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Abstract

The Interplanetary Transport Network is a collection of gravita-
tionally determined pathways through the solar system that require
very little energy for an object to follow. The ITN makes particular
use of Lagrange points as locations where trajectories through space
can be redirected using little or no energy. These points have the pe-
culiar property of allowing objects to orbit around them, despite the
absence of any material object therein.
This short paper is a review of some important applications of this
technique, such as the use of the three-body problem and the four-
body problem to identify the best trajectory with respect to fuel sav-
ings. It will be shown that in the Earth-to-Moon path it is possible to
save up to 30% of the fuel required by the usual old-fashioned path.
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1 Introduction and background

The study of some of the possible natural trajectories in the solar system is
studied. The general case is reduced, when possible, to a three body-problem,
a system extensively studied in the literature. The three or more body prob-
lem is a complicated nonlinear mathematical system which generates paths
which can seem unlikely or odd to the non-expert eye.
To fully understand this short review it is highly suggested to be familiar with
Lagrangian and Hamiltonian systems, with a major focus on the concept of
the five Lagrangian points in the three-body problem.

2 Dynamical System

2.1 The three-body problem and the simplified four-
body problem

The procedure involves a study of the three-body problem and the possi-
ble application of two combined three-body-problem-solutions to solve the
four-body problem in certain domains. I.e., to reduce a specific four-body
problem, when possible, to two, previously and generally solved, three-body
problems.

2.2 Equations of motion

The planar restricted three-body problem can be written as the following
system, assuming two massive bodies orbiting around each other and a third
“light” body orbiting in the effective potential created by the two massive
objects.

ẋ =
∂H

∂px

= px + y (2.1)

ẏ =
∂H

∂py

= py − x (2.2)

ṗx = −∂H
∂x

= py − x− Ux (2.3)

ṗy = −∂H
∂y

= −px − y − Uy (2.4)
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with U(x, y) being

U(x, y) = −1
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− µ2

r2
(2.5)

where µ1 and µ2 are quantities representing the relative distance from the
center of mass of the two massive bodies and r1 and r2 the distances of the
third light body from the two massive bodies. (x, y) are the coordinates of
the light body in the rotating two-body system where the two massive bodies
are at rest. The potential U(x, y) results to be time independent and works
as an effective potential for the light body.
This system admits as solutions different classes of trajectories, which will
be described in the next paragraph.

2.3 Description of the classes of trajectories

The shape of the effective potential can be shown in a three-dimensional
graph, where the maxima, minima and saddle points represent the points
around which local stable or unstable orbits exist. The Lagrangian points
known as L3, L4 and L5, also very important because of some peculiar sta-
bility properties, will not be discussed in this review, which focuses on the
points L1 and L2.
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Figure 1: Plot of the effective potential U(x, y).

Figure 2: Possible orbits around L1 or L2.
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It can be shown that four main classes of trajectories around one of the
points L1 or L2 exist as a function of two parameters depending on the initial
conditions (in the graph α1 and α2)

1:

• unstable periodic orbits;

• asymptotic orbits;

• transit orbit;

• non-transit orbit;

which obvious meaning in the graph.
Combining the orbits of the two Lagrangian points we ca see how the overall

Figure 3: Plot of the semistable orbits.

1Of course, being the phase space four-dimensional, the solutions must depend on four
parameters and not just two. This is in fact true, but the other two parameters, called in
the literature β1 and β2 are important just for the early times of the trajectories, while
their contribution disappears in the limit t → ∞, which is the limit we are interested in
while analyzing classes of trajectories.
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pattern looks like.
In the graph the five main domains of the three-body problems (for example,

Figure 4: The five gravitational realms.

the Sun-Jupiter system) are shown:

• S is the region where the central body, the Sun, is mostly responsible
for the orbit;

• J is the region where Jupiter is seen as the main body;

• X is the region where the orbits mainly see just the center of mass of
the Sun-Jupiter system;

• R1 and R2 are respectively the region where there are semistable orbits
around the Lagrangian points L1 and L2.

It is possible to prove that the analyticity of the solutions implies that there
are trajectories naturally passing from one domain to another.
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Figure 5: Plot of a trajectory passing from the X realm to the S realm.

As an interesting case, it is important to mention that following a specific
trajectory of the unstable manifold2 of one of the two Lagrangian points
it is possible to match precisely a trajectory of the stable manifold of the
other Lagrangian point, identifying a path which starts from one unstable
asymptotic orbit and ends to a different stable asymptotic orbit.
To better see how the stable and unstable manifolds can be connected and

used a short explanation is required. In the figures it is shown a line called
Poincaré Section U3. This line has a particular symmetry and it is useful to
be thought as the separation line between the influence of L1 and L2 and
viceversa. A small change in the momentum on the Poincaré Section can
generate a huge change in the final orbit. Also, plotting the phase-space of
the orbits for the unstable manifold of L2 and the stable manifold of L1 at
the Poincaré Section, it is possible to see how for certain orbits it is natural
to pass from L2 to L1, as the two surfaces in the phase-space overlap.

