithin acyclethatdonotderivefrom cascadesystems.Indeed,
the resultsconcerntherelationshipbetweeneigenvaluesandasymptoticstateprobabilitiesin the
family of labeledMarkov chainswith isolatedbranchingamongcyclic recurrentstates.

As a subsetof all Misiurewicz parametervalues,band-merging behaviorhasthe simplest
computationalstructure.In closingthis section,we shouldpoint out that thereareothercascade-
relatedfamiliesof Misiurewiczparameterswhosemachinesaresubstantiallymorecomplicatedin
thesensethatthestochasticelementis morethananisolatedbranching.Eachfamily is described
by startingwith a generallabeledMarkov chainas the lowestordermachine.The other family
membersare obtainedby applicationsof a period-doublingoperator.47 Eachis a productof a
periodic processand the basic stochasticmachine. As a result of this simple decomposition,
the complexity-entropyanalysiscanbe carriedout. This will be reportedelsewhere.It explains
many of the complexity-entropypropertiesabovethe lower boundcaseof band-merging. The
numericalexperimentslater give examplesof all thesetypesof behavior.
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Cascade Phase Transition
The precedingresultsareusedin this sectionto demonstratethat thecascaderouteto chaos

has a complexity-entropyphasetransition. It was establishedsometime ago that this route
to chaosis a phasetransition as a function of a nonlinearity parameter,52 with an external
(dis)orderingfield51 and a natural (dis)orderparameter.60 Here we focus on the information
processingpropertiesof this transition. First, we estimate for finite cylinder lengths the
complexityandspecificentropyat thetransition.Second,we defineandcomputethetransition’s
latentcomplexity that givesthe computationaldifferencebetween� -machinesaboveandbelow
the transition. Finally, we discussthe transition’sorder.

0 1Hc

0

C

C

’

"

Periodic
(Solid)

Chaotic
(Gas)

Figure13 Complexityversusspecificentropyestimate.Schematicrepresentationof the cascadelambdatransitionat finite
cylinder lengths.Below ��� the behavioris periodic;above,chaotic. The latentcomplexity is given by the differenceof
the complexities ��� � and ��� at the transitionon the periodicandchaoticbranches,respectively.

Given the lower bound expressionsfor the entropy and complexity aboveand below the
transitionto chaosas a function of cylinder length � , we can easily estimatethe complexities�
	�� ��
 and

��	�	�� ��
 andthe critical entropy ��� � ��
 . Figure13 givesa schematicrepresentationof
the transitionand showsthe definitions of the variousquantities. The transition is defined as
the divergencein the slopeof the chaoticbranchof the complexity-entropycurve. That is, the
critical entropy ��� and complexity

� 	
are definedby the condition� �� �����

From this, we find � 	 ����� �"! � �#�$�%!&�#�$�%!&'
�&��� � � 	%( ��� � ! ) ' *,+�-

where '.��*0/ !2143 � is the solution of

'5��� �"67' ' (98
* ���

that is, ' *;: 8=<$< <?>%< � >%< . Numericalsolution for � � 8A@ gives� 	 � 8A@ 
 > :CB <"80D B$*� 	�	 � 8A@ 
 E : <%F D * F D
�G� � 8A@ 
 �H:I* B @ * � <
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at ��� � .
The latentcomplexity ��� of thetransitionwe defineasthedifferenceat thecritical entropy�	�
of the complexitieson the periodic and chaoticbranches

�
������
�
 ��

Along the periodic branch the entropy and complexity are equal and so from the previous
developmentwe seethat

� �	� ����
�
�����
���������� ��� ��

�� !�	���"�#��� � �$� ��

For �%�&� this gives by numericalsolution

�	� ')(+* � * �-, *-.�/-/�*1032#4
which, we note, is independentof cylinder length.

In classifying this transition thermodynamically,the complexity plays the role of a heat
capacity. It is by our definition a computational“capacity”. Just as the thermodynamic
temperaturecontrols the multiplicity of available states,

�
appearsas an “informational”

temperatureand
�	�

as a critical amountof information (energy) per symbol (spin) at which
long rangefluctuationsoccur. The overall shapeis thensimilar to a lambdaphasetransitionin
that there is a gradualincreasein the capacityfrom both sidesand a jump discontinuity in it
at the transition. The propertiessupportingthis follow from the boundsdevelopedearlier. And
so, there is at leastone componentof the cascadetransition that is a secondorder transition,
i.e. that associatedwith periodicity 5	�6� . Thereis alsoa certaindegeneracydue to the phase
dependenceof thecoefficient �$7�8 9 . This is a smalleffect, but it doesindicatea rangeof different
limiting valuesas � for thechaoticcritical complexity � 
 . It doesnot changetheorderof
the transition.To completelycharacterizethe transition,though,an upperboundon complexity
at fixed � is alsoneeded.This requiresaccountingfor the typical chaoticparameters,by which
we meanthoseassociatedwith aperiodicbehaviorof the critical point. An approachto this
problem will be reportedelsewhere.

It should also be emphasizedthat the above propertieswere derived for finite cylinder
lengths;that is, far awayfrom the thermodynamiclimit of infinite cylinders. The overall shape
andqualitativepropertieshold not only in the thermodynamiclimit but alsoat eachfinite size.
In the thermodynamiclimit the entropyestimates�;:=< �?> �A@ go over to the entropygrowth ratesB)C

. As a result, all of the periodic behavior lies on the
BDC �E' line in the

> BDC=F � C @ -plane.
This limiting behavioris consistentwith a zero temperaturephasetransitionof a one-spatial-
dimensionspin systemwith finite interactionrange.

