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Abstract We show how to model multiagent systems using dynamical sys-

tems theory. We adapt our reinforcement-learning multiagent dynamics framework

to model various kinds of agent collective. Several examples illustrate a close con-

nection with game theory and evolutionary dynamics. We also model a collective

in which N-agents service M time-sensitive tasks. We analyze, both numerically

and analytically, the resulting replicator equations and the collective transient,

equilibrium, and dynamical behaviors. Using these results we derive predictions for

individual and collective behaviors and characterize reward structures that lead to

optimal collective performance and resource use. As part of the latter, we adapt

measures of synchronization and structural complexity to quantify the degree of

collective coordination.

Joint work with Dave Albers (MPI Complex Systems, Leipzig; SFI;

Physics, UWisconsin, Madison), Manuel Sanchez-Montanes (Com-

puter Science, U. Autonoma Madrid), and Yuzuru Sato (SFI and

UTokyo)
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Central Problem:

Many agents with limited information, What is the Global Behavior?

Concerns that arise for multiagent systems:

• Hierarchical:

– adaptive agents

– dynamic environment

– collective behaviors differ from individual

• High-dimensional stochastic processes

• Where is a predictive theory?
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Single-Agent Adaptation:

Environment Agent
X

N possible actions: i = 1,2, . . . , N .

Environment: ri(τ) is the reinforcement for taking action i.

Agent’s memories are Q(τ) = (Q1(τ), . . . , QN(τ)) are updated:

Qi(τ + 1) − Qi(τ) =
1

T
[δiτri(τ) − αQi(τ)]

α = 0: the agent has a perfect memory.
α > 0: memory is attenuated.
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Agent’s state is its choice distribution: x(τ) = (x1(τ), . . . , xN(τ)).

Agent translates rewards to choice probabilities using:

xi(τ) =
eβQi(τ)

ΣkeβQk(τ)
,

β ∈ [0,∞] controls the adaptation sensitivity.

β = 0: Choice unaffected by reward memory; xi = N−1.

β = ∞: Always choose action with maximum reward.

Dynamics of the choice distribution is:

xi(τ + 1) =
xi(τ)eβ[Qi(τ+1)−Qi(τ)]

∑N
n=1 xn(τ)eβ[Qn(τ+1)−Qn(τ)]

Adaptation: aka Q-learning (machine learning), operant conditioning (Hebb),
stochastic learning, ....
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Assume adaptation is very slow, compared to interactions: τ � t.

t

dt Adapt

Interact
τ

Continuous-time limit:

Q̇i(t) = Ri + αQi(t), where Ri = 〈ri(τ)〉τ∈[t,t+dt]

ẋi(t) = βxi(t)

[

Q̇i(t) −

N
∑

n=1

Q̇n(t)xn(t)

]

Choice distribution dynamic (remove memory variable):

ẋi

xi
= β

[

Ri −

N
∑

n=1

xnRn

]

+ α

[

− logxi +

N
∑

n=1

xn logxn

]
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In continuous-time limit, adaptation is governed by

ẋi

xi
= β(Ri − ΣN

k=1xkRk) + α(Hi − H) ,

where Ri is the integrated reinforcement and Hi = − logxi.

Ri − ΣkxkRk is the relative benefit compared to the mean.

Hi − H is relative informativeness compared to the average surprise H.

Adaptation is a dynamic balance between

• Exploitation occurs when the agent adapts to the environmental con-
straints: specializes on the action with the highest reward.

• Exploration occurs when the entropy term dominates and equalizes the
choice probabilities.
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Adaptation as a

Dynamic Balance of Exploitation and Exploration

Exploitation:

Local Optimization

Actions

Exploration:

Randomization
Choice

Distribution

Reinforcement

Scheme

7



The Extremes: Exploit versus Explore

2

∆x

2

∆x

3 31 1

α = 0 α > 0

Single Agent with 3 Actions: {1,2,3}; R =
(

1
3,−7

6, 5
6

)

; β = 1.0.

α = 0 ⇒ ~x = (0,0,1).

α > 0 ⇒ ~x = (1
3, 1

3, 1
3).
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Multiagent Dynamical Systems

Introduced: Y. Sato, E. Akiyama, & JPC, Physical Review E 67:1 (2003) 40–43.
Review: Y. Sato, E. Akiyama, & JPC, Physica D (2005) submitted.

Two agents, X and Y :

ẋi

xi
= βX(RX

i − RX) + αX(HX
i − HX)

ẏj

yj
= βY (RY

j − RY ) + αY (HY
j − HY ) , (1)

Fixed relationship between actions and rewards, then

ẋi

xi
= βX[(Ay)i − x · Ay] + αX[HX

i − HX]

ẏj

yj
= βY [(Bx)j − y · Bx] + αY [HY

j − HY ] , (2)

A and B are matrices.

Replicator equations (pop. & ev. biology), but with the memory term.

