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Abstract
Computing power and sophisticated data acquisition mask the fact that, in
many sciences and engineering, the balance between theory and experiment
is getting increasingly out of whack. The imbalance becomes an even greater
concern in light of the increasingly complex natural systems science now con-
fronts and the increasingly complex and interdependent socio-technical sys-
tems modern engineering allows us to construct. Given its critical role in un-
derstanding such complex systems, Big Theory deserves a place alongside
Big Data and Big Iron, says Jim Crutchfield.

The twenty-one year old Werner Heisenberg, already a rising star in quan-
tum theory, was mortified when his doctoral exam committee awarded a nearly
failing grade. He had passed, but excused himself early from the celebration
party that evening put on by his advisor Arnold Sommerfeld. Boarding the
midnight train, he abruptly left Munich to take up a previously arranged job in
Göttingen, humiliated by his mediocre exam and concerned that his boss, Max
Born, would no longer have him.

Responding to criticism that Heisenberg’s brilliance in theory was eclipsing a
well rounded appreciation of physics, Sommerfeld had required him to take Wil-
helm Wien’s course in experimental physics and focus his dissertation on tur-
bulence in fluid flows. Both Wien and Sommerfield were on his oral exam com-
mittee: Sommerfeld gave Heisenberg the highest grade, Wien failed him. In
the early days of the 20th century, physics was experimental physics. Heisen-
berg was, plainly to Wien, no experimentalist [1]. The rest, they say, is history.
Heisenberg’s towering contributions to modern physics are unassailable and,
after a time, led to many key experimental discoveries. Heisenberg stands as
a pre-eminent example of the card-carrying theorist—a profession new to 20th
century science.

Today, looking more broadly across all of science, theorists still have reason to
worry. Advances in computing power combined with increasingly sophisticated
data acquisition technologies have led some to claim that theory is obsolete
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[2,3]: Data speaks for itself. Even more so, the more we have. Detailed, large-
scale simulations can now include all system components and so are complete.
Big Data and Big Iron mean there’s no need to suffer the inevitable simplifica-
tions theory requires.

Computing technology suffuses our lives and has unalterably changed scientific prac-
tice. And, there is no hint of a let up. The power available to the natural sciences
and engineering have grown substantially, via unanticipated innovations. Cobbling to-
gether outlet-store PCs in large clusters has brought supercomputing-level performance
to even small research groups and colleges. At the high-end, focusing on environmen-
tal concerns rather than following the US’s focus on compliance with the Nuclear Test
Ban Treaty, Japan’s Earth Simulator was the fastest machine on the planet in 2002.
Designed especially to accelerate climate studies and more generally high-resolution
modeling and simulation in geophysics, it was eclipsed just two years later by IBM’s
Blue Gene/L machine, doubling its performance. At that time, jumping by another fac-
tor of 5 in power to petascale computing was forecast to occur in 2010. We reached the
petascale in 2008. We search for extraterrestrial life and fold proteins at home. We reg-
ularly attend block-buster, feature-length, all-digitally computed films; a commercial
success the computer graphics community of the 1980s thought would be impossible
[4]. We expect split-second responses to searches of billions of documents. We could
very well have more computing than we know how to productively use. That said, we
now know there are problems of daunting complexity that must be tackled and under-
stood. Computing power is most likely not the bottleneck to the required innovation;
indeed, its an essential driver.

A parallel acceleration has occurred in extracting data from natural and engineered
systems. The development of tetrodes in neurobiology that simultaneously record
dozens of neural spike trains, sensor networks that monitor fault segments for imma-
nent earthquakes, digital sky surveys that produce three-dimensional maps of billions
of stars, atomic-scale microscopes that show the structure of nanotubes, and scanners
that record the dynamics of the brain are just a few notable successes in the advance
of measurement technology. In this setting, the familiar story of gene sequencing is
barely worth highlighting these days. Now, it’s only one among many in the new era
of the Data Deluge. By any measure, empiricism has come to dominate science.

This concerns me. Data, whether produced by massive simulations or automated ex-
perimentation, is not understanding. Wresting knowledge from data is theory’s role.
No surprise, the technological wizardry of the Data Deluge has its seductions. My con-
cern is that we, happy victims of technological success, are on the verge of permanently
confusing the trees for the forest.

Theory’s most important value lies in something we were taught in school. Scientists,
obviously enough, have constructed models for centuries. While guess and insight are
key, model building is also not a random process. We all know, for example, that in
building a model parsimony is helpful. This is captured by Occam’s Razor: Out of the
range of all models consistent with observations, pick the smallest. Often interpreted
as a convenience, we now know that parsimonious models are more than this, they
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capture a key aspect of understanding: Compact models reveal the mechanisms that
produce a system’s behavior and how those mechanisms interact [5,6]. One important
methodological conclusion is that theory is not mere data compression [7]. There is
meaning in our good models. They give insight, which is substrate for innovation.