This analysisof the cascadephasetransition should be contrastedwith the conventional
descriptionsbasedon correlation function and mutual information decay. The correlation
length of a statisticalmechanicalsystemis definedmost generallyas the minimum size G at
which thereis no qualitativestatisticaldifferencebetweenthe systemof size G andthe infinite
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(thermodynamiclimit) system.This is equivalentin thepresentcontextto defininga correlation
length ��� at which � -cylinder � -orderstatisticsarecloseto asymptotic.* If we considerthetotal
entropy �������
	 asthe(dis)orderparameterof interest,thenfor finite � -machines,† awayfrom the
transitionon the chaoticside,we expectits convergenceto asymptoticstatisticsto behavelike

��
�������� ���� �

But for � sufficiently large

��
�������� �������

where ��� �"!�#%$�&(')� . By this argument,the correlationlength is simply relatedto the inverse
of the specific entropy: �*� �,+�-� . We would conclude,then, that the correlationfunction
descriptionof thephasetransitionis equivalentin manyrespectsto thatbasedonspecificentropy.

Unfortunately, this argument, which is often used in statistical mechanics,confusesthe
rate of decayof correlationwith the correlationlength. Thesequantitiesare proportionalonly
assumingexponentialdecayor, in the presentcase,assumingfinite � -machines.The argument
doesindicatethatasthetransitionis approachedthecorrelationlengthdivergessincethespecific
entropyvanishes.For all behaviorwith zerometricentropy,periodicor exactlyat the transition,
the correlationlength is infinite. As typically defined,it is of little use in distinguishingthe
various types of zero entropy behavior.

The correlationlength in statisticalmechanicsis determinedby the decayof the two-point
autocorrelationfunction

�.�/	0� 132.1 2�4 � �
5
6
7 +8-
2:9,;

132�1 2�4 � 1 &2

Its information theoreticanalogis the two–point1-cylinder mutual information

< �=�?>32A@B> 2�4 � 	C�D���8�.>32�	 ���=�.> 2�4 � >E2?	
where >E2 is the FHGHI symbol in the sequence> and ���8� 	 is the Renyi entropy.‡ Using this to
describephasetransitionsis an improvementover the correlationfunction in that, for periodic
data,it dependson the period JLK < � !�#%$MJ . In contrast,the correlationfunction in this case
doesnot decayand gives an infinite correlationlength.

The convergenceof cylinder statisticsto their asymptotic(thermodynamiclimit) valuesis
most directly studiedvia the total excessentropy30,46,61

N �=�.�/	C�O���=�.�/	 ���P�
It measuresthe total deviation from asymptoticstatistics,up to � -cylinders.§ As � , it
measuresthe averagemutual information betweensemi-infinitepastand future sequences.It

* Cf. the entropy“convergenceknee” QER .31

† The statisticalmechanicalargument,from which the following is taken,equivalentlyassumesexponentialdecayof the correlationfunction.
‡ The correlationlength is mostcloselyrelatedto SUT .
§ A scalingtheoryfor entropyconvergenceto thethermodynamiclimit thatincludestheeffectof extrinsicnoisehasbeenis describedpreviously.31
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follows from standardinformation theoretic inequalitiesthat the two-point 1-cylinder mutual
information is an overestimateof the excessentropyand so of the convergenceproperties. In
particular, �������

���
�
	 �

���
������� �����
	

since
�
� ignoresstatisticaldependenceon thesymbolsbetween��� and � ����� . TheDFA � -machine

complexity is directly relatedto the total excessentropy30

� � �
��	

�����
�
� �
��	

As a tool to investigatecomputationalproperties,thetwo-pointmutualinformationis too coarse,
sinceit gives at most an upperboundon the DFA complexity.

At the transition correlationextendsover arbitrarily long temporaland spatial scalesand
fluctuationsdominate. It is the latter that supportcomputationat higher levels in Chomsky’s
hierarchy. The computationalpropertiesat the phasetransitionare capturedby the diverging
� -machines’structure.To the extentthat their computationalstructurecanbe analyzed,a more
refinedunderstandingof the phasetransitioncan be obtained.

Cascade Limit Language
The precedingsection dealt with the statistical characterof the cascadetransition, but

we actually have much more information availablefrom the � -machines. Although the DFA
model diverges in size, its detailedcomputationalpropertiesat the phasetransition reveal a
finite descriptionat a higher level in Chomsky’shierarchy. With this we obtain a much finer
classificationthan is typical in phasetransition theory.

The structureof the limiting machine can be inferred from the sequenceof machines
reconstructedat �! �" �

�
period-doublingbifurcation on the periodic side and from those

reconstructedat �" �" 
���

band-merging on thechaoticside. (Comparefigures2 and6, 3 and
7, 4 and8, 5 and9.) All graphshavetransientstatesof pair-wisesimilar structure,exceptthatthe
chaoticmachineshavea period �  

���
unstablecycle. All graphshaverecurrentstatesof period

�  . In the periodicmachinesthis cycle is deterministic.In the chaoticmachines,althoughthe
statesarevisited deterministically,the edgeshavea singlenondeterministicbranching.

