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Abstract

Computationat levels beyondstorageand transmissiorof informationappearsn physical
systemsat phasetransitions.We investigatethis phenomenormusing minimal computational
modelsof dynamicalsystemghat undego a transitionto chaosasa function of a nonlinearity
parameter.For period-doublingand band-meging cascadesye derive expressiongor the
entropy,the interdependencef e-machinecomplexity and entropy,andthe latentcomplexity
of the transitionto chaos.At the transitiondeterministicfinite automatormodelsdiverge in
size. Although thereis no regularor context-freeChomskygrammarin this case ,we give
finite descriptionsat the higher computationalevel of context-freeLindenmayersystems.We
constructa restrictedindexedcontext-freegrammarand its associatene-way
nondeterministimestedstackautomatorfor the cascaddimit language.

This analysisof a family of dynamicalsystemssuggestsa complexity theoreticdescriptionof
phasetransitionsbasedon the informationaldiversity and computationakomplexity of
observeddatathatis independenbf particularsystemcontrol parametersThe approachgives
a much morerefinedpicture of the architectureof critical statesthanis availablevia
correlationfunctions,mutualinformation, and statisticalmechanicgyenerally. The analytic
methodsestablishquantitativelythe longstandingobservatiorthat significant computationis
associatedvith the critical statesfound at the borderbetweenorderand chaos.
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Computation at the Onset of Chaos

Beyond a Clock and a Coin Flip

The clock andthe coin flip signify thetwo bestunderstoodehaviorsghata physicalsystem
can exhibit. Utter regularity and utter randomnessare the dynamicallegacy of two millenia
of physical thought. Only within this century, however, has their fundamentalplace been
establishedToday,realisticmodelsof time-dependenbehaviomecessarilyncorporateelements
of both.

The regularity and Laplaciandeterminismof a clock are fundamentako much of physical
theory. Einstein’scarefulphilosophicakonsideratiorof therole of time is anoteworthyexample.
The useof a mechanicadeviceto mark regulareventsis the cornerstoneof relativity theory!
A completelypredictablesystemwhich we shall denoteby Py, is essentiallya clock; the hands
indicate the current stateand the mechanismadvanceghem to the next statewithout choice.
For a predictablesystemsomefixed patternis repeatecevery (say)t seconds.

Diametricallyopposedthe coin flip, a picaresqueexampleof idealrandomnesss the basic
modelunderlyingprobability andergodictheories.The nextstatein sucha systemis statistically
independenbf the precedingandis reachedby exercisingmaximumchoice. In ergodic theory
the formal model of the coin flip is the Bernoulli flow By, a coin flip everyt seconds.

We take By and P asthe basicprocessesvith which to modelthe complexity of nonlinear
dynamicalsystems.In attemptingto describea particularsetof observationsif we find thatthey
repeatthenwe candescribethem as having beenproducedby somevariantof P;. Whereasijf
they are completelyunpredictablethen their generatingprocessis essentiallythe sameas B .
Any real systemS, of course will containelementsf bothandso naturallywe askwhetherit is
alwaysthe casethatsomeobservedehaviorcanbe decomposethto theseseparateomponents.
Is S = By ® P+? Both ergodic andprobability theoriessaythat this cannotbe doneso simply in
general.Ornsteinshowedthatthereareergodic systemghat cannotbe separatedhto completely
predictableand completelyrandomprocesse$. The Wold-Kolmogorov spectraldecomposition
stateghatalthoughthe frequencyspectrumof a stationaryprocessonsistsof a singularspectral
componentassociatedvith periodic and almostperiodic behaviorand a broadbandcontinuous
componentassociatedwith an absolutely continuousmeasure,there remain other statistical
elementsbeyondthese?34

What is this otherbehavior,capturedneitherby clocksnor by coin flips? A partial answer
comesfrom computationtheory andis the subjectof the following.

The most generalmodel of deterministiccomputationis the universal Turing machine
(UTM).* Any computationalaspectof a regular processlike P; can be programmedand so
modeledwith this machine. In orderthat the Turing machinereadily model processedike Bt
we augmentit with a randomregisterwhosestateit sampleswith a specialinstruction® The
resultis the Bernoulli-Turing machine(BTM). It capturesoththe completelypredictablevia its
subsetof deterministicoperationsand the completelyunpredictableby accessingts stochastic

It is not anidle speculationto wonderwhat happen’sto Einstein’suniverseif his clock containsan irreducible elementof randomnessor
morerealistically, if it is chaotic.

* This statements somethingof an article of faith thatis formulatedby the Church-Turing Thesis: any reasonablyspecifiablecomputationcan
be articulatedas a programfor a UTM.®

8 This registercanalsobe modeledwith a secondtapecontainingrandombits. In this case the resultingmachineis referredto asan “Random
Oracle” Turing Machine® What we havein mind, althoughformally equivalent,is that the machinein questionis physically coupledto an
information sourcewhosebits arerandomwith respecthe computationat hand. Thus, we do not requireideal randombits.
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register. If the datais completelyrandom,a BTM modelsit most efficiently by guessing.A
BTM readsand prints the contentsof its “Bernoulli” register,ratherthan implementingsome
large deterministiccomputationto generatgpseudo-randomumbers.What are the implications
for physicaltheory? A variantof the Church-Turing thesisis appropriate:the Bernoulli-Turing
machines powerfulenoughto describeeventhe“other stuff’ of ergodicandprobabilitytheories.

Let us delve a little further into theseconsiderationsdy drawing parallels. One goal here
is to infer how much of a data streamcan be ascribedto a certain set of models {By, Py }.
This modelbasisinducesa setof equivalencesn the spaceof stationarysignals. Thus, starting
with the abstractnotionsof strict determinismand randomnesswe obtain a decompositionof
that space.A quantitythatis constantin eachequivalenceclassis an invariantof the modeling
decomposition. Of course,we are also interestedin those caseswhere the model basis is
inadequatewhere more of the computationajpower of the BTM mustbe invoked. When this
occurs,it hintsthatthe modelbasisshouldbe expanded.This will thenrefinethe decomposition
and lead to new invariants.

An analogoushut restrictedtype of decompositioris also pursuedformally in ergodic and
computationtheoriesby showing how particular examplescan be mappedonto one another.
The motivationsbeingthat the structureof the decompositionis a representatioof the defining
equivalenceconceptand, furthermore,the latter can be quantifiedby an invariant. A classic
problemin ergodic theory hasbeento identify thosesystemsthat are isomorphicto B;. The
associatedhvariantusedfor this is the metric entropy,introducedinto dynamicalsystemgsheory
by KolmogoroV-® and SinaP from Shannon’sinformation theory® Two Bernoulli processes
areequivalentf they havethe sameentropy! Similarly, in computatiortheorytherehasbeena
continuingeffort to establishan equivalencebetweenvarioushard-to-solve put easily-verified,
problems. This is the classof nondeterministigpolynomial (NP) problems. If one can guess
the correctanswer,it can be verified as suchin polynomial time. The equivalencebetween
NP problems,called NP-completenessequiresthat within a polynomialnumberof TM stepsa
problemcanbereducedo onehardesproblem® Theinvariantof this polynomial-timereduction
equivalences the growth rate, as a function of problemsize, of the computationrequiredto
solve the problem. This growth rateis called the algorithmic complexity.

The complementaritybetweenthesetwo endeavoran be mademore explicit when both
are focusedon the single problem of modeling chaoticdynamicalsystems. Ergodic theory is
seento classify complicatedbehaviorin termsof information productionproperties,e.g. via
the metric entropy. Computationtheory describeshe samebehaviorvia the intrinsic amount
of computationthat is performedby the dynamical system. This is quantifiedin terms of
machinesize (memory)andthe numberof machinestepsto reproducebehavior! It turnsout, as
explainedin moredetail below, thatthis type of algorithmicmeasureof complexityis equivalent
to entropy. As a remedyto this we introducea complexity measurebasedon BTMs that is
actually complementaryto the entropy.

* In fact, the invariantactually usedis a much coarsenedersionof the algorithmic complexity: a polynomial time reductionis requiredonly
to preservethe exponentialcharactef solving a hard problem.

T We note that computationtheory also allows one to formalize how much effort is requiredto infer a dynamicalsystemfrom observeddata.
Although related,this is not our presentconcernt!
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The emphasidgn the following is that the tools of eachfield are complementaryand both
approachesre necessaryo completelydescribephysicalcomplexity. The basicresultis that
if oneis carefulto restrictthe classof computationaimodelsassumedo be the leastpowerful
necessaryo capturebehavior,then muchof the abstracttheory of computationand complexity
can be constructivelyimplemented. From this viewpoint, phasetransitionsin physicalsystems
areseeno supporthighlevelsof computation.And converselycomputersareseerto bephysical
systemsdesignedwith a subsetof “critical” degreesof freedom that support computational
fluctuations.

The discussionhas a top-down organizationwith three major parts. The first, consisting
of this section and the next, introducesthe motivations and generalformalism of applying
computationaldeasto modelingdynamicalsystems.The secondpart developsthe basictools
of e-machinereconstructioranda statisticalmechanicatlescriptionof the machinegshemselves.
The third part appliesthe tools to the particular class of complex behaviorseenin cascade
transitionsto chaos.A few words on further applicationsconcludethe presentation.

Conditional Complexity

Thebasicconceptof complexitythatallowsfor dynamicalsystemsandcomputatiortheories
to be profitably linked relieson a generalizedhotion of structurethatwe will referto generically
as“symmetry”. In additionto repetitive structure,we also considerstatisticalregularity to be
oneexampleof symmetry. The ideais thata datasetis complexif it is the compositeof many
symmetries.

To connectback to the precedingdiscussionwe take astwo basic dynamicalsymmetries
those representedy the model basis {B¢.P¢}. A complex processwill have, at the very
least,somenontrivial combinationof thesecomponentsSimply predictablebehaviorandpurely
randombehaviorwill not be complex. The correspondingomplexity spectrumis schematically
illustrated in figure 1.

0
0 H 1

Figure1 The complexity spectrum:complexity C' asa function of the diversity of patterns.The
latter is measuredvith the (normalized)Shannorentropy H. Regulardatahavelow entropy;very
randomdatahave maximal entropy. However,their complexitiesare both low.