2The (un)stable manifold is the region of the phase-space where the (un)stable asymp-
totic orbits are located.
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Figure 6: Plot of the phase-space for orbits leaving L1 and reaching L2.

Figure 7: Orbit asymptotically leaving L1 and asymptotically reaching L2.
At the Poincaré section the position of this orbit in the phase-space is in the
region of overlap shown above.
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2.4 Chaoticity

The last argument, involving regions overlapping in the phase-space, shows
how the system can easily contain chaoticity. Being the equations of motion
nonlinear, but well defined and analytical in the entire domain, it is possi-
ble to prove how within a region of the phase-space where there are orbits
belonging to one of the realms, there can be some “hidden” regions where
the orbits eventually change realm. As an example, the plot shows how it

Figure 8: Plot of the region of overlap in the phase-space at the Ponicaré
section. The overlap represents the “initial conditions” at the Poincareé
section of the trajectory shown in figure 5(a).

is possible to find small regions3 whose corresponding orbits are extremely
unlikely (having random initial conditions), but possible.
Continuing the analysis the system reveals its fractal nature, with orbits that
go back to the original realm or change indefinitely realms. The plot below
is an example of this feature.

3Small here assumes the significance of very precise initial conditions; just a tiny change
in them, and the orbit will eventually diverge exponentially.

9



Figure 9: Plot of the fractal nature of the orbits in the phase-space.

3 The four-body problem

The analysis of the planar restricted three-body problem has shown how it
is possible to use the Lagrangian points to pass from an “outer” orbit to an
“inner” orbit. Combining different three-body problems we can find a way
to iterate this method and transferring objects from any to any orbit in the
solar system with no or almost no energy cost. A good example is given by
the Sun-Earth-Moon system. In the picture (figure 10) it is shown how the
three-body problem related to the Earth-Moon system lives actually within
the “bigger” three-body problem related to the Sun-Earth system.

The main difference when applying this three-body-problem procedure to
the four-body problem is that the total potential becomes time dependent.
If the two systems are separate enough, the time dependence influences the
procedure of tracking the trajectories only in a synchronization need for
the orbits, but the main features remain unchanged. Although, this means
that the right alignment must be waited in order to match the different
manifolds. Small corrections in the momentum of the orbit can easily increase
the window of overlap between the orbits in the phase-space. In the figure it
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Figure 10: The Sun-Earth-Moon four-body problem seen as two three-body
problems.

Figure 11: Plot of the time window of the phase-space overlap between the
Sun-Earth and the Earth-Moon systems.
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is shown how the timing influences the low-fuel (low-change-in-momentum)
trajectory of an object leaving the Earth and approaching the Moon.
The Earth-to-Moon trajectory is also shown in the figure to compare the old-

Figure 12: The Earth-to-Moon trajectory.

fashioned approach with the four-body-problem approach. In part (a) the
standard EtM trajectory, in part (b) the four-body-problem trajectories in
the Earth-Moon rotating reference frame, in part (c) the four-body-problem
trajectories in the Sun-Earth rotating reference frame.
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4 Results

It has been shown that using the multiple three-body-problem approach it is
possible to draw low-fuel trajectories. In the Earth-to-Moon case it is possible
to save up to 30% of the fuel required by the old-fashioned trajectory. The
30% is a remarkable saving, especially because the majority of the fuel has
still to be used to reach the escape velocity and leave the Earth.
Other very complicated orbits can be calculated with this method, and some
of them have been successfully used for probes and space missions.

5 Conclusion

The multiple three-body problem approach allows to draw trajectories from
any point of the solar system to any other point with very little change in
momentum, implying considerable savings in fuel. The only additional cost is
in terms of time. In fact, the nature of the problem makes it time dependent
when the bodies involved are more than three and the right alignment might
require waiting a long time. Also, some of the trajectories are relatively slow,
which can overall makes the time of the completion of the desired trajectories
much longer, even if almost free in terms of energy.
The procedure also illustrates how it is possible for small objects as asteroids
or comets to change their orbit with respect to the solar system. Historically,
the Schumacher-Levi cometh followed one of these complicated paths in the
Sun-Jupiter system before being eventually captured by Jupiter, producing
the collision we saw a few years ago.
It is possible in the future to put a space station in one of the unstable La-
grangian points with respect to a planet and to use these low-fuel trajectories
to send back and forth spaceships to asteroids for collecting minerals with
almost no cost in energy. It is also possible to study the possible contam-
ination of life forms from one planet, cometh or asteroid to another, as a
possible link for the origin of life.
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