We also should not forget the pragmatic aspects of theory’s healthy critical role in
science—aspects that complement this new view of theory building. First, predictive
theories allow for a level of conceptual hygiene. Intuitions, hunches, and hypotheses
that can be articulated in a mathematical theory can be tested for consistency. Concep-
tual hygiene is also key when designing and implementing effective and interpretable
simulations. Second, theory provides necessary calibrations for complicated simula-
tions. It’s often essential in computational science to know at least those behavioral
regimes that can be solved analytically, so that the code can be benchmarked against
those cases. Finally, theory is frugal. It simply does not cost as much as either experi-
ment or supercomputing. And, perhaps more importantly, in a discipline with a healthy
balance between theory and experiment, theory helps reduce costs by precluding un-
necessary experiment.

For all these reasons, both practically and methodologically, theory should have a pri-
mary role in most all of the sciences. Despite the recent vocal attacks and the more-
worrying mission creep away from it, theory may still retake its proper place. For
example, the centuries-old observation of allometric scaling in biological organisms—
that metabolic rate is the three-quarters power of an organism’s mass—was only re-
cently put on a firm theoretical foundation. The underlying mechanism identified was
the self-similar organization of nutrient transport networks. This showed in a rather
transparent way why the previous area-to-volume explanation, proposed by Francis
Galton in the nineteenth century, for allometric scaling was wrong [8]. And, the mech-
anistic insight suggested that even the organization of cities scales, too [9]. Recent
criticisms and amendments [10] nicely serve to illustrate the healthy dialogue between
theory and experiment that has sprung up.

Another example comes from Heisenberg’s bête noire—fluid turbulence.The basic equa-
tions of motion of fluid flow have been known for well over a century. Using these,
a significant fraction of all supercomputer time is currently spent on flow simulations.
And modern measurement technique facilitates collecting vast amounts of data on the
temporal evolution of experimental fluid flows. It was only with the advent of nonlinear
physics and mathematics, however, that an understanding of emergent flow structures,
and the mechanisms that produce them, has now come tantalizingly within reach [11-
16].

So, theory can play a positive role, but aren’t massive data sets and computing power
replacing theory? Can data and computing alone lead to understanding? Advocates
interpret the evidence as suggesting that they can [2,3].

Today, it’s a stunning feat that language translation engines have reached their levels
of usability. Genuine semantic context is preserved in automated translation, when this
was not previously the case just a few years ago. This performance is achieved not by
new theoretical insights into human linguistic structures, rather they succeed by apply-
ing machine-learning techniques to mine massive corpora of translated written texts.
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In effect, the algorithms organize the original corpora into large, efficiently searchable
tables. The “translation” returned is the closest match in the table to the input text [3].
This Linguist-Free approach is very telling on several fronts—a prime case offered up
against theory.

First, of course, is that historical language usage—language in the wild—appears more
germane to how humans verbally communicate than any extant linguistic theory. Sec-
ond, and this introduces the overarching philosophical concern here, these translation
engines reduce to practice an attack against intelligent machines. The philosopher John
Searle imagined a Chinese Room into which one slid paper with written Chinese text
and out of which slipped a piece of paper with the translated English. With sufficient
trials one would conclude that someone in the Room understood Chinese. Searle then
noted that inside was a mechanism which used a huge reference dictionary for the
translation. Clearly, the mechanism does not understand Chinese and so the intelli-
gence is only imputed by the user. Moreover, Searle argued, not only does the device
not understand Chinese, neither does it’s builder [17]. Such is the state of affairs with
current automated translation.

The very real possibility now exists that the Data Deluge will drive scientific explana-
tion to become a Chinese Room. More precisely, my concern is that we scientific users
will come to accept this brand of operationalism as understanding and this, in turn, will
cost us our creativity.

Likewise with computing power, we can predict the weather more than a week ahead
and forecast the population dynamics of spreading viral pandemics. Having powerful
computers at hand, though, colors scientific practice. With modern software engi-
neering tools we can now build (and manage) very large, “realistic” codes to simulate
complicated natural phenomena. But is 30,000 lines of LISP code a theory of how
the mind makes analogies? Having written that code, does it mean we understand the
brain’s process of analogy-making? Not hardly. In fact, even 10 lines of computer code,
such as that for the now-famous chaotic Logistic Map, can produce complex behavior
that half a century of hard mathematical work has yet to completely crack. Second
and ironically, the very advances in computing power we champion now translate into
large, exquisitely detailed models as complicated as natural experiment. Hundreds of
components and parameters obscure the essential mechanisms responsible for a sys-
tem’s organization and behavior and, practically, make it well-nigh impossible to sys-
tematically explore the range of possible system behaviors. Finally, the vast amounts
of data automatically generated can be as rich as any empirical data set. And so, a
computational scientist is often left with a data analysis task as daunting as any from
experiment.