More formally, we definethe conditionalcomplexityC( D|S) to betheamountof information
in equivalenceclasseanducedby the symmetryS in the data D plus the amountof datathat

* At the highestcomputationlevel of universalTuring machinesdescriptionsof physicalcomplexity are simply not constructivesincefinding
the minimal TM programfor a given problemis undecidablén generaP
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is “unexplained”’by S. If we had someway of enumeratingall symmetriesthenthe absolute
complexity C(D) would be

C(D) =gt C(D]3)

And we would saythat an objectis complexif, afterreduction,it is its own symmetry.In that
case,thereare no symmetriesin the object, otherthanitself.r If D is the bestmodelof itself,
thenthereis no unexplaineddata, but the modelis large: C(D|D) « length(D). Conversely,
if thereis no model, thenall of the datais unexplained:C(D|0)  length(D). The infimum
formalizesthe notion of consideringall possiblemodel “bases”and choosingthosethat yield
the most compactdescriptior#

This definition of conditional modeling complexity mirrors that for algorithmic
randomneg$-1718.19.20 gnd js closely related to computational approachesto inductive
inference?l A string s is randomif it is its own shortestUTM description. The latter is a
complexity measurecalled the Chaitin-Kolmogorovcomplexity K (s) of the string s. In the
above notation K(s) = C(s|[UTM). The classof “symmetries” referredto here are those
computableby a deterministicUTM. After factoring theseout, any residual “unidentified
or “unexplained” datais taken as input to the UTM program. With respectto the inferred
symmetries,this datais “noise”. It is includedin measuringthe size of the minimal UTM
representation.kX (s) measuregshe size of two components:an emulationprogramand input
datato that emulation. To reconstructs the UTM first readsin the programportion in order
to emulatethe computationalpart of the description. This computesthe inferred symmetries.
The (emulated)machinethen queriesthe input tapeas necessaryo disambiguatendeterminant
branchingsn the computationof s. K (s) shouldnot be confusedwith the proposedmeasureof
physicalcomplexity basedon BTMs, C(s|BT M), which include statisticalsymmetries.There
is, in fact, a degeneracyf terminologyherethatis easily describedand avoided.

Considerthe datain questionto be an orbit z:(zg) of durationt starting at state zy of
a dynamical systemadmitting an absolutelycontinuousinvariant measuré. The algorithmic
complexity’? A(z:(xg)) is the growth rate of the Chaitin-Kolmogorovcomplexity with longer

orbits
K(x¢(zg
A(z(z)) = flim M
Note that this artifice removesconstanttermsin the Chaitin-Kolmogorovcomplexity, suchas
thosedue to the particularimplementationof the UTM, and gives a quantity that is machine

independentThen,the algorithmiccomplexityis the dynamicalsystem’smetric entropy,except

T Or, said anotherway, the complexobjectis only describedby a large numberof equivalenceclassesnducedby inappropriatesymmetries.
The latter canbe illustratedby consideringan inappropriatedescriptionof a simple object. A squarewave signalis infinitely complexwith
respecto a Fourierbasis.But this is not anintrinsic propertyof squarewaves,only of the choiceof modelbasis. Thereis a modelbasisthat
givesa very simple descriptionof a squarewave.

* This computationalframework for modeling also applies,in principle, to estimatingsymbolic equationsof motion from noisy continuous
datal? Generally,minimization is an applicationof Occam’sRazorin which the descriptionis consideredo be a “theory” explainingthe
datal® Rissanen’sninimumdescriptionlengthprinciple, the codingtheoreticversionof this philosophicalaxiom, yieldsasymptoticallyoptimal
representation¥*1°

§ In information theoretictermswe are requiring stationarityand emyodicity of the source.



Computation at the Onset of Chaos

for orbits starting at a measurezero set of initial conditions. Thesestatementonnectthe

notion of complexity of single stringswith that of the ensembleof typical orbits. The Chaitin-

Kolmogorov complexity is the sameas informational measureof randomnessbut is distinct

from theBTM complexity. To avoidthis terminologicalambiguitywe shallminimizereferences
to algorithmic and Chaitin-Kolmogorov complexities since in most physical situationsthey

measurethe samedynamicalproperty capturedby the information theoreticphrase“entropy”.

“Complexity” shall referto conditionalcomplexitywith respecto BTM computationaimodels.
We could qualify it further by using “physical complexity”, but this is somewhatmisleading
sinceit appliesequally well outsideof physics'

We are not awareof any meansof enumeratinghe spaceof symmetriesand so the above
definition of absolutecomplexity, while of theoreticalinterest,is of little immediateapplication.
Nonethelessye can posit that symmetriesS be effectively computablein orderto be relevant
to scientificinvestigation. Accordingto the physicalvariantof the Church-Turing thesis,then,
S canbe implementedon a BTM. Which is to saythat asfar asrealizability is concernedthe
unifying classof symmetriesve havein mind is representetby operationsof a BTM. Although
the mathematicakpecificationfor a BTM is small; its range of computationis vast; at least
as large asthe underlyingUTM. It is, in fact, unnecessarilypowerful so that many questions,
suchasfinding a minimal programfor given data, are undecidableand many quantities,such
as the conditional complexity C(D|BT M), are noncomputable.More to the point, adopting
too generala computationalmodel resultsin there being little to say abouta wide range of
physical processes.

Practicalmeasuref complexity are basedon lower levels of Chomsky’scomputational
hierarchy* Indeed, Turing machinesappearonly at the pinnacle of this graded hierarchy.
The following concentrateon deterministicfinite automata(DFA) and stack automata(SA)
complexity, the lowesttwo levelsin the hierarchy. DFAs represenstrictly clock and coin flip
modeling. SAs are DFAs augmentedby an infinite memory with restrictedpushdownstack
access.We will demonstratehow DFA modelsbreak down at a chaotic phasetransitionand
how higherlevels of computationaimodel arise naturally. Estimatingcomplexity typesbeyond
SAs, suchaslinear boundedautomata(LBA), is fraughtwith certainintriguing difficulties and
will not be attemptedhere. Nonethelesssettingthe problem contextas broadly as we have
just doneis usefulto indicatethe eventualgoalswe havein mind andto contrastthe present
approachto otherlongstandingoroposalghat UTMs arethe appropriateframeworkwith which
to describethe complexity of naturalprocesse&. Evenwith the restrictionto Chomsky’slower
levelsa gooddeal of progresscanbe madesince,aswill becomeclear,contemporarystatistical
mechanicss largely associatedvith DFA modeling.

* We are necessarilyskipping over a numberof details,suchas how the statez; is discretizedinto a string over a finite alphabet. The basic
point madeherehasbeenemphasizedometime ago2223

T This definition of complexityandits basicpropertiesasrepresenteih figure 1 werepresentedy thefirst authorat the InternationaMorkshop
on “Dimensionsand Entropiesin ChaoticSystem% PecosNew Mexico, 11-16 Septembef 985.

* Furtherdevelopmenbf this topic is given elsewheré425

§ We have in mind Kolmogorov's work!® over many yearsthat often emphasizesiynamical and physical aspectsof this problem. Also,
Bennett’snotion of “logical depth” and his analysisof physicalprocessesypically employ UTM models?® Wolfram'’s suggestiof’ that the
computationalpropertiesof intractability and undecidabilitywill play an importantrole in future theoreticalphysicsassumesJTMs as the
modelbasis.More recently,Zurelé® hastakenup UTM descriptionsof thermodynamigprocessesThe informationmetric usedtherewasalso
developedrom a conditionalcomplexity2®
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Reconstructing e-Machines

To effectively measurentrinsic computationapropertiesof a physicalsystemwe infer ane-
machinefrom a datastreamobtainedvia a measuringnstrument® An e-machineis a stochastic
automatonof the minimal computationalpoweryielding a finite descriptionof the datastream.
Minimality is essential.lt restrictsthe scopeof propertiesdetectedn the e-machineto be no
larger than thosepossessethy the underlying physical system. We will assumethat the data
streamis governedby a stationarymeasure.That s, the probabilitiesof fixed length blocks of
measurementsxist and are time-translationinvariant.

The goal, then,is to reconstrucfrom a given physicalprocessa computationallyequivalent
machine. The reconstructiortechnique discussedn the following, is quite generaland applies
directly to themodelingtaskfor forecastingemporalor spatio-temporafiataseries.Theresulting
minimal machine’sstructureindicatesthe inherentinformation processingi.e. transmissiorand
computationof the original physicalprocess.The associatedomplexity measureguantifiesthe
e-machine’sinformationalsize;in onelimit, it is the logarithmof the numberof machinestates.
The machine’sstatesare associatedvith historical contexts,called morphs,that are optimal for
forecasting. Although the simplest(topological) representatiorof an e-machineat the lowest
computationallevel (DFAS) is in the form of labeled directed graphs,the full development
captureghe probabilistic(metric) propertiesof the datastream.Our complexitymeasureaunifies
a numberof disparateattemptsto describethe information processingof nonlinear physical
systems.2-22:31,32,33,34,35,36,3F he following two sectionsdevelopthe reconstructiormethodfor
the machinesand their statisticalmechanics.

The initial task of inferring automatafrom observeddata falls under the purview of
grammaticainferencewithin formal learningtheoryl! Theinferencetechniqueusesa particular
choice S of symmetrythatis appropriateto forecastingthe datastreamin orderto estimatethe
conditionalcomplexityC'(D|S). The aim is to infer generalized'state$ in the datastreamthat
are optimal for forecasting. We will identify thesestateswith measuremensequencegiving
rise to the sameset of possiblefuture sequences. Using the temporaltranslationinvariance
guaranteedy stationarity,we identify thesestatesusing a sliding window that advancesone
measuremenat a time throughthe sequence.This leadsto the secondstepin the inference
techniquethe constructiorof a parsetreefor the measuremergequence@robability distribution.
This is a coarse-grainedepresentatiorof the underlying process’smeasurein orbit space.
The state identification requirementthen leadsto an equivalencerelation on the parsetree.
The machinestatescorrespondo the inducedequivalenceclassesthe statetransitions,to the
observedransitionsin the tree betweenthe classes.We now give a more formal development
of the inferencemethod.

The first stepis to obtain a datastream. The main modelingansatzis that the underlying
processis governedby a noisy discrete-timedynamicalsystem

Fop1 = F(@)+ &, FoeM

whereM is the m-dimensionalspaceof states iy = (z{, z{, . . ., :zt{)"‘l) is the system’sinitial
state, F' is the dynamic, the governing deterministicequationsof motion, and ¢,, represents

I We notethat the sameconstructioncan be donefor pastpossibilities. We shall discussthis alternativeelsewhere.
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external time-dependenfluctuations. We shall concentrateon the deterministiccasein the
following. The (unknowable)exactstatesof the observedsystemaretranslated into a sequence
of symbolsvia a measurementhannef® This processs describedby a parametrizegartition

k-1
P = {ci: Uc;:M, ciNecj=0.i4#j; i,ij,...,k—l}
i=0
of the statespaceM, consistingof cells ¢; of volumee™ that are sampledevery 7 time units.

A measuremensequenceonsistsof the labelsfrom the successiveelementsof P. visited over
time by the system’sstate. Using the instrumentl = {P., 7}, a sequenceof states{z,} is

mappedinto a sequencef symbols{s, : s, € A}, whereA = {0,....k — 1} is the alphabet
of labelsfor the k (z e*m) partition elements? A commonexampleto which we shall return
nearthe end, is the logistic map of the interval, z,,4+1 = rz,(1 — x,), observedwith the binary
generatingpartition Py= {[0.,.5), [.5,1.]} whoseelementsare labeledwith A = {0,1}.?? The
computationalmodelsreconstructedrom such dataare referredto as e-machinesin orderto

emphasizeheir dependencen the measuringinstrumentl.