Theorderof thephasetransitiondependsonthestructuraldifferencesbetweenthe � -machines
above and below the transition to chaos. In general, if this structural differencealters the
complexity at constantentropy, then the transitionwill be secondorder. At the transition to
chaosvia period doubling thereis a differencein the complexitiesdue to

1. The single vertex in the asymptoticcycle that branches;and
2. The transient �! 

���
cycle in the machineson the chaoticside.

At constantcomplexitytheuncertaintydevelopedby thechaoticbranchingandthenatureof the
transientspinedeterminethe amountof dynamicinformation productionrequiredto makethe
changefrom predictableto chaotic � -machines.

The following two subsectionssummarizeresultsdiscussedin detail elsewhere.
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Critical Machine
Themachine� thatacceptsthesequencesproducedat thetransition,althoughminimal, has

an infinite numberof states.The growth of machinesize ������� versusreconstructioncylinder
size � at the transitionis demonstratedin figure 14. The maximumgrowth is linear with slope�
	���
 . Consequently,the complexity diverges logarithmically.* The growth curve itself is
composedof pieceswith alternatingslope2 and slope4

������� � � � ��� ��� 
 �������� � 
 � ����� ��� � �����
The slope2 learningregionscorrespondto inferring moreof the statesthat link the upperand
lower branchesof the machine. (The basicstructurewill be madeclearerin the discussionof
figure 15 below.) The slope4 regionsareassociatedwith picking up groupsof statesalongthe
long deterministicchainsthataretheupperandlower branches.Recallingthedefinitionof �
� in
a previoussection,we note that finite �
	 indicatesa constantlevel of complexityusinga more
powerful computationalmodel than  "!�#%$&! .

Figure14 Growth of critical machine' . The number ( )+*-,/.0( of reconstructedstatesversuscylinder length , for the logistic
mapat the periodicity 132 � cascadetransition.Reconstructionis from length1 to length64 cylinderson 45, -cylinder trees.

Self-similarity of machinestructureat the limit is evidentif the machineis displayedin its
“dedecorated” form. A portion of the infinite l-digraphat the transitionis shownin figure 15 in
this form. A decorationof an l-digraphis the insertionof a deterministicchainof statesbetween
two states.62 In a dedecoratedl-digraphchainsof statesarereplacedwith a singleedgelabeled
with the equivalentsymbolsequence.In the figure structureswith a chainfollowed by a single
branchinghavebeenreplacedwith a singlebranchingeachof whoseedgesarelabeledwith the
original symbolsequencebetweenthe states.The dedecorationmakesthe self-similarity in the
infinite machinestructurereadily apparent.

Figure15 Self-similarity of machinestructureat cascadelimit is shownin the dedecoratedl-digraphof ' .

The strict regularity in the limit machinestructureindicatesa uniformity in the underlying
computationmodeledatahigherlevel. Indeed,thelattercanbeinferredfrom theinfinite machine
by applying the equivalenceclassmorph reconstructionalgorithm to the machineitself.† The
resultis thenon-DFA machine��6 shownin figure16, wherethestatesin dedecorated� (figure
15) are coalescedinto new equivalenceclassesbasedon the subtreesimilarity applied to the
sequenceof statetransitions.Theadditionalfeaturethatmustbe inferred,oncethis higherlevel
machineis reconstructed,is the productionrule for the edgelabels. Thesedescribestringsthat
double in length accordingto the production 7 7&798 , where 7 is a registervariable and
7 8 is the contentsof 7 with the last symbol complemented.The productionappendsto the
register’scontentsthe string 7 8 .

On a statetransitionthecontentsof the registerareoutputeitherdirectly or asthestring 798 .
Thel-digraphedgesarelabeledaccordinglyin thefigure. On a transitionfrom statessignifiedby

* The total entropyalsodependslogarithmicallyon cylinder length.
† The generalframeworkfor reconstructingmachinesat different levels in a computationalhierarchyis presentedelsewhere.25
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squares,the registerproductionis performedfirst andthenthe transitionis made.The machine
beginsin the start statewith a “1” in the register.

Figure16 Higher level production-rulemachine,or stackautomaton,��� that accepts��� .
���

acceptsthe full language� �
producedat the transition including the transientstrings

with variousprefixes.At its core,though,is thesimplerecursiveproduction 	�
 
�
�
�� for the
itinerary � �

of the critical point ��� . We will now explorethe structureof this sequencein more
detail in orderto seejust whatcomputationalcapabilitiesit requires.We shall demonstratehow
and where it fits in the Chomskyhierarchy.

Critical Language and Grammar
Before detailing the formal languagepropertiesof the symbol sequencesgeneratedat the

cascadetransition, severaldefinitions of restrictedlanguagesare in order. First, of course,
is the critical languageitself � �

which we take to be the set of all subsequencesproduced
asymptoticallyby thedynamicalsystemat thecascadetransition.

