Natural Computation

Transforming Tools of NBIC: Complex Adaptive Systems

EISON

James P. Crutchfield www.santafe.edu/~chaos Santa Fe Instítute

Nanotechnology, Biotechnology, Information Technology, and Cognitive Science NBIC Convergence 2004 Converging Technologies for Improving Human Performance 25-27 February 2004, New York Marriott Financial Center, New York, NY

Víctíms of Success:

Instrumentation and Computing

- Pattern Discovery
- Intrinsic Computation
- Distributed Emergent Computation in Plants
- Biological Information Processing

Success in Instrumentation: Data Explosion

- Neurophysiology: multiple neuron recordings (>100 neurons @1kHz)
- Web Data-Mining: 10-100 GB/day, multi-terabyte databases
- Astrophysical data: Hubble, EUV, Sky Survey, ...
- Neuroimaging: MEG 100-300 Squids (x 16 bits@1 kHz)
- Geophysics: Earthquake monitoring with 1000s sensors, of different kinds
- BioInformatics: Genome projects, microarray sequencing, ...
- Searchable Vídeo Databases
- Very large-scale simulations: weather, hydrodynamics, reaction kinetics, ...

Pattern Discovery

Machines must help
Understand "structure", "pattern", "regularity", ...
Well enough to teach machines
Beyond Pattern Recognition

J. P. Crutchfield. Is Anything Ever New? Considering Emergence. In *Complexity: Metaphors, Models, and Reality*, G. Cowan, D. Pines, and D. Melzner, editors, *Santa Fe Institute Studies in the Sciences of Complexity* **XIX** Addison-Wesley, Reading, Massachusetts (1994) 479--497.

Success in Computation

Step 1. 10 Logical 1000 0.1 Energy Energy 1. 10 1950 1960 1970 2000 2020 1980 1990 2010 Year

Roadblock in 2020: 1 bit per atom 1 kT per logical operation 40 GHz, 4 billion gates, 200 GB RAM Dev Cost: 50% of GDP Energy: 5% US total power

Keyes 1988, Malone 1995, Hutcheson 1996

Intrinsic Computation

How much stored historical information?
How is that information stored?
How is it processed to produce future behavior?

The Theory of Computational Mechanics:

J. P. Crutchfield and K. Young. Inferring Statistical Complexity. Physical Review Letters 63 (1989) 105-108.

Success into Success?

Theory of pattern
Theory of intrinsic computation
These, it turns out, are the same: How nature "computes" is how nature is "structured"

Distributed Emergent Computation

A GA Evolves CAs

Population

Individual

Genetic Algorithm Γ

Cellular Automaton Φ

J. P. Crutchfield and M. Mitchell, The Evolution of Emergent Computation, Proceedings of the National Academy of Sciences USA **92** (1995) 10742-10746.

Evolutionary Stages

Particle Analysis

Stomataputers: Intrinsic Computation in Plant Respiration

Peak, D. . . . and K. A. Mott. Evidence for complex, collective dynamics and emergent, distributed computation in plants. *Proceedings of the National Academy of Sciences* **101** (2004) 918-922.

Biological Information Processing (w/Walter Fontana & David Krakauer, SFI)

Component turn-over: Persistence of identity Memory of state via structure & form Stochasticity (in number and recognition): Error-correction Massive concurrency: Emergence of determinism Coordination & conflicts Communication by contact: Energy transport Control of space Function: Driven by energy, but Supported by transformation of stored information

Biological architectures emphasize systemic capacities:

Plasticity Reconfigurability Compressibility Evolvability (neutrality, modularity) Autonomy Self Robustness

Desírable but absent in today's computer architectures

In biological systems there is no software running on hardware.

Novel Forms of Information Processing: Natural Computation

- Tech: Information storage and processing in new substrates, at new scales and speeds (nano/bio)
- Science: New View of how Nature organizes and computes (info/cogno)

Toward a Thermodynamics for the Information Age www.santafe.edu/~chaos www.santafe.edu/projects/CompMech