Giventhedatastreamin theform of along measuremergequencs = {spsis2---:s; € A},
the secondstepin machineinferenceis the constructionof a parsetree. A tree 7 = {n,1}
consistof nodesn = {n;} anddirected,labeledlinks 1 = {/;} connectinghemin a hierarchical
structurewith no closedpaths. The links are labeledby the measuremensymbolss € A. An
L-level subtreeT! is a tree that startsat noden and containsall nodesbelow = that can be
reachedwithin L links. To constructa tree from a measuremensequenceve simply parse
the latter for all length L. sequencesnd from this constructthe tree with links up to level L
that are labeledwith individual symbolsup to that time. We refer to length L subsequences
sb = {si ey SipL-11 85 = (8); asL-cylinders! HenceanL leveltreehasalength path
correspondingo eachdistinct observedL-cylinder. Probabilisticstructureis addedto the tree
by recordingfor eachnoden; the number N;(L) of occurrence®f the associated.-cylinder
relative to the total numberN(L) observed,

Ni(L)

ph(L) = N(D)

This gives a hierarchical approximationof the measurein orbit spaceM ® time. Tree
representationsf datastreamsrecloselyrelatedto the hierarchicaklgorithmusedfor estimating
dynamical entropies?2-39

At the lowestcomputationalevel e-machinesarerepresentedby a classof labeled,directed
multigraph,or I-digraphs?® They arerelatedto the Shannorgraphsof informationtheory?© to
Weiss'ssoficsystemsn symbolicdynamics! to discretefinite automatan computatiortheory?
andto regularlanguagesn Chomsky’shierarchy*? Here we are concernedwith probabilistic
versionsof these. Their topological structureis describedby an |-digraph G = {V,E} that
consistsof verticesV = {v;} anddirectededgesE = {¢;} connectingthem, eachof the latter
is labeledby a symbols € A.

* We ignorefor brevity’s sakethe questionof extractingfrom a single component{xg} an adequate reconstructed state space.3®

T The picture here is that a particular L-cylinder is aname for that bundle of orbits {Z,, } each of which visited the sequence of partition elements
indexed by the L-cylinder.
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To reconstruct topologicale-machinewe definean equivalenceelation, subtreesimilarity,
denoted~, on the nodesof the treeT' by the conditionthat the L-subtreesare identical:

n ~ n' if and only if TnL =71k

n'

Subtreeequivalencaneansthatthe link structureis identical. This equivalenceelationinduces
onT, andsoonthemeasuremergequencs, a setof equivalenceclasses{C# m=1,..., K}
given by

cl = {n en:neClandn' e Cliff n~ n'}

We refer to the archetypalsubtreelink structurefor eachclassasa “morph”. An I-digraphGp,
is then constructedby associatinga vertexto eachtree nodelL-level equivalenceclass;thatis,
V = {CL}l. Two verticesv; andv; are connectecby a directededgee = (v, — v;) if the

transitionexistsin 7' betweennodesin the equivalenceclasses,
n—n':neCknect

The correspondingedge is labeled by the symbol(s) s € A associatedwith the tree links
connectingthe tree nodesin the two equivalenceclasses

E = {e = (vp,vp;8): vy — v iff n —n'; ne CEn' e Ck s e A}
S S

In this way, e-machinereconstructiordeducesrom the diversity of individual patternsn the
datastream“generalizedstates” the morphs,associateavith the graphvertices,thatare optimal
for forecasting.The topologicale-machinesso reconstructeadapturethe essentiacomputational
aspectf the datastreamby virtue of the following instantiationof Occam’sRazor.

Theorem: Topologicalreconstructiorof G;, produceghe minimal anduniquemachinerec-
ognizingthelanguageandthe generalizedtatesspecifiedup to L-cylindersby the measurement
sequence.

Thegeneralizatiorio reconstructingnetrice-machineghatcontainthe probabilisticstructure
of the datastreamfollows by a straightforwardextensionof subtreesimilarity. Two L-subtrees
are ¢-similar if they are topologically similar and their correspondindinks individually are
equally probablewithin someé > 0. Thereis alsoa motivatingtheorem:metric reconstruction
yields minimal metric e-machines.

In orderto reconstructan e-machineit is hecessaryo havea measureof the “goodnessof
fit” for determininge, 7, 6, andthelevel L of subtreeapproximation.This is given by the graph
indeterminacywhich measureghe degreeof ambiguity in transitionsbetweengraph vertices.
The indeterminacy® I of alabeleddigraphG is defined asthe weightedconditionalentropy

Ig = va Zp(sh)) Z p(v'|v; s) logp(v'|v; s)
veEV SEA v' eV

where p(v'|v; s) is the transition probability from vertex v to +' along an edgelabeled with

symbol s, p(s|v) is the probability that s is emittedon leaving v, andp, is the probability of

vertexv. A deterministically-accepting-machineis reconstructiblefrom L-level equivalence
classesif 15, vanishes. Finite indeterminacy,at somegiven {L.¢, 7,6} indicatesa residual
amountof extrinsic noiseat that level of approximation.In this case the optimal machinein a

setof machinesconsistenwith the datais the smallestthat minimizesthe indeterminacy-!
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Statistical Mechanics of e-Machines

Many of the importantpropertiesof thesestochasticautomatamodelsare given concisely
usinga statisticaimechanicaformalismthatdescribeshe coarse-grainedcalingstructureof orbit
space. We recall somedefinitions and resultsnecessaryor our calculations’® The statistical
structureof an e-machineis given by a parametrizedstochasticconnectionmatrix

To ={tij} = ZT(QS)

SEA

that is the sum over each symbol s € A in the alphabet A =
{i:i=0....,k=1; k=0(¢ ™)} of the statetransitionmatrices

TC((S) _ {ea log p(vi|vj;s) }

for the verticesv; €V. We will distinguishtwo subsetsof vertices. The first V; consistsof
thoseassociatedvith transientstates;the secondV,, consistsof recurrentstates.

The a-ordertotal Renyi entropy?2 or “free information”, of the measuremensequenceip
to n-cylindersis given by

Ho(n) = (1 — ) log Za(n)
where the partition function is

Zo(n) = Z e log p(s™)

sne{sm}

with the probabilitiesp(s™) definedon the n-cylinders{s"}. The Renyi specificentropy,i.e.
entropy per measurements approximateé? from the n-cylinder distribution by

ha(n) = n " 1H,(n)
or hl(n) = Hy(n) — Hy(n —1)

and is given asymptoticallyby

ho = lim h,(n)
n—oo

The parameternr hasseveralinterpretationsall of interestin the presentcontext. Fromthe
physicalpoint of view, o (= 1 — ) playstherole of the inversetemperatures in the statistical
mechanicsof spin systemg* The spin statescorrespondo measurementsa configurationof
spins on a spatial lattice to a temporal sequenceof measurements.Just as the temperature
increasedhe probability of different spin configurationsby increasingthe numberof available
states,r accentuatesdlifferentsubsetof measuremendequences the asymptoticdistribution.
Fromthe point of view of Bayesianinferencex is a Lagrangemultiplier specifyinga maximum
entropy distribution consistentwith the maximum likelihood distribution of observedcylinder
probabilities®™ Following symbolic dynamicsterminology, o« = 0 will be referredto as the
topologicalor countingcase;o = 1, asthe metric or probabilisticcaseor high temperaturdimit.
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Varying o movescontinuouslyfrom topologicalto metric machines.Originally in his studiesof
generalizednformationmeasuresRenyiintroducedx asjustthis type of interpolationparameter
and notedthat the a-entropyhasthe characterf a Laplacetransformof a distribution?3 Here
thereis the somewhatpragmatic,and possibly more important,requirementor «: it givesthe
properalgebraof trajectoriesn orbit space.Thatis, « is hecessaryor computingmeasurement
sequencerobabilitiesfrom the stochastiacconnectionmatrix 7;,. Without it, productsof 7, fail
to distinguishdistinct sequences.

An e-machine’sstructuredeterminesseveralkey quantities. The first is the stochastidDFA
measureof complexity. The a-order graph complexity is defined as

Co=(1—0a) 'log Y pl
veEV

wherethe probabilitiesp, are definedon the verticesv € V' of the e-machine’sl-digraph. The
graphcomplexity is a measureof an e-machine’sinformation processingcapacityin terms of
the amountof information storedin the morphs. As mentionedbriefly later, the complexity
is relatedto the mutual information of the pastand future semi-infinite sequencesnd to the
convegencé®3! of the entropyestimates:, (n). It canbeinterpretedthen,asa measureof the
amountof mathematicailvork necessaryo producea fluctuationfrom asymptoticstatistics.

The entropiesand complexitiesare dual in the sensethat the former is determinedby the
principal eigenvalue), of T,

he = (1 — a)_l loga A,
and the latter by the associatedeft eigenvectorof T,
Pa={py : vEV}

that gives the asymptoticvertex probabilities.

The specfic entropy is also given directly in terms of the stochasticconnectionmatrix
transition probabilities

ha= T Py —log ) " (v]v';5)

vEV v EV
sEA

A complexity basedon the asymptoticedgeprobabilitiesp, = {p. : ¢ € E} canalsobe defined

Ct=(1—a) log Zpe
eeE

Pe IS given by the left eigenvectorof the e-machine’sedgegraph. The transitioncomplexity C'¢
is simply relatedto the entropy and graph complexity by
Ct=Cq+ hy

Thereare, thus, only two independentjuantitiesfor a finite DFA e-machine!!

10
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Thetwo limits for « mentionedabovewarrantexplicit discussion.For the first, topological
case(a = 0), Tp is the I-digraph’s connectionmatrix. The Renyi entropy kg = log A is the
topologicalentropy h. And the graph complexity is

Co(G) = log |V

Thisis C(s|DFA): the size of the minimal DFA description,or “program”, requiredto produce
sequencesn the observedmeasurementanguageof which s is a member. This topological
complexitycountsall of the reconstructedtates.It is similar to the regularlanguagecomplexity
developedfor cellular automatongeneratedspatial patterns?2  The DFAs in that casewere
constructedrom known equationsof motion and an assumecdeighborhoodemplate. Another
relatedtopologicalcomplexity countsjust the recurrentstatesV,. The distinction betweenthis
and Cy shouldbe clearfrom the contextin which they are usedin later sections.

In the second,metric case(« = 1), h, becomeshe metric entropy

The metric complexity

Cy= hm Cy = va log p,
vEV

is the Shannoninformation containedin the morphst Following the precedingremarks, the
metric entropyis also given directly in termsof the stochasticconnectionmatrix

“_ZPUZ 1)|1) )locfp(v|7) )

vVEV v'ev
sSEA

A centralrequirementn identifying modelsfrom observediatais thata particularinference
methodologyproducesa sequenceof hypotheseghat convege to the correctone describing
the underlyingprocess.The complexity can be usedas a diagnosticfor this sinceit is a direct
measuref the size of the hypothesizedtochastidFA at a givenreconstructiorcylinderlength.
The identificationmethodoutlined in the precedingsectionconvegeswith increasingcylinder
lengthif the rate of changeof the complexity vanishes.If, for example,

vanishes then the noisy dynamicalsystemhasbeenidentified. If it doesnot vanish,thenc,
is a measureof the rate of divergenceof the model size and so quantifiesa higher level of
computationalcomplexity. In this case,the model basismust be augmentedn an attemptto
find a finite descriptionat some higher level. The following sectionswill demonstratehow
this can happen. A more completediscussionof reconstructingvarious hierarchiesof models
is found elsewhere?