���
is a deterministicacceptor

of � �
. Second,the mostrestrictedlanguage,denoted��� , is the sequenceof the itinerary of the

map’s maximum ��� . That is,

����� � ��� ������� �"!#�%$ &('�)+*-,.	/� � �102� � � , ��3547698;:-<>=@?BADC.<E� , �GF
a singlesequence.Third, a slight generalizationof this, �H! , consistsof all length I(J subwords
of � �

that start at the first symbol

�H!K� � � ������� �%! � !ML 47A��N3O4%FP4QI54>RSRDRT&('�)+�VUW�GXZY �\[ U
where X � [^] �_� ] if ���_��� �%!#�#$ � ] . Finally, we define �`$ to be the set of subsequences
of any length that start at the first symbol of � �

�`$B� � � �a�b���V�%! � , 4`Ac�GFP4 IT4VdT4%RDRDR�&('�)+�VU��eXZY �\[ U
Note that � �

is the further generalizationincluding subsequencesthat startat any symbol in � �

� � � � ] � � ] ����� �%! � , 4`Ac�fFP4 IT4;dT4%RDRDR�&('�)+�VUW�GXZY �\[ U>g ] 4ih 3
With thesevariouslanguages,wecanbeginto delineatetheformalpropertiesof thetransition

behavior. First, we note that an infinite numberof words occur in � �
eventhoughthe metric

entropyis zero. Additionally, therearean infinite numberof inadmissiblesequencesandso an
infinite numberof wordsin thecomplementlanguagej� �

, i.e. wordsnot in � �
. Oneconsequence

is that the transitionis not describedby a subshiftof finite type sincethereis no finite list of
words whoseconcatenationgenerates� �

.63

Second, in formal languagetheory “pumping lemmas” are used to prove that certain
languagesare not in somelanguageclass.5 Typically this is tantamountto demonstratingthat
particularrecurrenceor cyclic propertiesof the classarenot obeyedby sufficiently long words
in the languagein question. Regular languages(RL) are those acceptedby DFAs. Using
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the pumping lemmafor regular languagesit is easyto demonstratethat � �����������	��
�����

is not regular. This follows from noting that there is no length � such that each word� ��������� � � can be broken into three subwords, ��������� � ���!� �"� � , where
the middle (nonempty)subwordcan be repeatedarbitrarily many times. That is, sufficiently
long stringscannotbe decomposedsuchthat � � �"��#$� � % & . In fact, no substrings
canbe arbitrarily pumped.The lack of sucha cyclic propertyalso follows from noting that in'

all thestatesaretransientandthereareno transientcycles.Theobservationof this structural
propertyalsoleadsto theconclusionthat ��
 is alsonot finitely-describedat thenext level of the
complexityhierarchy:context-freelanguages(CFL), i.e. thoseacceptedby pushdownautomata.
This canbe establisheddirectly using the pumpinglemmafor context-freelanguages.

Third, in the structuralanalysisof
'

we found statesat which the following productionis
applied: ( ()(+* , where ()* �-,�. /,10 if ( �-,�. ,10 and /, is the complementof , . This
productiongenerates�2� and ��� . It is mostconciselyexpressedasa context-freeLindenmayer
system.64 The generalclassis called 0L grammars: 3 � 4 ��56�87 consistingof the symbol
alphabet,productionrules,andstartstring, respectively.This computationalmodel is a classof
parallelrewriteautomatain whichall symbolsin awordhavetheproductionrulessimultaneously
applied,with theneighboringsymbolsplayingno role in theselectionof which production.The
symbolalphabetis 49� &:��; . The productionrules 5 arequite simple5 � & ;�;��<; ;1&
andstartwith the string 7 � ; . This systemgeneratesthe infinite sequence�2� andallowing
the choiceof whento stopthe productions,it generates��� � ;=�1;1&>�<;<&>;�;=�<;<&>;�;=;1&>;<&>��?�?1? .

Although theL-systemmodelof the transitionbehavioris quitesimple,asa classof models
its parallelnatureis somewhatinappropriate.L-systemsproduceboth“early” and“late” symbols
in a stringat everyproductionstep;whereasthedynamicalsystemin questionproducessymbols
sequentially. This point is even more obvious when thesesymbol sequencesare considered
as sequentialmeasurements.The associatedL-systemmodel would imply that the generating
processhad an infinite memory of past measurementsand accessedthem arbitrarily quickly.
The model classis too powerful.

This can be remediedby converting the 0L-system to its equivalent in the Chomsky
hierarchyof sequentialcomputation.5 The Chomskyequivalentis a restrictedindexedcontext-
freegrammar3@
 � A �8BC�!DE�GF@�GHE�JI .65 A centralfeatureof the indexedgrammarsis that they
are a naturalextensionof the context-freelanguagesthat allow for a limited type of context-
sensitivityvia indexedproductions,while maintainingpropertiesof context-freelanguages,such
as closure and decidability, that are important for compilation. For the limit languagethe
componentsaredefined as follows. A�� IK�GL is the setof nonterminalvariableswith I the
start symbol; B � (M�GNE�	O@��PQ��RE��S is the setof intermediatevariables; D � &>�1; is the set
of terminal symbols; H � I L2TU�8L L)VW�8L NX(Y�!O NZNE�	P NX(M��R &:��S ;
is thesetof productions;and F � V��[T with V �]\ ( O^��N PY_ and T �`\ ( RE�!N Sa_
are indexedproductions.The grammarjust given is in its “normal” form sincethe variablesin
the indexedproductionsF do not haveproductionsin H . The indexedgrammaris restrictedin
that thereare no intermediatevariableswith productionsthat producenew indices. The latter
occursonly via the I L2T and L L)V productions.Note that oncethis is no longerused,
via the applicationof L Nb( , no new indicesappear.