Let’s take stock. We have two trends, each driven by inexorably improving technol-
ogy. On the one hand, we have Data Literalism born of the Data Deluge: All we
need is data. “Data describes nature”, full stop. This rides tandem with the skepticism
experimentalists hold of theory: “In any case, theory leaves out essential details of Na-
ture and is, perforce, incomplete.” It’s a short step to the production of large data sets
becoming a goal unto itself. On the other hand, we have Computationalism born of
high-performance computing: A computer code is a theory of the phenomenon it sim-
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ulates; the programmer understands the mechanisms that produce the natural system’s
behavior; and to be believable a simulation model must include all of a phenomenon’s
detailed components.

In short, Data Literalism conflates science with data gathering and Computationalism
conflates it with detailed simulation. Where is understanding in all of this? With Data
Literalism pressing in from the side of experiment and Computationalism attempting
an eclipse from the technology side, we are poised to squeeze out the path to under-
standing through theory. This is the challenge.

A century of gathering data on metabolic rates across hundreds of species did not lead
to the new laws of biological scaling. The solution relied on the theory of fractional
dimensions, which in turn has its origins in the mathematical theory of infinity devel-
oped by Georg Cantor. Thousands of experiments on turbulent fluids did not lead to
our new views of emergent flow patterns. Rather these arose from the theory of qual-
itative dynamics invented by the mathematician Henri Poincaré to explain the chaotic
dynamics of the solar system [18].

There may be a saving grace, though. Recent progress in understanding complex sys-
tems suggests a new role for theory, one that relies essentially on the concepts of com-
putation and information—at levels deeper than the tools (simulation and data acqui-
sition) they engender. The hopeful view is that we are now on the verge of a new era,
what in 1989 I called “artificial science”: the automated extraction of theories from
data [5]. The goal is to analyze how we, intelligent agents that we are, discover novel
patterns in nature—patterns that we’ve never seen before.

Contrast pattern recognition. What happens when the airline reservation system re-
sponds to your prompted verbal responses for a destination? The machine has a built-
in vocabulary and asks intentionally focused questions to reduce the range of your
responses and so increase the accuracy of its estimate of your intentions. In modern
speech recognition systems there is an internal vocabulary of patterns—patterns that
have been hand-designed by a speech engineer. The spectral data of your utterance is
matched to the closest template in the pre-engineered vocabulary.

Travel reservations, though rather mundane, illustrate a kind of pattern recognition that
now stands in for contemporary data analysis practice. Training neural networks, for
example, is widely used to capture empirical correlations. The estimated models are
quite effective at classifying data into pre-determined categories. However, they do not
elucidate mechanisms and so fail to provide insight and understanding.

Many natural systems, however, even those for which we’ve established the underly-
ing principles, produce organization spontaneously at spatial and temporal scales not
directly determined by the microscopic balance of forces or equations of motion. Of
late, we refer to this process as emergence [19,20]. For natural systems with emergent
properties it simply begs the question to appeal to pattern recognition, since we don’t
know ahead of time at which spatial and temporal scales patterns appear, let alone what
they will be.

More to the point, what are “patterns” in the first place? How does nature form them?
When is a measurement value due to some patternedness in the data or to some ran-
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dom component? How do we discover novel patterns? And, once identified, how do
we build models of the mechanisms that produced them? These are the questions we
need to answer to realize artificial science. Constructive answers will address what I
consider the most fundamental and abiding problem of twenty-first century science:
Pattern discovery. Discovering the unknown is a conundrum that is distinct from pat-
tern recognition. Nonetheless, we as scientists do this all the time. To make progress
on pattern discovery, a first step is to understand what patterns are and how to quantify
them. (Is system A more “patterned” than system B?) The answer to this comes in the
realization that nature’s patterns capture how nature stores and processes information
[5,6].

With the conceptual challenge of emergence and a deeper understanding of the role of
theory, there is now a new and very real possibility for a novel synthesis of advances
in experimental technique, high-performance computing, and theory: automatically
building theories from data [21,22]. That is, to the extent we understand pattern, we can
use machines to find emergent organization in our vast data sets. And from there, the
machines can build our theories, most likely with guidance from a new generation of
theorists. This suggests a new target for scientific theory: A theory of theory building.
Note that success in this will not put theorists out of work. Rather, it will allow them
to work at a higher level, to be more productive, and to tackle systems which are that
much more complex. The pace of progress will accelerate, yet again.

Conclusion
And this takes us back to May 1923 and the twenty-one year old budding quan-
tum theorist. If you must have a doctoral near-disaster, you can do no better
than on the topic Sommerfeld assigned Heisenberg: fluid turbulence. In his
later years, Heisenberg would opine that turbulence was one of the most fun-
damental and difficult problems of contemporary physics [23]. Heisenberg was
stymied by the richness and diversity of what was, after all, an inanimate sys-
tem. As we look forward, perhaps we’re in a similar humbled circumstance as
we strive to understand the biological and then the social worlds. How are we
to understand their emergent structures? How will we come to understand the
underlying mechanisms well enough for social goals, such as human sustain-
ability? Heisenberg’s doctorate challenge to understand fluid turbulence might
end up providing a lesson for twenty-first century science: a balanced interplay
of experiment, computing, and theory will be required. A bright future awaits,
when Big Data and Big Iron are in a healthy dialogue with Big Theory.
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