¥ Cf. “set complexity” version of the regular language complexity3® and “diversity” of undirected, unlabeled trees.3

11
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Period-Doubling Cascades

To give this generalframework substanceand to indicate the importanceof quantifying
computationin physical processesthe following sectionsaddressa concreteproblem: the
complexity of cascaddransitionsto chaos.The onsetof chaosoften occursasa transitionfrom
anordered(solid) phaseof periodicbehaviorto a disordered gas)phaseof chaoticbehavior.A
cascaddransitionto chaosconsistsof a convegentsequencef individual “bifurcations’, either
pitchfork (period-doubling)in the periodic regimesor band-meging in the chaoticregimes.

The canonicalmodel classof thesetransitionsis parametrizedwo-lap mapsof the unit
interval, z,4+1 = f(z,), =z, € [0, 1], with negativeSchwartzianderivative;thatis, thosemaps
with two monotonepiecesand admitting only a single attractor. We assignto the domain of
eachpiecethe lettersof the binary alphabet: = {0, 1}. The sequencespace>* consistsof all
0-1 sequencesSomeof thesemaps,suchasthe piecewise-lineatent map describedn a later
section,neednot havethe period-doublingportion of the cascade Iteratedmapsare canonical
modelsof cascaddransitionsin the sensethat the samebifurcation sequenceoccurringin a
setof nonlinearordinary differentialequationgsay)is topologically equivalentto that found in
some parametrizedmap?®’48:4°

Although e-machinesnere developedn the contextof reconstructingcomputationamodels
from dataseries,the underlyingtheory providesan analytic approachto calculatingentropies
and complexitiesfor a numberof dynamicalsystems.This allows us to derivein the following
explicit boundson the complexity and entropyfor cascadeoutesto chaos.

We focuson the periodicbehaviornearpitchfork bifurcationsand chaoticbehaviorat band-
memings with arbitrary basic periodicity®%°! In distinction to the descriptionof universality
of the period-doublingroute to chaosin termsof parametewariation®? we havefound a phase
transitionin complexitythatis not explicitly dependenon control parameters® Therelationship
betweenthe entropyand complexity of cascadesanbe saidto be super-universain this sense.
Thisis similar to thetopologicalequivalencef unimodalmapsof theinterval 23:54.55.56.5%xcept
thatit accountdor statisticaland computationaktructuresassociatedavith the behaviorclasses.

In this and the next sectionswe derive the total entropy and complexity as a function of
cylinder length n for the set of e-machinesdescribingthe behaviorat the different parameter
valuesfor the period-doublingand band-meging cascades.The sectionsfollowing this then
developseveralconsequencesjz. the orderandthe latentcomplexity of the cascaddransition.
With thesestatisticalmechanicaresultsestablishedthe discussionturnsto a detailedanalysis
of the higher level computationat the transitionitself.

In the periodicregimebelowthe periodicityg = 1 cascaderansitionwe find the e-machines
for m-order period-doubling2™ — 2™+ (m = 0,1, 2,3) shownin figures2 - 5.

Figure 2 Topologicall-digraph for period 1 attractor.

Figure 3 Topologicall-digraph for period 2 attractor.

* The latter are not, strictly speaking bifurcationsin which an eigenvalueof the linearizedproblemcrosseshe unit circle. The more general
senseof bifurcationis nonethelesa usefulshorthandor qualitativechangesn behaviorasa function of a control parameter.

12
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Figure 4 Topologicall-digraph for period 4 attractor.

Figure 5 Topologicall-digraph for period 8 attractor.

For periodic behaviorthe measureon the n-cylinders {s"} is uniform; asis the measure
on the recurrente-machinestatesV,. Considerbehaviorwith period P = ¢ x 2™ at a given
m-~order period-doublingwith basiccascadeeriodicity ¢. The uniformity allows us to directly
estimatethe total entropyin termsof the numberN (n, m) of n-cylinderswith » > P

Hy(n,m) = (1—a) log Z p*(s")

sne{sn}
_ N(n,m)
=(1-— Hog ———L
(1 —a) log N« (n,m)
= log N(n,m)

For periodic behaviorand assuming > P the numberof n-cylindersis given by the period
N(n,m) = P. Thetotal entropyis then H,(n, m) = log P. Notethat,in this case, vanishes.

Similarly, the complexityis givenin termsof the numberV, = |V;| of recurrentstates

Co=(1—0a) log Y p}
vEV

— (1= ) log [V,
=logV,

The numberV, of verticesis also given by the period for periodic behaviorand so we find
C, = log P. Thus,for periodicbehaviorthe relationshipbetweerthe total andspecfic entropies
and complexity is simple

Coa = Hy

or Cy = nha(n)

This relationshipis generallytrue for periodic behaviorand is not restrictedto the situation
where dynamicalsystemshave producedthe data. Wherenotedin the following we will also
useCy = log |V| to measurethe total numberof machinestates.

Chaotic Cascades

In the chaoticregimethe situationis muchmore interesting. The e-machinesat periodicity
¢ = 1 andm-orderband-meginge” — 21 m = 0,1, 2,3, areshownin figures6 - 9.

Figure 6 Topologicall-digraphfor single band chacticattractor.

Figure 7 Topologicall-digraphfor 2 — 1 bandchaoticattractor.

13
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Figure 8 Topologicall-digraphfor 4 — 2 bandchaoticattractor.

Figure 9 Topologicall-digraphfor 8 — 4 bandchaoticattractor.

The graph complexity is still given by the numberV, of recurrentstatesas above. The
main analytic task comesin estimatingthe total entropy. In contrastto the periodic regime
the numberof distinct subsequencegrows with n-cylinder length for all n. Asymptotically,
the growth rate of this countis given by the specifictopologicalentropy. In orderto estimate
the total topological entropy at finite n, however, more careful countingis requiredthan in
the periodic case. This sectiondevelopsan exact countingtechniquefor all cylinder lengths
that appliesat chaoticparametewalueswherethe orbit f"(z*) of the critical point z*, where
f'(z*) = 0, is asymptoticallyperiodic. Theseorbits are unstableand embeddedn the chaotic
attractor. The set of suchvaluesis countable. At these(Misiurewicz) parameterghereis an
absolutelycontinuousinvariant measure®

Thereis an additional problemwith the agumentsusedin the periodic case. The uniform
distribution of cylinders no longer holds. The main consequences that we cannotsimply
translatecounting N (n, m) directly into an estimateof H,.y(n, m). Onemeasureof the degree
to which this is the caseis given by the differencein the topologicalentropy s andthe metric
entropy h,,.2

Approximationsfor the total Renyi entropy can be developedusing the exact cylinder
countingmethodsoutlinedbelowandthe machinestateandtransitionprobabilitiesfrom Ta(,s) .
The centralideafor this is that the statesrepresentn Markov partition of the symbol sequence
spaceX*. There are invariant subsetsof ¥*, eachof which conveges at its own rate to
“equilibrium”. Each subsetobeys the Shannon-McMillantheoreni® individually. At each
cylinder length eachsubsetis associatedvith a machinestate. And so the growth in the total
entropyin eachsubsetis governedby the machine’sprobabilisticproperties.Sincethe cylinder
countingtechniquecapturesa sufficient amountof the structure,however,we will not develop
the total Renyi entropyapproximationshereand insteadfocus on the total topologicalentropy.

We now turn to an explicit estimateof N(n,m) for variouscases.Although the techniques
applyto all Misiurewicz parametersye shallwork throughthe periodicityg =12 — 1,4 — 2,
and1 — 0 band-meging transitions(figure 6 - 9) in detail, andthenquotethe generalformula
for arbitrary order of band-meging.

The treefor 2 — 1 bandmeging n-cylindersis shownin figure 10.

14
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204
A,

Figure 10 Parsetree associatedvith two chaotichandsmeiging into one. Tree nodesare shownfor the
transientspineonly. The subtreesassociatedvith asymptoticbehavior,and so alsowith the equivalenceclasses
correspondingdo recurrentgraphvertex 1 in figure 7, are indicatedschematicallywith triangles.

Figure11 Subtreeof nodesassociatedvith asymptoticverticesin I-digraph for two bandsmeging to one.

An exactexpressiorfor N(n, 1) derivesfrom splitting the enumeratiorof uniquen-cylinders
asrepresenten the treeinto recurrentandtransientparts. For two bands Figure 10 illustrates
thetransientspine thesetof treenodesassociateavith transienigraphstateswhile schematically
collapsingthat portion of the treeassociatedvith asymptoticgraphvertices. The latteris shown
in Figure11. As will becomeclearthe structureof the transientspinein the tree determines
the organizationof the counting method.

The sumfor the »'" level, i.e. for the numberof n-cylinders, is

5] =]
Nn,1)=14> 2+ Y 2
=0 =0

where | k| is the largestnon-negativentegerlessthan k. The secondterm on the right counts
the numberof tree nodesthat branchat evennumberedevels, the third termis the numberthat
branchat odd levels, and the first term countsthe transientspine that addsa single cylinder.

15
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For n > 2 andeven,this canbe developednto a renormalizedexpressiorthat yields a closed
form as follows

n—2
2
N(n,1)=1+2) 2
=0
n—2

2
— 142 1+222i_2.2"2;2
1=0

1+ 2(N(n. 1) — 2%)
or N(n,1) = 2(2% . 2—1>

Forn > 2 andodd, we find N(n,1) =3 - 2"5" — 1. This givesan upperboundon the growth
envelopeas a function of n. The former, a lower bound.

LR
R4 R
B

Figure 12 Transientspinefor 4 — 2 bandattractor. The asymptoticsubtreesare
labeledwith the associated-digraph vertex. (Comparefigure 8.)