Describes an effective game-interaction between agents.
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Matching Pennies

Y wins if pennies match; otherwise X wins

Interaction matrices:

A =

[

−εX εX

εX −εX

]

and B =

[

−εY εY

εY −εY

]

, (3)

εX ∈ (0.0,1.0] gives agent X’s reward for winning.

−εY ∈ (0.0,1.0] gives agent Y ’s reward for winning.
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Three Agents in the Even-Odd Pennies Game
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Rock-Scissors-Paper

Rock beats Scissors beats Paper beats Rock.

Interaction matrices for two agents:

A′ =







εX 1 −1
−1 εX 1
1 −1 εX






and B′ =







εY 1 −1
−1 εY 1
1 −1 εY






, (4)

εX , εY ∈ [−1.0,1.0] are the rewards for ties.
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Three agents interacting via generalized RSP
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Structured Multiagent Systems

Problem: Model requires all agents communicate to all

• For large collectives, not realistic;

• |Interactions| ∝ exp(S); and

• Agent’s interactions with others always of same type.

Solution: Extend models to include

• Role Playing and

• Communication Networks.
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Example of Role Playing and Communication Networks

AXX

AYX

AXY

A
ZX

A
XZ

AgentY
AgentXAgentZ

H

T

H

T

R

S

P

R

S

P

ẋi

xi
= βX

[

(AXXx)i − x · AXXx + (AXZz)i − p · AXZz + (AXY y)i − q · AXY y
]

+ αX(H(xi) − H[x])
ẏi

yi
= βY

[

(AY Xx)i − y · AY Xx
]

+ αY (H(yi) − H[y])

żi

zi
= βZ

[

(AZXx)i − y · AZXx
]

+ αZ(H(zi) − H[z])

where

• Σxi = Σyi = Σzi = 1,
• x = (xHR, xHS, xHP, xTR, xTS, xTP), y = (yR, yS, yP), and z = (zH, zT),
• p = (xHR + xHS + xHP, xTR + xTS + xTP),
• q = (xHR + xTR, xHS + xTS, xHP + xTP).
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Example of Spatially Distributed Collective

S S+1S-1 ...... A ABB

S agents on a one-dimensional lattice:

ẋs
i

xs
i

= βs

[

(Asxs−1)i − ps · Asxs−1 + (Bsxs+1)i − qs · Bsxs+1
]

+αs(− logxs
i−Σ4

nxs
n logxs

n)

where

• Σxs
i = 1,

• ps = (xs
1 + xs

2, x
s
3 + xs

4), and

• qs = (xs
1 + xs

3, x
s
2 + xs

4).
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Multiple Agents Servicing Multiple Tasks (MASMT)

N-agent collective responsible for servicing M distributed tasks:

• Each task has a desired service rate σi that agents attempt to achieve.

• If a task is serviced too often, the servicing agent is punished, as wasting
resources.

• If an agent services a task that is being serviced at a rate below σi,
however, the agent is rewarded, as the agent is servicing a pending task
that other agents failed to address.

• In this case, in addition, other agents are punished in proportion to their
failure in allowing the task to go unserviced.

• If the task is serviced at the correct rate, the agent is neither rewarded
nor punished.
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Wetlands

A wetlands supporting a population of ducks with ponds that provide distinct
nutrients. The birds are the agents, each with a set of nutrient requirements
characteristic of the species—such as water, food, minerals, and so on. Tasks
are identified as a combination of the birds’ needs coupled with what the ponds
provide. The timeliness of servicing the tasks corresponds to the birds using up
their stored nutrients and needing to replenish them.
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Example Architecture

X
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A
WW

A
XX

Server WServerYServer

AClient BClient CClient

A
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ZServer
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Information Space

Self-informations of agents X and Y choosing actions i and j:

ξi = − logxi ,

ηj = − log yj ,

Exploitation and exploration terms are differences from means: so we use

ui = ξi − N−1
N

∑

k=1

ξk ,

vj = ηj − M−1
M
∑

k=1

ηk ,

with
∑N

k=1 uk =
∑M

k=1 vk = 0.

MADS equations simplify greatly

u̇ = −βXAy − αXu ,

v̇ = −βY Bx − αY v .

with normalized interactions, xi = e−ui/ΣN
k e−uk, and yi = e−vi/ΣM

k e−vk.
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Discrete-Time Adaptive Maps

xi(t + 1) =
x
1−αX
i (t)eβXRX

i (t)

∑

k x
1−αX
k (t)eβXRX

k (t)

yi(t + 1) =
y
1−αY
i (t)eβY RY

i (t)

∑

k y
1−αY
k (t)eβY RY

k (t)
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The Future

1. Natural extensions:

(a) Communication costs

(b) Continuous actions (e.g., geographic position): PDEs

(c) State-dependent agents (with memory)

2. Design:

(a) Evolutionary search over space of reinforcement schemes

(b) Optimize performance

(c) Robustness
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