25



J. P. Crutchfieldand K. Young

Theaboveindexedgrammarsequentiallyproducessymbolsin wordsfrom ��� . Two example
“left-most” derivationsare����� � 	�
 �

���


� ��
 ����
 ��� ���
����� � 	�
 	���
 ����
���� 


! 
"�#� 
 �

"��
"�#��
 � ��
�����
����
�����
 �����#� 
 �$�%����

���'&�
 ���'�

��

 �$� � �

���"�$��
 �$�"� � ���"�'�

Productionsare applied to the leftmost nonterminalin eachstep. Consequently,the terminal
symbols

�
(
�

are producedsequentiallyleft to right in “temporal” order. In the first line,
noticehow the indicesdistributeover thevariablesproducedby theproduction

	 �)�
. When

an indexedproductionis usedan index is consumed:as in

�

 �
in going from the first

to the secondline above.

All of the languagesin the Chomskyhierarchyhavedual representationsasgrammarsand
asautomata.Themachinecorrespondingto an indexedcontext-freelanguageis thenestedstack
automaton(NSA).66 This is a generalizationof the pushdownautomaton:a finite statecontrol
augmentedwith a last-in first-out memoryor stack.An NSA hasthe additionalability to move
into thestackin a read-onlymodeandto inserta new(nested)stackat thecurrentstacksymbol
being read. It cannotmove higher in the stackuntil it hasfinishedwith the nestedstackand
removedit. The restrictedindexedcontext-freegrammarfor �*� is recognizedby the one-way
nondeterministicNSA (1NNSA) shownin figure 17. The start stateis q. The variousactions
label the statetransitionedges. $ denotesthe top of the currentstackand the cent sign, the
currentstackbottom. The actionsare one of threeforms

1. + , , where + and , arepatternsof symbolson the top of the currentstack;
2. + {1, -1}, wherethelatter indicatesmovingtheheadup anddownthestack,respectively,

upon seeingthe pattern + at currentstack top.
3. (t,$t) (1,$), wheret is a symbol readoff of the input tapeandcomparedto the symbol

at the top of thestack.The ’1’ indicatesthat the input headadvancesto thenext symbolon
the input tape. The symbol on the stack’stop is removed:$t $.

In all but one casethe actionsare in the form of a symbol patternon the top of the stack
leading to a replacementpatternand a stackheadmotion. The notationon the figure usesa
component-wiseshorthand. For example,the productionsare implementedon the transition
labeled${S,T,T,C,D,E,F} ${Tg,Tf,BA,BB,BA,0,1} which is shorthandfor the individual
transitions: $S $Tg, $T $Tf, $T $BA, $C $BA, $D $BB, $E $0, and
$F $1. The operationof the 1NNSA mimics the derivationsin the indexedgrammar.The
nondeterminismheremeansthat thereexistssomesetof transitionsthat will acceptwordsfrom�*� . ��- is acceptedby thesame1NNSA, but modified to acceptwhentheendof the input string
is reachedand the previousinput hasbeenaccepted.

Figure17 One-waynondeterministicnestedstackautomatonfor limit languages."/ and ."0 .
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Thereare threeconclusionsto draw from theseformal languageresults.First, it shouldbe
emphasizedthat the particular details in the precedinganalysisare not essential. Rather,the
most important remark is that the descriptionat this higher level is finite and, indeed,quite
small. Despitethe infinite DFA complexity,a simplehigherlevel descriptioncanbe foundonce
the computationalmodel is augmented.Indeed,the deterministicTuring machineprogramto
generatewordsin thelimit languageis simple: (i) copythecurrentstringon thetapeontoits end
and(ii) invert the last bit. The limit languagefor the cascadetransitionuseslittle of the power
of the indexedgrammars.The latter can recognize,for example,context-sensitivelanguages.
The limit machineis thus exceedinglyweak in its implied computationalstructure. Also, the
only nondeterminismin the 1NNSA comesfrom anticipatingthe lengthof the string to accept;
a featurethat canbe replacedto give a deterministicandso lesspowerful automaton.

Second,it is relativelystraightforwardto build a continuous-statedynamicalsystemwith an
embeddeduniversalTuring machine.‡ With this in mind, andfor its own sake,we notethat by
theaboveconstructionthecascadetransitiondoesnothaveuniversalcomputationembeddedin it.
Indeed,it barelyaspiresto bemuchmorethana context-freegrammar.With theformal language
analysiswe haveboundedthecomplexityat thetransitionto begreaterthanregularandcontext-
free languagesand no more powerful than indexedcontext-free. Furthermore,the complexity
at this level is measuredby a linearly boundedDFA growth rate ����� �

. Theseproperties
leaveopenthe possibility, though,that the languagecould be a one-waynondeterministicstack
automaton(1NSA).5

Finally, we demonstratedby an explicit analysisthat nontrivial computation,beyondinfor-
mationstorageand transmission,arisesat a phasetransition. One is forced to go beyondDFA
modelsto the higher stackautomatonlevel sincethe former requirean infinite representation.
Thesepropertiesare only hinted at by the infinite correlation length and the slow decayof
two-point mutual information at the transition.

Logistic Map
Theprecedinganalysisholdsfor a wide rangeof nonlinearsystemssinceit restsonly on the

symbolicdynamicsandtheassociatedprobabilitystructure.It is worthwhile,nonetheless,to test
it quantitativelyon particularexamples.This is possiblebecauseit restson a (re)constructive
methodthat appliesto any datastream. This sectionand the next report extensivenumerical
experimentson two one-dimensionalmaps. The first is the logistic map, defined shortly, and
the second,the piecewiselinear tent map.