The analogousexpressiorfor the 4 — 2 bandcylinder count can be explicitly developed.
Figure 12 showsthe transientspine on the tree that determineghe counting structure. In this
case,the sumis

RN C TN EY
N(n.2)=2+27 ) 25 1 ST 0l S0y S0l S o
=0 =0 =0

i=0
Thereare seventermson the right handside. In orderthey accountfor

1. Thetwo transientcycles,begunon 0 and 1, eachof which contributesl nodeper level,

2. Cycleson the attractorthat arefed into the attractorvia non-periodictransientgsecondand
third terms);

3. Sumovertree nodesthat branchby a factor of 2 atlevel k + 4i, k = 3,4, 5, 6, respectively.

16



Computation at the Onset of Chaos

The sum greatly simplifies upon rescalingthe indices to obtain a self-similar form. For
n > P =4 andn = 4, we find

n—4 n—_8
4 8
N(n,2)=2[1+27 +Y 21+ 2
=0 =0
n—4
4 .
=244 1+Z2l
1=0
n—4
4 .
=2+44(1+2) 2/ 2%
=0
:2—|—2(N(n,2)—2n7+4)
or N(n,2) = 2227 — 2

Thereare three other phasedor the upperboundas a function of n.
For completenessve note that this approachalsoworks for the single band(m = 0) case

n—1
N(n,0)=1+) 2
=0

n—1
=14 <2+222i—2"—1>
1=0
— 2N(n,0) — 2"
or N(n,0) = 2"

The precedingcalculationswere restricted by the choice of a particular phaseof the
asymptotiacycleatwhich to countthecylinders. With alittle moreeffort agenerakexpressiorior
all phasess found. Noting the similarity of thel-digraphstructuresetweerdifferentorderband-
meigings and generalizingthe precedingrecursivetechniqueyields an expressiorfor arbitrary
orderband-meging. This takesinto accountthe fact that the generatiorof new n-cylindersvia
branchingoccursat differentphaseon the variouslimbs of the transientspine. The numberof
n-cylindersfrom the exactenumeratiorfor the ¢ = 1 2™ — 2™~ band-meging is

n m =0

N(m m) = { om (bmm2n2_m _ 2—1> m 7& 0

wheren > P = 2™ andb,,, = (1 4+ 7)27" and? = 27(n mod 2™) accountfor the effect of
relative branchingphasesn the spine. This coeficient is bounded

bmin = inf bn.m =1
{n,m#0}

bmaz = SUP  bpn = 3-272 & 1.0606602
{n.m#0}
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The secondbound follows from noting that the maximum occurswhen, for example,n =
2m 4 9m=1  Note that the maximumand minimum valuesof the prefactorare independenbf
the phaseand of » andm. We will ignore the detailedphasedependencand simply write b
insteadof b, , and considerthe lower boundcaseof b = 1.

Recallingthat Cy = log|V;| = m, we have
N(’I’L) — 200 (b2n2_co _ 2—1)

and the total (topological) entropyis given by

Ho(n) = logs N(n)

Hy(n) = Cy + logs (2”2_00 — 2_1>
wherewe havesetb = 1. Thefirst termrecoverghelinearinterdependenctnatderivesfrom the
asymptoticperiodicity; cf. the period-doublingcase. The secondterm is dueto the additional
feature of chaotic behaviorthat, in the band-meging case,is reflectedin the branchingand
transientsin the |-digraph structure. In termsof the modelingdecompositiorintroducedat the
beginning,the first term correspondso the periodicprocessP; andthe branchingportion of the
secondterm, to componentssomorphicto the Bernoulli processB;.

From the developmenbf the agument,we seethatthe factor2=" in the exponentcontrols

the branchingrate in the asymptoticcycle and so should be relatedto the rate of increaseof

the numberof cylinders. The topologicalentropyis the growth rate of Hy and so cannow be
determineddirectly

H
ho(m) = lim o(n) =2"

Rewriting the generalexpressiorfor the lower boundin a chaoticcascadenakesit clear how
ho controls the total entropy

N(n,m) = Vr<2”’l _ 2_1)

whereh = ‘i is the branchingratio of the numberof verticesf that branchto the total number
V., of recurrentstates.

The abovederivation used periodicity ¢ = 1. For generalperiodicity band-meging, we
haveV, = ¢ -2™ and f = 1. It is clearthatthe expressiorworks for a muchwider rangeof e-
machineswith isolatedbranchingwithin a cyclethatdo not derivefrom cascadeystems.Indeed,
theresultsconcernthe relationshipbetweenreigenvaluesndasymptoticstateprobabilitiesin the
family of labeledMarkov chainswith isolatedbranchingamongcyclic recurrentstates.

As a subsetof all Misiurewicz parametevalues,band-meging behaviorhasthe simplest
computationaktructure.In closingthis section,we shouldpoint out thatthereareothercascade-
relatedfamiliesof Misiurewicz parametersvhosemachinesaresubstantiallynorecomplicatedn
the sensdhatthe stochastielements morethananisolatedbranching.Eachfamily is described
by startingwith a generallabeledMarkov chainasthe lowestorder machine.The otherfamily
membersare obtainedby applicationsof a period-doublingoperator*’ Eachis a productof a
periodic processand the basic stochasticmachine. As a result of this simple decomposition,
the complexity-entropyanalysiscan be carriedout. This will be reportedelsewherelt explains
many of the complexity-entropypropertiesabovethe lower boundcaseof band-meging. The
numericalexperimentdater give examplesof all thesetypesof behavior.
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Cascade Phase Transition

The precedingresultsareusedin this sectionto demonstratéhat the cascadeouteto chaos
has a complexity-entropyphasetransition. It was establishedsometime ago that this route
to chaosis a phasetransition as a function of a nonlinearity parametef? with an external
(dis)orderingfield®® and a natural (dis)orderparametef® Here we focus on the information
processingpropertiesof this transition. First, we estimatefor finite cylinder lengths the
complexityandspecificentropyat the transition. Secondwe defineandcomputethe transition’s
latentcomplexity that gives the computationalifferencebetweenc-machinesaboveand below
the transition. Finally, we discussthe transition’s order.

0 r

periodic C Chaotic
(Solid) (Gas)

Figure 13 Complexity versusspecificentropyestimate.Schematiaepresentatiomf the cascaddambdatransitionat finite
cylinder lengths. Below H. the behavioris periodic;above,chactic. The latentcomplexityis given by the differenceof
the complexitiesC”' and C' at the transitionon the periodic and chaotic branchesrespectively.

Given the lower bound expressiondor the entropy and complexity aboveand below the
transitionto chaosas a function of cylinder length n, we can easily estimatethe complexities
C'(n) andC"(n) andthe critical entropy H.(n). Figure 13 givesa schematiaepresentatiomf
the transition and showsthe ddfinitions of the various quantities. The transitionis defined as
the divergencein the slopeof the chaoticbranchof the complexity-entropycurve. Thatis, the
critical entropy . and complexity C’ are definedby the condition

OH
50 = 0
From this, we find
C" =logy n — logy logy y

nH, = C' +log, (by — 2*1)
wherey = 2"2°° s the solution of
1
ylogey—y+§=0

thatis, y = 2.155535035. Numericalsolutionfor n = 16 gives
C'(16) ~ 3.851982
C"(16) ~ 4.579279
H.(16) ~ 0.286205
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atb = 1.
The latentcomplexity AC' of thetransitionwe defineasthe differenceat the critical entropy
H. of the complexitieson the periodic and chaoticbranches

AC=C" -

Along the periodic branchthe entropy and complexity are equal and so from the previous
developmentwe seethat

1
nH, = C" = C' +log, <by — 5)

1
or AC = log, <by — 5)

For b = 1 this gives by numericalsolution
AC = 0.7272976887 bit,

which, we note, is independenbf cylinder length.

In classifying this transition thermodynamically the complexity plays the role of a heat
capacity. It is by our definition a computational“capacity”. Just as the thermodynamic
temperaturecontrols the multiplicity of available states, I appearsas an “informational”
temperatureand H. as a critical amountof information (enegy) per symbol (spin) at which
long rangefluctuationsoccur. The overall shapeis thensimilar to a lambdaphasetransitionin
that thereis a gradualincreasein the capacityfrom both sidesand a jump discontinuityin it
at the transition. The propertiessupportingthis follow from the boundsdevelopedearlier. And
so, thereis at leastone componentof the cascaddransitionthat is a secondorder transition,
i.e. that associatedvith periodicity ¢ = 1. Thereis alsoa certaindegeneracylue to the phase
dependencef the coeficientb,, ,,. Thisis asmalleffect, butit doesindicatea rangeof different
limiting valuesasn — oo for the chaoticcritical complexityC’. It doesnot changethe orderof
the transition. To completelycharacterizehe transition,though,an upperboundon complexity
at fixed n is alsoneeded.This requiresaccountingfor the typical chaoticparametershy which
we meanthoseassociatedvith aperiodicbehaviorof the critical point. An approachto this
problemwill be reportedelsewhere.

It should also be emphasizedhat the above propertieswere derived for finite cylinder
lengths;thatis, far away from the thermodynamidimit of infinite cylinders. The overall shape
and qualitative propertieshold not only in the thermodynamidimit but also at eachfinite size.
In the thermodynamidimit the entropyestimates: ™'/ (n) go overto the entropygrowth rates
ha. As aresult, all of the periodic behaviorlies on the 2, = 0 line in the (h,, C,)-plane.
This limiting behavioris consistentwith a zero temperaturgphasetransition of a one-spatial-
dimensionspin systemwith finite interactionrange.

This analysisof the cascadephasetransition should be contrastedwith the conventional
descriptionsbasedon correlation function and mutual information decay. The correlation
length of a statisticalmechanicalsystemis defined most generallyas the minimum size L at
which thereis no qualitative statisticaldifferencebetweenthe systemof size L andthe infinite
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(thermodynamidimit) system.This is equivalentin the presentcontextto defininga correlation
length L, atwhich L-cylinder «-orderstatisticsarecloseto asymptotic. If we considerthetotal
entropyH, (L) asthe (dis)orderparametenf interest,thenfor finite e-machines, awayfrom the
transitionon the chaoticside,we expectits convegenceto asymptoticstatisticsto behavelike

ofa(L) o 97

But for L sufficiently large

9Ha(L) o 9hal

whereh, = logy \. By this agument,the correlationlengthis simply relatedto the inverse
of the specific entropy: L, o h_'. We would conclude,then, that the correlationfunction
descriptionof the phasdransitionis equivalenin manyrespectso thatbasedn specificentropy.

Unfortunately, this argument, which is often usedin statistical mechanics,confusesthe
rate of decayof correlationwith the correlationlength. Thesequantitiesare proportionalonly
assumingexponentialdecayor, in the presentcase,assumingdfinite e-machines.The agument
doesindicatethatasthe transitionis approachedhe correlationlengthdivergessincethe specific
entropyvanishes.For all behaviorwith zerometric entropy,periodicor exactlyat the transition,
the correlationlength is infinite. As typically defined,it is of little usein distinguishingthe
varioustypes of zero entropy behavior.

The correlationlengthin statisticalmechanicds determinedby the decayof the two-point
autocorrelationfunction

N-1
1
C(L) = (sisi+r) = > (sisivr —7)
i=0
Its information theoreticanalogis the two—point 1-cylinder mutual information

In(si,siyr) = Ha(si) — Ha(six1|8i)

wheres; is the it symbolin the sequence and H,(-) is the Renyi entropy* Using this to
describephasetransitionsis an improvementover the correlationfunction in that, for periodic
data,it dependsonthe period P : [,  log P. In contrastthe correlationfunctionin this case
doesnot decayand gives an infinite correlationlength.

The convegenceof cylinder statisticsto their asymptotic(thermodynamidimit) valuesis
most directly studiedvia the total excessentropy?9-46.61

Fa(L) = Ho(L) — hoL

It measureghe total deviation from asymptoticstatistics,up to L-cylinders® As L — oo, it
measureghe averagemutual information betweensemi-infinite pastand future sequences.it

* Cf. the entropy“convemgenceknee” n* 31

T The statisticalmechanicakrgument,from which the following is taken,equivalentlyassumesxponentialdecayof the correlationfunction.
¥ The correlationlengthis mostclosely relatedto .

