Embodiments of Computation in Cognitive Systems

James P. Crutchfield www.santafe.edu/~chaos www.santafe.edu/~dynlearn

> Santa Fe Institute 24 October 2003 IPTO Visit

BISON

Complexity

Modern Lífe:

Ever more technological Ever more interconnected Ever more diverse

Symptoms:

Increased size and sophistication of systems and processes Increased interdependence and contingency (globalization, just-in-time) Increased social & psychological stress, due to lack of knowledge & control

Consequences: Dífficult or impossible to manage and diagnose Vulnerable to destabilization and catastrophic loss

Systems are more complex, but in what sense?

Two definitions
Complication
Structure

Complication

in Connectivity: Random Graphs

in Time: Intrinsic unpredictability (chaos)

Complication versus Structure

Boredom

Delight

Variatio Delectat

DARPA Agent-Based Computing (TASK)

- Dynamics of Learning
 - Online Causal Inference Algorithms
 - Tabula Rasa Learning
 - Pattern Discovery
- Emergence of Distributed Adaptation
 - Causal Synchrony
 - Measures of Coordination
 - Individual versus Collective Adaptation
 - Large-Scale MAS Dynamical Sysmtes

What is an Cognitive Agent? Some Open Questions

Cognitive Information Processing

- Dynamical systems view of learning as a process whose behavior is predictive model building
- Define and measure agent "cognitive" abilities
- Development math'ly analyzable and simulatable models
- What state-space structures are responsible for cognition? E.g., Basins = robust memories; bifurcations = adaptation; models = attractor-basin portrait in subspace; ...

Dynamics of Learning: Learning Curves—The Aha! Effect

- Adapting to complex environments
- Learning paradigm
- Three phases
 - Rote memorization
 - Aha!
 - Refinement

What are Networks?

To say a system is a network calls attention to its architecture

Study of networks is a study of structure & organization

What's old:

Time-worn problem of "pattern" What's new:

Mathematics: dynamics, complexity, ... Tools: simulation, visualization, automated experiment Openness to re-think current approaches

SFI Network Dynamics Program

(discuss.santafe.edu/dynamics) Funded by Intel, an SFI Business Network Member

Theory Agenda:

- Network structure: mean path, clustering, degree distribution, betweenness
- Dynamics on networks: synchronization, emergence of patterns
- Dynamics of networks: perferential attachment, scale-free networks
- Self-adapting networks

Applications:

Ecology: food webs, allometric scaling Internet and web: structure, dynamics, and growth Social systems: scientific collaboration networks Neural networks: intrinsic computation versus architecture Epidemiology: spread of disease

Understandability of Large-Scale Cognitive Systems

Stability & robustness

Control

Pattern discovery

Right-sized?

Right architected?

Right dynamics?

What's needed?

- Modeling and Phenomenology
 Design Methods
 Failure Diagnosis (Robustness)
 Theory of Cognitive Information Processing ----Intrinsic Computation:
 - How much historical information is stored?
 - In which archicture is it stored?
 - How is it used to produce future behavior?

Action Item: Workshops (e.g. JPCs at SFI)

 Evolutionary Dynamics (October 1998) Network Dynamics (August 2000) Collective Cognition (January 2002) TASK PI Meetings (4/2001, 10/2002) Pattern Discovery (2004) Dynamics of Learning (2004)

Action Items: Novel Cognition at SFI

- Dynamical Embodiments of Computation in Cognitive Processes (JPC proposal)
 - Collective Cognition
 - Theory Group in Learning
- Novel Computation (SFI group proposal)
 - Biological Computation
 - Quantum Computation
 - Network Computation