The logistic map is a map of the unit interval given by

���
	�� ��
 ������� ��������� � ��� �������
 �! 
 ��� �#"$�

wheretheparameter
 controlsthedegreeof nonlinearity. %& is themap’sheightat its maximum��' � �( . This is one of the simplest,but nontrivial, nonlineardynamicalsystems. It is an
extremely rich systemabout which much is known.47 It is fair to say, however, that even
at the presenttime there are still a number of unsolvedmathematicalproblemsconcerning

‡ A two-dimensionalmapwith an embedded4 symbol,7 stateuniversalTuring machine67 wasconstructed.68
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the behaviorat arbitrary chaoticparametervalues. The (generating)measurementpartition is������ ���
	���
���	�����

	������
.

The machinecomplexity and information theoretic propertiesof this systemhave been
reportedpreviously.30 Figure18 showsthecomplexityversusspecific entropyfor 193parameter
values � ����	����

. Oneof the more interestinggeneralfeaturesof the complexity-entropyplot is
clearly demonstratedby this figure: all of the periodic behaviorlies below the critical entropy� �

; andall of thechaotic,above.This is trueevenif theperiodicbehaviorcomesfrom cascade
windowsof periodicity !#" � within thechaoticregimeat high parametervalues.The $ �&% 	(' % �
plot, therefore,capturesthe essentialinformationprocessing,i.e. computationand information
production,in the period-doublingcascadeindependentof any explicit systemcontrol.

Figure18 Observedcomplexity versusspecificentropyestimatefor the logistic map at 193 parameter
values )+*-, .�/1032 within both periodic and chaoticregimes. Estimateson 32-cylindertrees
with 16-cylindersubtreemachinereconstruction;wherefeasible.

The lower bound derived in the previous sectionsapplies exactly to the periodic data
$ �546�&� �

and to the band-merging parametervalues. The fit to the periodicdatais extremely
accurate,verifying the linear relationshipexceptfor high periodsbeyondthat resolvableat the
chosenreconstructioncylinder length. The fit in the chaotic regime is also quite good. (See
figure 19.) The dataaresystematicallylower (˜2%) in entropydueto the useof the topological
entropyin the analysis.The measuredcritical entropy

� �
and complexity

'8797
at the transition

were 0.28 and 4.6, respectively.

Figure19 Fit of logistic map periodicandchaoticdatato correspondingfunctional forms. The data
is from the periodicity 1 band-merging cascadeand also includesall of the periodic datafound
in the precedingfigure. The theoreticalcurves :<;>=@?A;CB are shownas solid lines.

Tent Map
The secondnumericalexample,the tent map, is in someways substantiallysimpler than

the logistic map. It is given by

DFEHGAI � J
D E D E IK
J $
� DFE � DLE " IK

wheretheparameterJ controlstheheight �NMK of themapat themaximum DLO � IK . Themain
simplicity is that there is no period-doublingcascadeand, for that matter, thereare no stable
periodicorbits, exceptat the origin for J

4 �
. Thereis insteadonly a periodicity ! � � chaotic

band-merging cascadethat springsfrom DLO at J �
�
.

The piecewiselinearity also lends itself to further analysisof the dynamics. Since the
maphasthe sameslopeeverywhere,the LyapunovexponentP , topological,metric, andRenyi
specificentropiesare all equaland given by the slope P �RQ % �TS@U�V K J . We can simply refer
to theseas the specificentropy. From this, we deducethat, since Q % �XWZYF[]\1UH^-W_[ W_[`Y I
band-mergings, the parametervaluesthere are

J KbadceK>adf
� �gW K

f_a
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For � ��� the complexity is given by the band-merging period. And this, in turn, is given by
the numberof bands. Thus, we have ����� 	�

������� or

����� 	�

����	�

�����
as a lower boundfor �������! #"$�%�&� � at an ' -order bandmerging.

Sincethereis no stableperiodicbehavior,otherthanperiodone,thereis a forbiddenregion
in the complexity-entropyplot below the critical entropy. The systemcannotexist at finite
“temperatures”below (*) , exceptat absolutezero (*)+�-, .

Figure 20 gives the complexity-entropyplot for 200 parametervalues � ./��01�32 . There is
a good deal of structurein this plot beyondthe simple band-merging lower boundswe have
concentratedon. Neareachband-merging complexity-entropypoint, thereis a slantedclusterof
points. Theseareassociatedwith families of parametervaluesat which the iterates 4#57698#:3; are
asymptoticallyperiodicof variousperiods.We shall discussthis structureelsewhere,exceptto
noteherethat it alsoappearsin the logistic map,but is substantiallyclearerin this example.

Figure 20 Tent map complexity versusentropyat 200 parametervalues <>=@?BADC �FE . The quantities
were estimatedwith 20-cylinderreconstructionon 40-cylindertrees;wherefeasible.

Figure 21 showsband-merging dataestimatedfrom 16- and 20- cylindersalong with the
appropriatetheoreticalcurvesfor thoseand in the thermodynamiclimit ( �G�H�
I
J ).

Figure21 Effect of cylinder length. Tent mapdataat 16- and20-cylinders(triangleandsquaretokens,respectively)
alongwith theoreticalcurves KMLON�PQLSR for the sameand in the thermodynamiclimit ( TVU �XWXY ).