§ A scalingtheoryfor entropyconvegenceto thethermodynamidimit thatincludestheeffect of extrinsicnoisehasbeenis describecpreviously3!
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follows from standardinformation theoreticinequalitiesthat the two-point 1-cylinder mutual
informationis an overestimateof the excessentropyand so of the convegenceproperties.In
particular,

L7VEL(L) < Io(si,sivr)

sincel,, ignoresstatisticaldependencen the symbolsbetweers; ands;; ;. The DFA e-machine
complexity is directly relatedto the total excessentropy®

Co(L) o Fo(L)
—00
As atool to investigatecomputationapropertiesthe two-pointmutualinformationis too coarse,
sinceit gives at mostan upperboundon the DFA complexity.

At the transition correlationextendsover arbitrarily long temporaland spatial scalesand
fluctuationsdominate. It is the latter that supportcomputationat higher levelsin Chomsky’s
hierarchy. The computationalpropertiesat the phasetransition are capturedby the diverging
e-machines’structure. To the extentthat their computationaktructurecan be analyzed,a more
refined understandingf the phasetransition can be obtained.

Cascade Limit Language

The precedingsection dealt with the statistical characterof the cascadetransition, but
we actually have much more information available from the e-machines. Although the DFA
model divergesin size, its detailed computationalpropertiesat the phasetransition reveal a
finite descriptionat a higherlevel in Chomsky’shierarchy. With this we obtaina much finer
classificationthan is typical in phasetransitiontheory.

The structure of the limiting machine can be inferred from the sequenceof machines
reconstructedat 2™ — 2™*1 period-doublingbifurcation on the periodic side and from those
reconstructect 2™ — 2™~ 1 band-meging on the chaoticside. (Comparefigures2 and6, 3 and
7,4 and8, 5and9.) All graphshavetransientstatesof pair-wisesimilar structure gxceptthatthe
chaoticmachineshavea period2™~! unstablecycle. All graphshaverecurrentstatesof period
2. In the periodic machineshis cycle is deterministic.In the chaoticmachinesalthoughthe
statesare visited deterministically the edgeshavea single nondeterministidoranching.

Theorderof the phasdransitiondepend®nthestructuraldifferencedetweerthee-machines
above and below the transitionto chaos. In general,if this structural differencealters the
complexity at constantentropy, then the transitionwill be secondorder. At the transitionto
chaosvia period doubling thereis a differencein the complexitiesdue to

1. The single vertexin the asymptoticcycle that branchesand
2. Thetransient2”~! cycle in the machineson the chaoticside.

At constanttomplexitythe uncertaintydevelopedy the chaoticbranchingandthe natureof the
transientspine determinethe amountof dynamicinformation productionrequiredto makethe
changefrom predictableto chaotice-machines.

The following two subsectionsummarizeresultsdiscussedn detail elsewhere.

22



Computation at the Onset of Chaos

Critical Machine

The machineM thatacceptdhe sequenceproducedat the transition,althoughminimal, has
an infinite numberof states.The growth of machinesize |V(L)| versusreconstructiorcylinder
size L at the transitionis demonstratedh figure 14. The maximumgrowthis linear with slope
co = 3. Consequentlythe complexity diverges logarithmically. The growth curve itself is
composedof pieceswith alternatingslope 2 and slope 4

2L 2% <[ <3.9i-1
V(L)| = = .
VL) {4L 3-2llgL<2t+1}

The slope 2 learningregionscorrespondo inferring more of the statesthat link the upperand
lower branchesof the machine. (The basicstructurewill be madeclearerin the discussionof
figure 15 below.) The slope4 regionsare associatedvith picking up groupsof statesalongthe
long deterministicchainsthatarethe upperandlower branches Recallingthe definition of ¢, in
a previoussection,we note that finite ¢y indicatesa constantievel of complexity usinga more
powerful computationalmodel than {P¢, B¢ }.

Figure14 Growth of critical machineM . The number|V (L)| of reconstructedstatesversuscylinder length L for the logistic
map at the periodicity ¢ = 1 cascaddransition. Reconstructioris from length 1 to length 64 cylinderson 2 L-cylinder trees.

Self-similarity of machinestructureat the limit is evidentif the machineis displayedin its
“dedecoratet form. A portion of the infinite I-digraphat the transitionis shownin figure 15 in
this form. A decoratiorof anl-digraphis theinsertionof a deterministicchainof statesbetween
two state? In a dedecoratedrdigraph chainsof statesarereplacedwith a single edgelabeled
with the equivalentsymbolsequenceln the figure structureswith a chainfollowed by a single
branchinghavebeenreplacedwith a single branchingeachof whoseedgesare labeledwith the
original symbol sequencdetweenthe states.The dedecoratiormakesthe self-similarity in the
infinite machinestructurereadily apparent.

Figure 15 Self-similarity of machinestructureat cascaddimit is shownin the dedecoratedidigraph of M.

The strict regularity in the limit machinestructureindicatesa uniformity in the underlying
computatiormodeledat a higherlevel. Indeed thelattercanbeinferredfrom theinfinite machine
by applying the equivalenceclassmorph reconstructioralgorithm to the machineitself." The
resultis thenon-DFA machineM.. shownin figure 16, wherethe statesn dedecorated/ (figure
15) are coalescednto new equivalenceclassesbasedon the subtreesimilarity appliedto the
sequencef statetransitions.The additionalfeaturethat mustbe inferred, oncethis higherlevel
machineis reconstructedis the productionrule for the edgelabels. Thesedescribestringsthat
doublein length accordingto the productionB — BB’, where B is a registervariable and
B' is the contentsof B with the last symbol complemented.The productionappendsto the
register’'s contentsthe string B'.

On a statetransitionthe contentsof the registerare outputeitherdirectly or asthe string B’.
Thel-digraphedgesarelabeledaccordinglyin the figure. On atransitionfrom statessignifiedby

* The total entropyalso dependdogarithmically on cylinder length.
T The generalframeworkfor reconstructingnachinesat differentlevelsin a computationahierarchyis presentedlsewheré>
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squaresthe registerproductionis performedfirst andthenthe transitionis made. The machine
beginsin the start statewith a “1” in the register.

Figure 16 Higher level production-rulemachine,or stackautomaton,}/. thatacceptsLe..

M. acceptsthe full languagel. producedat the transitionincluding the transientstrings
with variousprefixes.At its core,though,is the simplerecursiveproduction(B — BB') for the
itinerary w. of the critical point z*. We will now explorethe structureof this sequenceén more
detailin orderto seejust what computationatapabilitiesit requires.We shall demonstratéiow
and whereit fits in the Chomskyhierarchy.

Critical Language and Grammar

Before detailing the formal languagepropertiesof the symbol sequencegeneratedat the
cascadetransition, severaldefinitions of restrictedlanguagesare in order. First, of course,
is the critical languageitself L. which we take to be the set of all subsequenceproduced
asymptoticallyby the dynamicalsystemat the cascaddransition. M. is a deterministicacceptor
of L.. Secondthe mostrestrictedlanguagedenotedL, is the sequencef the itinerary of the
map’s maximumz*. That is,

Ly = {wc tw = 818983 --- and fl(:r*) < 2% = s; =0, otherwise 5; = 1 }

a single sequenceThird, a slight generalizatiorof this, Ly, consistsof all length2™ subwords
of w. that start at the first symbol

L2:{W:w:8132"'32i ! i:0,1,2ﬂ...and3j:[wc]j}

where[w], = s if w = sysgs3---s;---. Finally, we define L3 to be the setof subsequences
of any length that start at the first symbol of w.

Ly = {w tw=5182---5;,1=1,2,3,...and sj = [wc]j }
Note that L. is the further generalizationincluding subsequence$at startat any symbolin w,
L.= {wk twp = s182---8;,1=1,2,3,...and s; = [wc]j+k k>0 }

With thesevariouslanguageswe canbeginto delineateheformal propertiesof thetransition
behavior. First, we note that an infinite numberof words occurin L. eventhoughthe metric
entropyis zero. Additionally, thereare an infinite numberof inadmissiblesequencesandso an
infinite numberof wordsin the complementanguagel.., i.e. wordsnotin L.. Oneconsequence
is that the transitionis not describedby a subshiftof finite type sincethereis no finite list of
words whose concatenatiorgenerated. .53

Second,in formal languagetheory “pumping lemmas” are usedto prove that certain
languagesare not in somelanguageclass® Typically this is tantamounto demonstratinghat
particularrecurrenceor cyclic propertiesof the classare not obeyedby suficiently long words
in the languagein question. Regularlanguages(RL) are those acceptedby DFAs. Using
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the pumpinglemmafor regularlanguagest is easyto demonstrateéhat L € {Li1, Ls, L3, L.}
is not regular. This follows from noting that there is no length » such that each word
z € L with |z| > n canbe brokeninto three subwords,z = uwvw with |uv| < n, where
the middle (honempty)subword can be repeatedarbitrarily many times. That is, sufficiently
long stringscannotbe decomposeduchthat z € L = uv'w € L Vi > 0. In fact, no substrings
canbe arbitrarily pumped. The lack of sucha cyclic propertyalso follows from noting thatin
M all the statesaretransientandthereareno transientcycles. The observatiorof this structural
propertyalsoleadsto the conclusionthat L. is alsonot finitely-describedat the nextlevel of the
complexityhierarchy: context-fredanguagegCFL), i.e. thoseacceptedy pushdownautomata.
This canbe establishedlirectly usingthe pumpinglemmafor context-freelanguages.

Third, in the structuralanalysisof M we found statesat which the following productionis
applied: A — AA’, where A’ = sg---5;, if A= sy---s; ands is the complementof s. This
productiongenerated.; and Ls. It is mostconciselyexpresseas a context-freeLindenmayer
systenf* The generalclassis called OL grammars:G = {¥, P,a} consistingof the symbol
alphabetproductionrules,and startstring, respectively.This computationaimodelis a classof
parallelrewriteautomatan which all symbolsin aword havethe productionrulessimultaneously
applied,with the neighboringsymbolsplaying no role in the selectionof which production. The
symbolalphabetis ¥ = {0, 1}. The productionrules P are quite simpleP” = {0 — 11,1 — 10}
andstartwith the string o = {1}. This systemgenerateshe infinite sequence.; andallowing
the choiceof whento stopthe productionsjt generated., = {1, 10,1011, 10111010, .. .}.

Althoughthe L-systemmodelof the transitionbehavioris quite simple,asa classof models
its parallelnatureis somewhatnappropriate L-systemsgproduceboth“early” and“late” symbols
in a string at everyproductionstep;whereaghe dynamicalsystemin questionproducesymbols
sequentially. This point is even more obvious when thesesymbol sequencesre considered
as sequentialmeasurementsThe associated.-systemmodel would imply that the generating
processhad an infinite memory of past measurementand accessedhem arbitrarily quickly.
The model classis too powerful.