From the two numericalexamplesit is clear that the theory quite accuratelypredictsthe
complexity-entropydependence.It canbe easilyextendedin severaldirections. Most notably,
thefamiliesof Misiurewiczparametersassociatedwith unstableasymptoticallyperiodicmaxima
canbe completelyanalyzed.And this appearsto give someinsight into the generalproblemof
the measureof parametervalueswhereiteratesof the maximumare asymptoticallyaperiodic.
Additionally, thecomputationalanalysisis beingappliedto transitionsto chaosvia intermittency
and via frequency-locking.

Computation at Phase Transitions
To obtaina detailedunderstandingof the computationalstructureof a phasetransition,we

haveanalyzedoneexampleof a self-similar family of attractors.The period-doublingcascade
is just oneof manyroutesto chaos.The entirefamily is of nominal interest,providing a rather
completeanalysisof a phasetransitionandhow statisticalmechanicsapplies.More importantly,
for generalphasetransitionsthe approachdevelopedhereindicatesa type of superuniversality
that is basedonly on the intrinsic informationprocessingperformedby a dynamicalor, for that
matter,physicalsystem. This information processingconsistsof conventionalcommunication
theoreticquantities,that is the storageand transmissionof information,and the computational
aspects,most clearly representedby the detailedstructureand formal languagepropertiesof
reconstructedZ -machines.
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By analyzingin somedetail a particularclassof nonlinearsystems,we haveattemptedto
strengthenthe conjecturethat it is at phasetransitionswhere high level computationoccurs.
Application to other examples,such as the phasetransition in the 2D Ising spin system
and cellular automataand lattice dynamical systemsgenerally, will go even further toward
establishingthis generalpicture. Theseapplicationswill be reportedelsewhere.Nonetheless,
it is clear that computationalideasprovide a new set of tools for investigatingthe physicsof
phasetransitions. The centralconclusionis that via reconstructionthey can be movedout of
the realm of mathematicsand theoreticalcomputerscienceand applied to the scientific study
and engineeringof complex processes.

The associationof high level computationand phasetransitionsis not madein isolation.
Indeed, we should mention some early work addressingsimilar questions. Type IV cellu-
lar automata(CA) were conjecturedby Wolfram to supportnontrivial and perhapsuniversal
computation.69 TheseCA exhibit long-lived transientsandpropagatingstructuresout of which
elementarycomputationscanbe constructed.The first authorandNormanPackardof the Uni-
versity of Illinois conjecturedsomeyearsago that type IV behaviorwas generatedby CA on
bifurcationsetsin the discretizedspaceof all CA rules. This wassuggestedby studiesof bifur-
cationsin a continuous-statelatticedynamicalsystemasa functionof a nonlinearityparameter.70

Thecontinuouslocal stateswerediscretizedto give CA with varyingnumbersof states.By com-
paringacrossa rangeof state-discretizationandnonlinearityparameter,the CA bifurcationsets
werefoundto beassociatedwith bifurcationsin thecontinuous-statelatticesystem.More recent
work by Chris Langtonof Los AlamosNationalLaboratoryhasconfirmed this in substantially
more detail via Monte Carlo samplingof CA rule space.This work usesmutual information,
not machinecomplexity,measuresof the behavior.As pointedout above,thereis an inequality
relating thesemeasures.Mutual information versusentropydensityplots for hundredsof CA
rulesreveala phasetransitionstructuresimilar to that shownin thecomplexity-entropydiagram
of figure 18. Seenin this light, the presentpaperaugmentstheseexperimentalresultswith
an analytic demonstrationof what appearsto be a very generalorganizationof the spaceof
dynamicalsystems,whetherdiscreteor continuous.

Complexity of Critical States
Recall that the Wold-Kolmogorovspectraldecompositionsaysthe spectrumof a stationary

signalhasthreecomponents.2,3,4 The first is a singularmeasureconsistingof � -functions. This
describesperiodicbehavior.The secondcomponentis associatedwith an absolutelycontinuous
invariant measureand so broadbandpower spectra. The final componentis unspecifiedand
typically ignored. From the precedinginvestigation,though, we can make a commentand
a conjecture. The comment is that finite stochasticDFA � -machinescapture the first two
componentsof the decomposition:��� and ��� , respectively.The conjecture,andperhapsmore
interestingremark, is that the third componentappearsto be associatedwith higher levels in
the computationalhierarchy.

This conjecturecanbe comparedto recentdiscussionof ergodic theory. Ornsteinsuggested
thatmost“chaotic systemsthatarisenaturallyareabstractlythesameas ��� ”.1 We cannow see
in what sensethis can be true. If it is only at accumulationpoints of bifurcationsthat infinite

30



Computation at the Onset of Chaos

DFA machinesoccur,thenin thespaceof all dynamicalsystemsthedimensionalityof thesetof
suchsystemswill be reducedandso the set’smeasurewill be zero. From this viewpoint, high
complexity (non-��� ) systemswould be rare. We canalsoseehow the conjecturecanbe false.
If thereis someconstraintrestrictingthe spaceof systemsin which we areinterested,thenwith
respectto that spaceinfinite machinesmight havepositivemeasureandso be likely. Systems,
suchasthosefound in biology, thatsurviveby adaptivelymodifying themselvesto bettermodel
andforecasttheir environmentwould tendto exhibit high levelsof complexity. Within thespace
of successfuladaptivesystems,high complexity presumablyis quite probable. Another sense
in which Ornstein’sconjectureis too simplified is that the Bernoulli shift is computationally
simple. It is equivalent,in one representation,to the piecewiselinear Baker’s transformation
of the torus. In contrast,most “natural” physical systemsare modeledwith smooth (non-
piecewise-linear)nonlinearities.The associatedphysicalpropertiescontributesubstantiallyto a
system’sability to generatecomplexbehaviorindependentof the complexity of boundaryand
initial conditions.71 Physicalsystemsgovernedby a chaoticpiecewiselinear dynamicsimply
excavatemicroscopicfluctuations,amplifying themto determinemacroscopicbehavior.72 This
information transmissionacrossscalesis computationallytrivial. It is not the centralproperty
of complex behaviorand structure.

We have seenthat away from the cascadephasetransition it is only at band-merging
parameterswhere chaotic behavior can be factored into periodic and Bernoulli components.
A similar decompositionof � -machinesinto periodicandfinite stochasticcomponentsoccursat
Misiurewicz parameters,where �����
	��
� is asymptoticallyperiodicandunstableandthe invariant
measureis absolutelycontinuous.But theseparametervaluesare countable.Furthermore,the
measureof chaoticparametervaluesasoneapproachesa Misiurewicz value is positiveandso
is uncountable.73 Typical parametersin this setappearto be characterizedby aperiodic � � ��	 � �
that are in a Cantorsetnot containing 	�� . Sucha caseis modeledby infinite DFA � -machines.
Taken togethertheseindicate that a large fraction of “naturally arising” chaotic systemsare
isomorphicneither to ��� nor to ��� ��� .

Computationalergodic theory, the applicationof computationalanalysisin ergodic theory,
would appearto be a useful direction in which to searchfor rigorousrefined classificationsof
complexbehavior. This suggests,for example,the useof DFA and SA complexity,and other
higherforms,asinvariantsto distinguishfurther the behaviorof dynamicalsystems,suchasK-
flows andzero-entropyflows. For example,althoughdescribedby a minimal DFA with a single
state,the inequivalenceof the binary ��� ���� �� andternary ��� ���� ���� �� Bernoulli shifts follows
from the fact that they arenot structurallyequivalent.Not only do the entropiesdiffer, but the
machinefor the first hastwo edges;for the second,three. Restatingthis in entropy-complexity
notation ��� �"!�#%$�&'! (*) ���+�,�.- (*) ���+�,�.-0/ �1 ) ���+�,� - 1 ) ���+�,��32�4 (65) ���+�,� - (75) �����,�
The full entropy-complexityplane appearsas a useful first step toward a more complete
classification. Recall the �98 ) � (:) � plots for the logistic and tent maps. (Seefigures 18 and
20.) Similar types of structural distinctions and new invariants will play a central role in
computationalergodic theory.
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But what does this have to say about physical systems? In what sensecan a turbulent
fluid, a noisy Josephsonjunction, or a quantumfield, be said to perform a computation?The
answeris that while computationalaspectsappearin almostany process,sincewe canalways
estimatesomelow level � -machine,only nontrivial computationoccursin physicalsystemson
the order-disorderborder.Additionally thesesystemshavevery specialphase-transition-like,or
“critical”, subspaces.� -machinetheory gives a much more refineddescriptionof suchcritical
behaviorthan that currently providedby statisticalmechanics.Indeed,the well-known phase
transitionsshouldbere-examinedin this light. In additionto a moredetailedstructuraltheoryof
the dynamicmechanismsresponsiblefor phasetransitions,suchstudieswill give an improved
understandingof the macroscopicthermodynamicpropertiesrequiredfor computation.

Computersare, in this view, physicalsystemsdesignedto be in a critical state. They are
constructedto supportarbitrarily long time correlationswithin certainmacroscopic“computa-
tional” degreesof freedom. This is achievedby decouplingthesedegreesof freedomfrom
error-producingheatbathdegreesof freedom.Computersarephysicalsystemsdesignedto bein
continualphasetransitionwithin entropic-disorderedenvironments.From the latter they derive
the driving force that movescomputationsforward. But, at the sametime, they mustshieldthe
computationfrom environmentallyinducedfluctuations.

As alreadyemphasized,thegeneralmeasureof complexityintroducedat thebeginningis not
limited to stochasticDFAs andSAs,butappliesin principleto anycomputationallevelor, indeed,
to anymodelingdomainwherea “symmetry” canbe factoredout of data. In particular,this can
be donehierarchicallyaswe haveshownin the analysisof the computationalpropertiesof the
cascadecritical machine.In fact,ageneralhierarchicalreconstructionis available.25 Theabstract
definition of complexityappliesto all levelsof the Chomskyhierarchywhereeachcomputation
level represents,in a concreteway, a classof symmetrieswith respectto which observeddatais
to be “expanded”or modeled.This notion of complexity is alsonot restrictedto the Chomsky
hierarchy. It canbe applied,for example,to spatially-extendedor networkdynamicalsystems.
Since theseare computationallyequivalentto parallel and distributedmachines,respectively,

� -machinereconstructionsuggestsa constructiveapproachto parallel computationtheory. We
hopeto return to theseapplicationsin the near future.
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