This can be remediedby converting the OL-systemto its equivalentin the Chomsky
hierarchyof sequentiacomputatior?. The Chomskyequivalentis a restrictedindexedcontext-
freegrammarG,. = {N,I, T,F. P, S}.65 A centralfeatureof the indexedgrammarss thatthey
are a natural extensionof the context-freelanguageghat allow for a limited type of context-
sensitivityvia indexedproductionswhile maintainingpropertiesof context-fredanguagessuch
as closure and decidability, that are important for compilation. For the limit languagethe
componentsare defined asfollows. N = {S, T’} is the setof nonterminalvariableswith S the
startsymbol;I = {A, B,C, D, E, F'} is the setof intermediatevariables;T = {0,1} is the set
of terminal symbols;P = {S —- Ty, T - Tf,T — BA,C — BB,D — BAJE — 0, F — 1}
is the setof productionsandF = {f,¢} with f =[A —- C,B — D]andg=[A — E,B — F]
areindexedproductions.The grammarjust givenis in its “normal” form sincethe variablesin
the indexedproductionsF do not haveproductionsin P. The indexedgrammatris restrictedin
that there are no intermediatevariableswith productionsthat producenew indices. The latter
occursonly viathe S — Tg andT — T f productions.Note that oncethis is no longerused,
via the applicationof 7" — BA, no new indicesappear.
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Theaboveindexedgrammarsequentiallyproducesymbolsin wordsfrom Ls. Two example
“left-most” derivationsare

(1) S—Tg— BgAg
— FAg — 1Ag — 1E — 10
(2) S—=Tg—Tfg— BfgAfg
— DgAfg — BgAgAfg — FAgAfg
— 1AgAfg — 1EAfg — 10Afg
— 10Cg — 10BgBg — 10F Bg
— 101Bg — 101F — 1011

Productionsare appliedto the leftmost nonterminalin eachstep. Consequentlythe terminal
symbols{0, 1} are producedsequentiallyleft to right in “temporal’ order. In the first line,
noticehow theindicesdistributeoverthe variablesproducedby the production7” — BA. When
an indexedproductionis usedan index is consumed:asin Bg — F' in going from the first
to the secondline above.

All of the languagesn the Chomskyhierarchyhavedual representationas grammarsand
asautomata.The machinecorrespondindo anindexedcontext-fredanguages the nestedstack
automaton(NSA) .56 This is a generalizatiorof the pushdownautomaton:a finite statecontrol
augmentedvith a last-in first-out memoryor stack. An NSA hasthe additionalability to move
into the stackin a read-onlymodeandto inserta new (nested)stackat the currentstacksymbol
beingread. It cannotmove higherin the stackuntil it hasfinishedwith the nestedstackand
removedit. The restrictedindexedcontext-freegrammarfor Ls is recognizedby the one-way
nondeterministidNSA (LNNSA) shownin figure 17. The startstateis q. The variousactions
label the statetransitionedges. $ denotesthe top of the currentstack and the cent sign, the
currentstack bottom. The actionsare one of threeforms

1. a — 3, wherea and/j are patternsof symbolson the top of the currentstack;

2. «a — {1, -1}, wherethe latter indicatesmoving the headup anddownthe stack,respectively,
upon seeingthe patterna at currentstacktop.

3. (%) — (1,%), wheret is a symbolreadoff of the input tapeand comparedo the symbol
atthetop of the stack. The’1’ indicatesthatthe input headadvancedo the nextsymbolon
the input tape. The symbol on the stack’stop is removed: $t — $.

In all but one casethe actionsare in the form of a symbol patternon the top of the stack
leadingto a replacemenpatternand a stackheadmotion. The notation on the figure usesa
component-wiseshorthand. For example,the productionsare implementedon the transition
labeled ${S,T,T,C,D,E,F} — ${Tg,Tf,BA,BB,BA,0,1} which is shorthandfor the individual
transitions: $S — $Tg, $T — $Tf, $T — $BA, $C — $BA, $D — $BB, $E — $0, and
$F — $1. The operationof the INNSA mimics the derivationsin the indexedgrammar. The
nondeterminisnheremeansthat thereexistssomesetof transitionsthat will acceptwordsfrom
Ls. Ls is acceptedy the samelNNSA, but modified to acceptwhenthe endof the input string
is reachedand the previousinput hasbeenaccepted.

Figure 17 One-waynondeterministimestedstackautomatorfor limit languages., and Ls.
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Thereare threeconclusiongo draw from theseformal languageresults. First, it shouldbe
emphasizedhat the particular detailsin the precedinganalysisare not essential. Rather,the
most importantremarkis that the descriptionat this higher level is finite and, indeed, quite
small. Despitethe infinite DFA complexity,a simplehigherlevel descriptioncanbe found once
the computationalmodel is augmented.Indeed,the deterministicTuring machineprogramto
generatavordsin thelimit languagas simple: (i) copythe currentstringonthetapeontoits end
and (ii) invert the lastbit. Thelimit languagefor the cascaddransitionuseslittle of the power
of the indexedgrammars. The latter can recognize for example,context-sensitivdanguages.
The limit machineis thus exceedinglyweak in its implied computationalstructure. Also, the
only nondeterminismn the 1INNSA comesfrom anticipatingthe length of the string to accept;
a featurethat can be replacedto give a deterministicand so lesspowerful automaton.

Secondjt is relatively straightforwardo build a continuous-statdynamicalsystemwith an
embeddediniversalTuring machinet With this in mind, andfor its own sake,we notethat by
theaboveconstructiorthe cascadéransitiondoesnot haveuniversalcomputatiorembeddedh it.
Indeed,it barelyaspirego be muchmorethana context-freegrammar.With theformallanguage
analysiswe haveboundedhe complexityat the transitionto be greaterthanregularandcontext-
free languagesand no more powerful than indexedcontext-free. Furthermore the complexity
at this level is measuredby a linearly boundedDFA growth rate ¢ = 3. Theseproperties
leaveopenthe possibility, though,that the languagecould be a one-waynondeterministicstack
automaton(1INSA)>

Finally, we demonstratedby an explicit analysisthat nontrivial computation beyondinfor-
mation storageand transmissionarisesat a phasetransition. Oneis forcedto go beyondDFA
modelsto the higher stackautomatonlevel sincethe former requirean infinite representation.
Thesepropertiesare only hinted at by the infinite correlationlength and the slow decay of
two-point mutual information at the transition.

Logistic Map

The precedinganalysisholdsfor a wide rangeof nonlinearsystemssinceit restsonly on the
symbolicdynamicsandthe associategrobability structure.It is worthwhile, nonethelesgp test
it quantitativelyon particularexamples.This is possiblebecausét restson a (re)constructive
methodthat appliesto any datastream. This sectionand the next report extensivenumerical
experimenton two one-dimensionaiaps. The first is the logistic map, defined shortly, and
the second,the piecewiselinear tent map.

The logistic mapis a map of the unit interval given by
Tyl =rxn(l —x,), o € [0,1] and r € [0, 4]

wherethe parameter- controlsthe degreeof nonlinearity. 7 is the map’sheightat its maximum
xt = % This is one of the simplest, but nontrivial, nonlineardynamical systems. It is an
extremelyrich systemaboutwhich much is known?’ It is fair to say, however,that even

at the presenttime there are still a numberof unsolved mathematicalproblemsconcerning

* A two-dimensionamap with an embedded: symbol, 7 stateuniversalTuring machiné” was constructed®
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the behaviorat arbitrary chaotic parametewalues. The (generating)measuremenpartition is
P% = {[0,.5), [.5,1.]}.

The machine complexity and information theoretic propertiesof this systemhave been
reportedpreviously>° Figure18 showsthe complexityversusspecfic entropyfor 193 parameter
valuesr € [3,4]. Oneof the moreinterestinggeneralfeaturesof the complexity-entropyplot is
clearly demonstratedby this figure: all of the periodic behaviorlies below the critical entropy
H.; andall of the chaotic,above. This is true evenif the periodicbehaviorcomesfrom cascade
windowsof periodicity ¢ > 1 within the chaoticregimeat high parametewalues.The (H,, Cy)
plot, therefore,capturesthe essentiainformation processingj.e. computationand information
production,in the period-doublingcascadendependenbf any explicit systemcontrol.

Figure 18 Observedcomplexity versusspecificentropy estimatefor the logistic map at 193 parameter
valuesr € [3,4] within both periodic and chaoticregimes. Estimateson 32-cylindertrees
with 16-cylindersubtreemachinereconstructionwherefeasible.

The lower bound derived in the previous sectionsapplies exactly to the periodic data
(H < H.) andto the band-meging parametewalues. The fit to the periodic datais extremely
accurateyerifying the linear relationshipexceptfor high periodsbeyondthat resolvableat the
chosenreconstructioncylinder length. The fit in the chaoticregimeis also quite good. (See
figure 19.) The dataare systematicallylower ("2%) in entropydueto the useof the topological
entropyin the analysis. The measurectritical entropy H,. and complexity C" at the transition
were 0.28 and 4.6, respectively.

Figure 19 Fit of logistic map periodic and chaoticdatato correspondindgunctional forms. The data
is from the periodicity 1 band-meging cascadeand also includesall of the periodic datafound
in the precedingdfigure. The theoreticalcurvesCy(H,) are shownas solid lines.

Tent Map

The secondnumericalexample,the tent map, is in someways substantiallysimpler than
the logistic map. It is given by

ATn Tp <
T =
n+l a(l —z,) =z, >

O] =

wherethe parameter. controlsthe height(: %) of the mapat the maximumaz™* = % The main
simplicity is that thereis no period-doublingcascadeand, for that matter,there are no stable
periodic orbits, exceptat the origin for « < 1. Thereis insteadonly a periodicity ¢ = 1 chaotic
band-meging cascadehat springsfrom z* ata = 1.

The piecewiselinearity also lends itself to further analysisof the dynamics. Since the
map hasthe sameslopeeverywherethe Lyapunovexponent), topological, metric, and Renyi
specificentropiesare all equaland given by the slope X = h, = logz a. We cansimply refer
to theseas the specificentropy. From this, we deducethat, since b, = 27" for 2™ — 2m~1
band-megings, the parametewvaluesthere are
922"

a;2m_,2m71 —
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For L > 2™ the complexityis given by the band-meging period. And this, in turn, is given by
the numberof bands. Thus,we haveC, = —logs h, Or

Co = —loga logs a

asa lower boundfor ¢ > 1 and L > 2™ at anm-order bandmemging.

Sincethereis no stableperiodicbehavior,otherthanperiodone,thereis a forbiddenregion
in the complexity-entropyplot below the critical entropy. The systemcannotexist at finite
“temperatureselow H,., exceptat absolutezero H. = 0.

Figure 20 gives the complexity-entropyplot for 200 parametewaluesa € [1,2]. Thereis
a good deal of structurein this plot beyondthe simple band-meging lower boundswe have
concentrateen. Neareachband-meging complexity-entropypoint, thereis a slantedclusterof
points. Theseare associatedvith families of parametewaluesat which the iteratesf” (z*) are
asymptoticallyperiodic of variousperiods. We shall discussthis structureelsewheregxceptto
note herethatit alsoappearsn the logistic map, but is substantiallyclearerin this example.

Figure20 Tent map complexity versusentropyat 200 parametenaluesa € [1,2]. The quantities
were estimatedwith 20-cylinderreconstructioron 40-cylindertrees;wherefeasible.

Figure 21 showsband-meging dataestimatedfrom 16- and 20- cylinders along with the
appropriatetheoreticalcurvesfor thoseandin the thermodynamidimit (L = 256).

Figure21 Effect of cylinderlength. Tent map dataat 16- and 20-cylinders(triangle and squaretokens,respectively)
alongwith theoreticalcurvesCq(Hy) for the sameandin the thermodynamidimit (L = 256).

From the two numericalexamplesit is clear that the theory quite accuratelypredictsthe
complexity-entropydependencelt canbe easily extendedn severaldirections. Most notably,
the families of Misiurewicz parametersssociatedvith unstableasymptoticallyperiodicmaxima
canbe completelyanalyzed.And this appeargo give someinsightinto the generalproblemof
the measureof parametewvalueswhereiteratesof the maximumare asymptoticallyaperiodic.
Additionally, the computationabnalysisis beingappliedto transitionsto chaosvia intermittency
and via frequency-locking.

Computation at Phase Transitions

To obtain a detailedunderstandingf the computationaktructureof a phasetransition,we
haveanalyzedone exampleof a self-similarfamily of attractors.The period-doublingcascade
is just one of manyroutesto chaos.The entirefamily is of nominalinterest,providing a rather
completeanalysisof a phasetransitionandhow statisticalmechanicsapplies. More importantly,
for generalphasetransitionsthe approachdevelopedhereindicatesa type of superuniversality
thatis basedonly on the intrinsic information processingoerformedby a dynamicalor, for that
matter, physical system. This information processingconsistsof conventionalcommunication
theoreticquantities,that is the storageand transmissiorof information, and the computational
aspects,most clearly representedy the detailed structureand formal languagepropertiesof
reconstructed-machines.
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By analyzingin somedetail a particularclassof nonlinearsystemswe have attemptedto
strengthenthe conjecturethat it is at phasetransitionswhere high level computationoccurs.
Application to other examples,such as the phasetransition in the 2D Ising spin system
and cellular automataand lattice dynamical systemsgenerally, will go even further toward
establishingthis generalpicture. Theseapplicationswill be reportedelsewhere.Nonetheless,
it is clearthat computationalideasprovide a new set of tools for investigatingthe physicsof
phasetransitions. The central conclusionis that via reconstructionthey can be moved out of
the realm of mathematicsand theoreticalcomputerscienceand appliedto the scientific study
and engineeringof complex processes.

The associationof high level computationand phasetransitionsis not madein isolation.
Indeed, we should mention some early work addressingsimilar questions. Type IV cellu-
lar automata(CA) were conjecturedby Wolfram to supportnontrivial and perhapsuniversal
computatiorf® TheseCA exhibit long-lived transientsand propagatingstructuresout of which
elementarycomputationscan be constructed.The first authorand NormanPackardof the Uni-
versity of lllinois conjecturedsomeyearsago that type IV behaviorwas generatecby CA on
bifurcationsetsin the discretizedspaceof all CA rules. This wassuggestedyy studiesof bifur-
cationsin a continuous-statkattice dynamicalsystemasa function of a nonlinearityparameter®
The continuoudocal stateswverediscretizedo give CA with varyingnumbersof states.By com-
paring acrossa rangeof state-discretizatiomnd nonlinearityparameterthe CA bifurcation sets
werefoundto be associateavith bifurcationsin the continuous-statéattice system.More recent
work by Chris Langtonof Los Alamos National Laboratoryhascorfirmed this in substantially
more detail via Monte Carlo samplingof CA rule space. This work usesmutual information,
not machinecomplexity, measure®f the behavior. As pointedout above,thereis aninequality
relating thesemeasures.Mutual information versusentropy density plots for hundredsof CA
rulesreveala phasetransitionstructuresimilar to that shownin the complexity-entropydiagram
of figure 18. Seenin this light, the presentpaperaugmentstheseexperimentalresults with
an analytic demonstratiorof what appearsto be a very generalorganizationof the spaceof
dynamicalsystems,whetherdiscreteor continuous.

Complexity of Critical States

Recallthat the Wold-Kolmogorovspectraldecompositiorsaysthe spectrumof a stationary
signal hasthreecomponent$:34 Thefirst is a singularmeasureconsistingof ¢-functions. This
describegeriodicbehavior. The secondcomponenis associatedavith an absolutelycontinuous
invariant measureand so broadbandpower spectra. The final componentis unspecifiedand
typically ignored. From the precedinginvestigation,though, we can make a commentand
a conjecture. The commentis that finite stochasticDFA e-machinescapturethe first two
componentof the decomposition’Py and B¢, respectively. The conjecture and perhapsmore
interestingremark, is that the third componentappearso be associatedvith higher levelsin
the computationalhierarchy.

This conjecturecanbe comparedo recentdiscussiorof ergodic theory. Ornsteinsuggested
that most“chaotic systemshat arisenaturally are abstractlythe sameasB;”.1 We cannow see
in what sensethis canbe true. If it is only at accumulationpoints of bifurcationsthat infinite
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DFA machinesoccur,thenin the spaceof all dynamicalsystemghe dimensionalityof the setof

suchsystemswill be reducedandso the set’s measurewill be zero. From this viewpoint, high

complexity (nonB;) systemswould be rare. We can also seehow the conjecturecan be false.
If thereis someconstraintrestrictingthe spaceof systemsn which we areinterestedthenwith

respectto that spaceinfinite machinesmight havepositive measureand so be likely. Systems,
suchasthosefoundin biology, that survive by adaptivelymodifying themselveso bettermodel
andforecasttheir environmentwould tendto exhibit high levelsof complexity. Within the space
of successfuldaptivesystemshigh complexity presumablyis quite probable. Another sense
in which Ornstein’sconjectureis too simplified is that the Bernoulli shift is computationally
simple. It is equivalent,in one representationto the piecewiselinear Baker’s transformation
of the torus. In contrast, most “natural” physical systemsare modeledwith smooth (non-

piecewise-linearhonlinearities.The associategbhysical propertiescontributesubstantiallyto a

system’sability to generatecomplexbehaviorindependentf the complexity of boundaryand
initial conditions’! Physicalsystemsgovernedby a chaotic piecewiselinear dynamic simply

excavatemicroscopicfluctuations,amplifying themto determinemacroscopidehavior’? This

information transmissioracrossscalesis computationallytrivial. 1t is not the central property
of complex behaviorand structure.

We have seenthat away from the cascadephasetransition it is only at band-meging
parameterswvhere chaotic behavior can be factoredinto periodic and Bernoulli components.
A similar decompositiorof e-machinesnto periodicandfinite stochasticcomponentccursat
Misiurewicz parameterswhere /" (z*) is asymptoticallyperiodicand unstableandthe invariant
measurds absolutelycontinuous. But theseparametewaluesare countable. Furthermore the
measureof chaoticparametewvaluesas one approaches Misiurewicz valueis positive and so
is uncountabl€3 Typical parametersn this setappearto be characterizedy aperiodic " (z*)
thatarein a Cantorsetnot containingz*. Sucha caseis modeledby infinite DFA e-machines.
Taken togethertheseindicate that a large fraction of “naturally arising” chaotic systemsare
isomorphicneitherto B nor to By ® Px.

Computationalkergodic theory, the applicationof computationalanalysisin ergodic theory,
would appearto be a useful directionin which to searchfor rigorousrefined classificationsof
complexbehavior. This suggestsfor example,the useof DFA and SA complexity, and other
higherforms, asinvariantsto distinguishfurther the behaviorof dynamicalsystemssuchasK-
flows andzero-entropyflows. For example althoughdescribedy a minimal DFA with a single
state,the inequivalenceof the binary Bz (3. 3) andternaryBs (1, £. +) Bernoulli shifts follows
from the fact that they are not structurallyequivalent.Not only do the entropiesdiffer, but the
machinefor the first hastwo edges;for the secondthree. Restatingthis in entropy-complexity
notation

although C,(B2) = Cy(B3) =0,
ha(B2) # ha(Bs)
and C§(Bz) # C5(Bs)
The full entropy-complexityplane appearsas a useful first step toward a more complete
classification. Recall the (H,, C,) plots for the logistic and tent maps. (Seefigures 18 and
20.) Similar types of structural distinctions and new invariants will play a central role in
computationalergodic theory.
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But what doesthis have to say about physical systems? In what sensecan a turbulent
fluid, a noisy Josephsonunction, or a quantumfield, be saidto performa computation?The
answeris that while computationalaspectsappearin almostany processsincewe canalways
estimatesomelow level e-machine,only nontrivial computationoccursin physicalsystemson
the order-disordeborder. Additionally thesesystemshavevery specialphase-transition-likeor
“critical”, subspacese-machinetheory gives a much more refined descriptionof suchcritical
behaviorthan that currently provided by statisticalmechanics. Indeed, the well-known phase
transitionsshouldbe re-examinedn this light. In additionto a moredetailedstructuraltheoryof
the dynamicmechanismsesponsiblgor phasetransitions,suchstudieswill give an improved
understandingf the macroscopidhermodynamigropertiesrequiredfor computation.

Computersare, in this view, physical systemsdesignedto be in a critical state. They are
constructedo supportarbitrarily long time correlationswithin certain macroscopic‘computa-
tional” degreesof freedom. This is achievedby decouplingthesedegreesof freedomfrom
error-producincheatbathdegreeof freedom. Computersare physicalsystemsdesignedo bein
continual phasetransitionwithin entropic-disordere@nvironments.From the latter they derive
the driving force that movescomputationdorward. But, at the sametime, they mustshieldthe
computationfrom environmentallyinducedfluctuations.

As alreadyemphasizedthe generaimeasureof complexityintroducedat the beginningis not
limited to stochasti®FAs andSAs, butappliesin principleto anycomputationalevel or, indeed,
to any modelingdomainwherea “symmetry” canbe factoredout of data. In particular,this can
be donehierarchicallyas we haveshownin the analysisof the computationabropertiesof the
cascaderitical machine.In fact, agenerahierarchicareconstructiors available?® Theabstract
definition of complexityappliesto all levelsof the Chomskyhierarchywhereeachcomputation
level representsin a concreteway, a classof symmetrieswith respecto which observedatais
to be “expanded”or modeled. This notion of complexityis also not restrictedto the Chomsky
hierarchy. It canbe applied,for example,to spatially-extendear network dynamicalsystems.
Since theseare computationallyequivalentto parallel and distributed machines,respectively,
e-machinereconstructiorsuggestsa constructiveapproachto parallel computationtheory. We
hopeto return to theseapplicationsin the nearfuture.
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